Higher-Order Weyl-Exceptional-Ring Semimetals

Tao Liu, James Jun He, Zhongmin Yang, and Franco Nori

School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
South China Normal University, Guangzhou 510006, China
State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 27 April 2021; accepted 30 September 2021; published 5 November 2021)

For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimetals, as a novel class of higher-order topological phases, can uniquely exhibit coexisting surface and hinge Fermi arcs. However, non-Hermitian higher-order topological semimetals have not yet been explored. Here, we identify a new type of topological semimetal, i.e., a higher-order topological semimetal with Weyl exceptional rings. In such a semimetal, these rings are characterized by both a spectral winding number and a Chern number. Moreover, the higher-order Weyl-exceptional-ring semimetal supports both surface and hinge Fermi-arc states, which are bounded by the projection of the Weyl exceptional rings onto the surface and hinge, respectively. Notably, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Our studies open new avenues for exploring novel higher-order topological semimetals in non-Hermitian systems.

DOI: 10.1103/PhysRevLett.127.196801

Introduction.—There is growing interest in exploring higher-order topological insulators [1–24] and superconductors [25–41]. As a new family of topological phases of matter, higher-order topological insulators and superconductors show an unconventional bulk-boundary correspondence, where a d-dimensional nth-order (n ≥ 2) topological system hosts topologically protected gapless states on its (d − n)-dimensional boundaries, such as the corners or hinges of a crystal. Very recently, the concept of higher-order topological insulators has been extended to 3D gapless systems, giving rise to distinct types of topological semimetal phases with protected nodal degeneracies in bulk bands and hinge Fermi-arc states in their boundaries. Examples include higher-order Dirac semimetals [42,43], higher-order Weyl semimetals [44–48], and higher-order nodal-line semimetals [49–51].

Weyl semimetals exhibit twofold degenerate nodal points in momentum space, called Weyl points (or Weyl nodes). The Weyl points are quantized monopoles of the Berry flux and are characterized by a quantized Chern number on a surface enclosing the point [52]. The nontrivial topological nature of first-order Weyl semimetals guarantees the existence of surface Fermi-arc states, connecting the projections of each pair of Weyl points onto the surface. In contrast to first-order Weyl semimetals, higher-order Weyl semimetals have bulk Weyl points attached strikingly to both surface and hinge Fermi arcs [45,46].

Recently, considerable efforts have been devoted to explore topological phases in non-Hermitian extensions of topological insulators [53–90] and semimetals [91–106], including non-Hermitian higher-order topological insulators [107–115]. Non-Hermiticity originated from dissipation in open classical and quantum systems [84,89], and the inclusion of non-Hermitian features in topological systems can give rise to unusual topological properties and novel topological phases without Hermitian counterparts. One striking feature is the existence of non-Hermitian degeneracies, known as exceptional points, at which two eigenstates coalesce [89,116–119]. The non-Hermiticity can alter the nodal structures, where the exceptional points form new types of topological semimetals [94–98]. Remarkably, a non-Hermitian perturbation can transform a Weyl point into a ring of exceptional points, i.e., a Weyl exceptional ring [94]. This Weyl exceptional ring carries a quantized Berry charge, characterized by a Chern number defined on a closed surface encompassing the ring, with the existence of the surface states. In addition, such a ring is also characterized by a quantized Berry phase defined on a loop encircling the ring. Weyl exceptional rings show multiple topological structures having no
Hermitian analogs in Weyl semimetals [98]. Although non-Hermitian first-order topological semimetals have been systematically explored, far less is known about non-Hermitian higher-order topological semimetals with hinge states. This leads to a natural question of whether a non-Hermitian perturbation can transform a Weyl point into a Weyl exceptional ring in a higher-order topological semimetal.

