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Counter-diabatic driving (CD) is a technique in quantum control theory designed to counteract
nonadiabatic excitations and guide the system to follow its instantaneous energy eigenstates, and hence has
applications in state preparation, quantum annealing, and quantum thermodynamics. However, in many
practical situations, the effect of the environment cannot be neglected, and the performance of the CD is
expected to degrade. To arrive at general bounds on the resulting error of CD in this situation we consider a
driven spin-boson model as a prototypical setup. The inequalities we obtain, in terms of either the Bures
angle or the fidelity, allow us to estimate the maximum error solely characterized by the parameters of the
system and the bath. By utilizing the analytical form of the upper bound, we demonstrate that the error can
be systematically reduced through optimization of the external driving protocol of the system. We also
show that if we allow a time-dependent system-bath coupling angle, the obtained bound can be saturated
and realizes unit fidelity.
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Introduction.—Counter-diabatic driving (CD) is a
method to guide the system along a given adiabatic
trajectory [1–9] and to reproduce the target state expected
from quantum adiabatic protocols in finite time, hence
realizing shortcuts to adiabaticity (STA) [1,2]. With the
correct CD, one can speed up a desired quantum operation
with unit fidelity, a result which is extremely useful in many
applications that require fast high-performance quantum
operations, such as quantum gate operations [10–12],
quantum annealing [13–15], state preparation [16–20],
transport [21,22] interferometory [23], geometric pumping
[24,25], and heat engines [26–31].
The rapid theoretical progress and promise of STA in

such applications has motivated experimental implementa-
tions [17–22], most of which are designed to control the
system quickly enough such that the effect of the environ-
ment is suppressed. However, environmental effects cannot
be completely neglected, and the performance of the CD
technique, which was originally designed for isolated
systems, is expected to degrade in realistic conditions.
Motivated by this, several studies focused on the robustness
of the CD under decoherence and noise [32–34], whereas
others attempt to generalize the STA and CD to open
systems [35–39], hoping to find optimal drives in the
presence of noise. However, a systematic way of under-
standing the controllability of open quantum systems has
not been established yet, since limitations arise from the
inevitable approximations in the analytical methods or
numerical calculations used to study these complex sit-
uations. An exact analytical approach is needed to clarify

the controllability set by the CD acting on the system only,
and gain physical intuition about how we can decrease the
error due to the environment as much as possible.
It is expected that if one wishes to fully control the state

of the system, engineering the system-environment cou-
pling or the properties of the environment itself will
become necessary [see Fig. 1(a)]. This opens up a con-
nection to another interesting topic, the controllability of
many-body systems, with possible applications to quantum
adiabatic computing. It is known that constructing the CD
requires precise knowledge about all instantaneous energy
eigenstates. Even if this is possible, the resulting CD
typically requires nonlocal interactions. To circumvent
these points, recent studies aim to obtain approximate
CD protocols [40–43], akin to that needed for the open
quantum systems we study in this Letter, and a method to
estimate the error of the control would also be important in
those approaches.
In this Letter, we develop a general bound on the

performance of the CD under the influence of a heat bath
by considering a driven spin-boson model [see Fig. 1(b)].
The spin-boson model is a prototypical minimal model
describing a two-level system interacting with a continuum
of bosonic bath modes, and is relevant for describing
quantum information processing devices in a range of
parameter regimes, from weak memoryless noise [44,45] to
the non-Markovian, strong-coupling and nonrotating wave
approximation regimes [46–50]. It is worth noting that even
in the simplest case of the single-mode spin-boson (Rabi)
model, integrability was a long-standing issue, and the
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exact solution was obtained only a decade ago [51].
Therefore, one typically has to rely on numerical calcu-
lations, and apart from the seminal works in [52,53], little is
known about exact analytical results for nonequilibrium
dynamics in arbitrary parameter regimes. However, here we
overcome this difficulty (for solving the spin-boson model)
by utilizing powerful analytical tools such as the parallel
transport via CD [7] and quantum speed limits (QSL) [54–
56]. We first show that by allowing a time-dependent
system-bath coupling angle, we can construct a unit fidelity
protocol for obtaining the ground state of the system,
realizing an exact STA. We find that it is not necessary to
have full control of the environment in order to achieve the
desired unit fidelity [see Fig. 1(b), panel 2]. We next
consider a more experimentally relevant situation where the
system-bath coupling is static, and obtain a lower bound on
the fidelity when the system alone is controlled by the CD,
which is the main result of our work. Our result is general in
the sense that the result holds for arbitrary system
Hamiltonian and bath spectral density.
Counter-diabatic driving.—To begin with, we consider

an isolated Landau-Zener (LZ) model with CD. The total
Hamiltonian is given by HCDðtÞ ¼ H0ðtÞ þH1ðtÞ, where

H0ðtÞ ¼
qðtÞ
2

σz þ
Δ
2
σx; H1ðtÞ ¼ _θtσy; ð1Þ

and θt ¼ ð1=2Þcot−1ðq=ΔÞ, _θt ¼ − _qΔ=½2ðΔ2 þ q2Þ�. Here,
H0 is the LZ Hamiltonian [57], where Δ characterizes the
minimum gap, qðtÞ describes the external driving, and σi is
the ith component of the Pauli matrix. The CD Hamiltonian
H1 cancels nonadiabatic excitations and controls the
system to stay in the instantaneous ground state jψgðtÞi ¼
cos θtj↓i − sin θtj ↑i of H0 during the unitary time evolu-
tion generated by HCD.
The mechanism of CD can be elegantly understood by

the parallel transport argument [7], but for later conven-
ience, we explain the CD in terms of the unitary rotation
Rt ¼ expð−iθtσyÞ. After the unitary rotation, the CD

Hamiltonian reads R†
t HCDðtÞRt− iR†

t ∂tRt¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2þq2

p
σz.

Therefore, it is obvious that the system stays in the ground
state j↓i during the time evolution in the rotated frame,
which corresponds to jψgðtÞi ¼ Rtj↓i in the original
frame, allowing the CD to parallel transport the system
along jψgðtÞi.
Influence of the environment.—We now analyze the

influence of the environment on the CD by considering
the spin-boson model, given by

HφðtÞ ¼ HCDðtÞ þHφ
int þHB: ð2Þ

Here, HB ¼ P
j ωkb

†
kbk is the bath Hamiltonian describing

a collection of harmonic oscillators, and ωk and bk are the
frequency and the annihilation operator of the kth mode of
the bath. The system-bath interaction Hamiltonian reads
Hφ

int ¼ ðcos 2φσz þ sin 2φσxÞ ⊗ B, where φ is a coupling
angle that determines in which direction the system-bath
interaction mainly acts on, and B ¼ P

k gkxk shows that the
system is linearly coupled to the “position” quadrature of the
bath, where gk and xk ¼ ðbk þ b†kÞ=

ffiffiffiffiffiffiffiffi
2ωk

p
are the coupling

strength and the position operator of the kth mode of the
bath. The influence of the bath is fully characterized by the
spectral density JðωÞ ¼ π

P
kðg2k=2ωkÞδðω − ωkÞ, and we

emphasize that our main result holds for arbitrary JðωÞ.
We assume that the initial state of the composite system

is given by the product state of the system ground state
and