In this Letter, we investigate non-Hermitian higher-order topological semimetals, where a non-Hermitian perturbation transforms the higher-order Weyl points into Weyl exceptional rings formed by a set of exceptional points. The topological stability of such a ring is characterized by a nonzero spectral winding number. In addition, the Weyl exceptional ring has a quantized nonzero Chern number when a closed surface encloses the ring. This leads to the emergence of surface Fermi-arc states. Moreover, as a new type of topological semimetal, the higher-order Weyl-exceptional-ring semimetals (HOWERSs) have the hinge Fermi arc connected by the projection of the Weyl exceptional rings onto the hinges. Meanwhile, the dissipative terms can induce topological phase transitions between different semimetal phases. By developing an effective boundary theory, we provide an intuitive understanding of the existence of hinge Fermi arcs states: the surface states of the first-order topological semimetal with Weyl exceptional rings are gapped out by an additional anticommutative term in a finite wave vector k_z region. This introduces Dirac mass terms, which have opposite signs between the neighboring surfaces. Therefore, hinge states appear only in a finite k_z region, resulting in Fermi-arc states.

Hamiltonian.—We start with the following minimal non-Hermitian Hamiltonian on a cubic lattice

$$\mathcal{H}(k) = (m_0 - \cos k_x - \cos k_y + m_1 \cos k_z) s_z s_z$$

$$+ (i \gamma \sin k_x + i \gamma_0) s_z + \sin k_x s_x s_z + \sin k_y s_y s_z$$

$$+ \Delta_0(\cos k_x - \cos k_y) s_z, \quad (1)$$

where s_i and s_j are Pauli matrices, and γ denotes the decay strength. The Hamiltonian $\mathcal{H}(k)$ can, in principle, be experimentally realized using dissipative ultracold atoms and topoelectric circuits (see Supplemental Material [120]).

The Hamiltonian $\mathcal{H}(k)$ preserves (1) time-reversal symmetry $T = is_z s_x k_z$, with k_z being the complex conjugation operator, and (2) the combined charge conjugation and parity (CP) symmetry $CP\mathcal{H}(k)(CP)^{-1} = -\mathcal{H}(k)$, with $CP = s_z s_x$. For $\gamma = 0$, the system is a hybrid-order Weyl semimetal, which supports both first- and second-order Weyl nodes with coexisting surface and hinge Fermi arcs [120].

Weyl exceptional ring.—In the presence of the non-Hermitian term γ, two of the bulk bands coalesce at the energy $E = 0$, leading to the emergence of Weyl exceptional rings [which are analytically determined by Eqs. (S7) and (S8) in the Supplemental Material [120]]. As shown in Fig. 1, the non-Hermiticity drives four higher-order Weyl nodes of the Hermitian Hamiltonian $\mathcal{H}(k, \gamma = 0)$ into four Weyl exceptional rings, where the real and imaginary parts of the eigenvalues vanish. These exceptional rings are protected by the CP symmetry, belonging to the class $P\mathcal{C}$ [98]. In order to characterize their topological stability, we calculate the spectral winding number defined as [98]

$$W = \oint_{\mathcal{L}} \frac{d\mathbf{k}}{2\pi i} \nabla_k \log \det [\mathcal{H}(k) - E(k_{EP})], \quad (2)$$

where \mathcal{L} is a closed path encircling one of the exceptional points on the Weyl exceptional ring [see Fig. 1(a)], and $E(k_{EP}) = 0$ is the reference energy at the corresponding exceptional point k_{EP}. Because there exists a point gap [see Fig. 1(b)] along the path \mathcal{L} for the reference point $E(k_{EP})$, the spectral winding number in Eq. (2) is well defined, and can be nonzero due to complex eigenenergies. Direct numerical calculations yield $W = -1, 1, 1, -1$, for each nodal ring along the z axis in Fig. 1. The quantized nonzero winding numbers indicate that Weyl exceptional rings are topologically protected by the CP symmetry and cannot be removed by small perturbations preserving symmetries.

Surface bands.—Since Weyl exceptional rings are transformed from the Weyl nodes by a non-Hermitian perturbation, they can also carry topological charges of the Berry phase, which is defined on the closed surface S [see Fig. 1(c)] as

$$C = \frac{1}{2\pi i} \sum_n \oint_S \mathbf{v}_k \times \langle \tilde{u}_n(k) | \mathbf{v}_k | u_n(k) \rangle \cdot dS, \quad (3)$$

where n is taken over the occupied bands, and $|u_n(k)\rangle$ ($\langle \tilde{u}_n(k)|$) being the left (right) eigenvector for the nth band.
The numerical calculations show that four Weyl exceptional rings carry topological charges with \(C = -1, 1, 1, -1 \), for each ring along the \(k_z \) direction, when each Weyl exceptional ring is enclosed by the surface \(S \). Otherwise, \(C = 0 \) when each ring is located outside the surface \(S \).

The nonzero Chern numbers indicate that there exist surface states, which connect two Weyl exceptional rings with opposite Chern numbers under the open boundary condition. Figures 2(a)–2(c) show the real, imaginary, and absolute parts of surface-band spectra when the open boundary is imposed along the \(x \) direction. The non-Hermitian topological semimetal \(H(k) \) has zero-energy surface states. These surface states are bounded by the projection of Weyl exceptional rings onto the \(k_z \) axis. As the non-Hermitian term \(\gamma \) varies, the bounded range of zero-energy surface states changes, as shown in Fig. 2(c). Therefore, the non-Hermitian Weyl-exceptional-ring semimetal \(H(k) \) has the features of first-order topological semimetals.

FIG. 2. (a) Real, (b) imaginary, and (c) absolute values of the surface band structure along the \(k_z \) direction, when the open boundary condition is imposed along both the \(x \) and \(y \) directions, and Figs. 2(d)–2(f) present the real, imaginary, and absolute parts of hinge-band spectra. Remarkably, there exist hinge Fermi arcs, which connect with the projection of two Weyl exceptional rings closest to \(k_z = 0 \) onto the hinges. This indicates that the non-Hermitian band coalescences in zero-energy bulk bands lead to the HOWERSs. Therefore, the Weyl exceptional rings in the non-Hermitian semimetal \(H(k) \) have both the first- and higher-order topological features. In Figs. 2(g) and 2(h), we present the probability density distributions of two arbitrary midgap states for open boundary conditions along the \(x \), \(y \), and \(z \) directions. In contrast to Hermitian Weyl semimetals, the hinge Fermi-arc states studied here show non-Hermitian skin effects, and thus hinge modes are localized toward corners.

Effective boundary theory.—For an intuitive understanding of the HOWERSs and the emergence of hinge Fermi-arc states, we develop an effective boundary theory to derive the low-energy surface-state Hamiltonian in the gapped bulk-band regime for the relatively small \(\gamma \) and \(\Delta_0 \) (see the details in the Supplemental Material [120]). We label the four surfaces of a cubic sample as I–IV, corresponding to the surface states localized at \(x = 1 \), \(y = 1 \), \(x = L \), and \(y = L \). We first consider the system under the open boundary condition along the \(x \) direction and periodic boundary conditions along both the \(y \) and \(z \) directions. After a partial Fourier transformation along the \(k_z \) direction, the Hamiltonian \(H(k) \) in Eq. (1) becomes

\[
H_x = H_0 + H_1, \quad \text{with}
\]

\[
H_0 = \sum_{x, k_x, k_z} \left(\Psi^\dagger_{x, k_x, k_z} T \Psi_{x+1, k_x, k_z} + \text{H.c.} \right)
\]

\[
+ \sum_{x, k_x, k_z} \Psi^\dagger_{x, k_x, k_z} M \Psi_{x, k_x, k_z},
\]

where \(T \) and \(M \) are \(T = -\frac{i}{2} s_z \sigma_z - \frac{i}{2} s_x \sigma_x \) and \(M = (m_0 - \cos k_y + m_1 \cos k_z) s_z \sigma_z + (v_z \sin k_z + i \gamma) s_x \), and
\(\mathcal{H}_1 = \sum_{x,k_x,k_z} |x,k_x,k_z\rangle \langle x,k_x,k_z| (\sin k_y \sigma_x - \Delta_0 \cos k_y \sigma_z) |x,k_x,k_z\rangle + \sum_{x,k_x,k_z} \left(|x,k_x,k_z\rangle \langle x+1,k_x,k_z| + H. c. \right) , \)

where \(x \) is the integer-valued coordinate taking values from 1 to \(L \), and \(|x,k_x,k_z\rangle \) creates a fermion with spin and orbital degrees of freedom on site \(x \) and momentum \(k_y \) and \(k_z \). By assuming a small \(\Delta_0 \), and taking \(k_y \) to be close to 0, \(\mathcal{H}_1 \) is treated as a perturbation.

Since the Hamiltonian \(\mathcal{H}_0 \) in Eq. (4) is non-Hermitian, we calculate its left and right eigenstates. We first solve the right eigenstates. In order to solve the surface states localized at the boundary \(x = 1 \), we choose a trial solution \(\psi_R(x) = \lambda_R^x \phi_R \), where \(\lambda_R \) is a parameter determining the localization length with \(|\lambda_R| < 1 \), and \(\phi_R \) is a four-component vector. Plugging this trial solution into Eq. (4) for \(k_y = 0 \), we have the following eigenvalue equation:

\((\lambda_R X + M + \lambda_R T) \phi_R = E \phi_R , \)

and

\((M + \lambda_R T) \phi_R = E \phi_R , \)

By considering the semi-infinite limit \(L \to \infty \), and requiring the states to have the same eigenenergies in the bulk and at the boundary, we have \(\lambda_R X + M + \lambda_R T = 0 \). This leads to \(E = 0 \), and two eigenvectors with \(\phi_{1,R} = (i, 0, 1, 0)^T \) and \(\phi_{2,R} = (0, -i, 0, 1)^T \). The corresponding localization parameters are \(\lambda_{1,R} = 1 - m_0 - m_1 \cos k_z - v_z \sin k_z - i \gamma \) and \(\lambda_{2,R} = 1 - m_0 - m_1 \cos k_z + v_z \sin k_z + i \gamma \), respectively.

For the surface states localized at the boundary \(x = 1 \), we require \(|\lambda_R| < 1 \), then

\((1 - m_0 - m_1 \cos k_z \pm v_z \sin k_z)^2 + \gamma^2 \) \(< 1 \).

According to Eq. (8), as \(k_z \) increases from 0 to \(\pi \) (or decreases from 0 to \(-\pi \)), the non-Hermitian system \(\mathcal{H}_0 \) first supports two surface states localized at the boundary \(x = 1 \), and then only one surface state as \(|k_z| \) exceeds a critical value (i.e., one of the exceptional points at which phase transition takes place). As shown in Fig. 3, two surface states exist only in a finite region of \(k_z \) in between two exceptional rings closest to \(k_z = 0 \) for small \(\gamma \). A surface energy gap, or a mass term, can exist only when two surface eigenstates coexist. Thus, the hinge states, regarded as boundary states between domains of opposite masses, appear only in a finite range of \(k_z \).

The left eigenstates \(\psi_L(x) \) can be obtained by using the same procedure for deriving right eigenstates [120]. Therefore, considering the \(k_z \) region where the system supports two surface states, and projecting the Hamiltonian

\[\begin{aligned}
\mathcal{H}_1^{\text{surf,}x}(k_x,k_z) &= k_x \sigma_z - \mu \sigma_x, \\
\mathcal{H}_1^{\text{surf,}y}(k_x,k_z) &= -k_x \sigma_z + \mu \sigma_x.
\end{aligned} \]

According to the surface Hamiltonians in Eqs. (9)–(13), for each \(k_x \), the boundary states show the same coefficients for the kinetic energy terms, but mass terms on two neighboring boundaries always have opposite signs. Therefore, mass domain walls appear at the intersection of two neighboring boundaries, and these two boundaries can share a common zero-energy boundary state (analogous to the Jackiw-Rebbi zero modes [125]) in spite of complex-valued \(\mu \), which corresponds to the hinge Fermi-arc states at each \(k_x \). Moreover, these hinge Fermi-arc states exist only in a finite \(k_z \) region limited by the condition in Eq. (8). This explains why the Hamiltonian \(\mathcal{H}(k) \) shows both first- and higher-order topological features for small \(\gamma \).

Topological phase transitions.—The dissipative term \(\gamma \) in Eq. (1) can induce topological phase transitions. For small \(\gamma \), \(\mathcal{H}(k) \) exhibits four exceptional rings, as discussed above. As \(\gamma \) increases, two Weyl exceptional rings with
opposite Chern numbers, located in the positive (negative) \(k_z \) axis [see Fig. 1(a)], move toward each other. At the critical value of \(\gamma \approx 1 \), a topological phase transition occurs, where two Weyl exceptional rings carrying opposite topological charges are coupled and annihilated. Then the system evolves into a new topological semimetal with eight Weyl exceptional rings, as shown in Fig. 4(a). These rings are topologically stable due to the nonzero spectral winding numbers defined in Eq. (2). However, the Chern number, defined in Eq. (3), is zero when the closed surface \(S \) encloses four exceptional rings located in the positive (negative) \(k_z \) axis. Therefore, there exist no surface Fermi-arc states when the boundary is open along the \(x \) or \(y \) direction. To further check the higher-order topological phases, Figs. 4(b) and 4(c) show the band structures for a finite-sized system in the \(x-y \) plane for \(\gamma = 1.1 \). The semimetal supports in-gap hinge Fermi-arc states, indicating that the Weyl-exceptional-ring semimetal has only higher-order topological features in the strong dissipation regime.

Conclusion.—We have proposed a theoretical model to realize non-Hermitian higher-order topological semimetals and identify a new type of bulk-band degeneracies, i.e., Weyl exceptional rings in higher-order topological phases. These rings are characterized by the spectral winding number and Chern number. Remarkably, non-Hermitian higher-order topological semimetals, in the presence of Weyl exceptional rings, show the coexistence of surface and hinge Fermi arcs. Moreover, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Non-Hermitian higher-order Weyl semimetals have not been explored in the past, and these studies would advance the development of this field.

T.L. acknowledges the support from the Startup Grant of South China University of Technology (Grant No. 20210012). F.N. is supported in part by Nippon Telegraph and Telephone Corporation (NTT) Research, the Japan Science and Technology Agency (JST) [via the Moonshot RD Grant No. JPMJMS2061 and the Centers of Research Excellence in Science and Technology (CREST) Grant No. JPMJCR1676], the Japan Society for the Promotion of Science (JSPS) [via the Grants-in-Aid for Scientific Research (KAKENHI) Grant No. JP20H00134 and the JSPS-RFBR Grant No. JPJSCB120194828], the Army Research Office (ARO) (Grant No. W911NF-18-1-0358), the Asian Office of Aerospace Research and Development (AOARD) (via Grant No. FA2386-20-1-4069), and the Foundational Questions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06.

Noted added.—Recently, we became aware of a related work discussing non-Hermitian higher-order Weyl semimetals with different focus [126].

*These authors contributed equally to this work.
†fnori@riken.jp
‡yangzm@scut.edu.cn

S. A. A. Ghorashi, T. Li, and M. Sato, Non-Hermitian higher-order Weyl semimetals, arXiv:2107.00024.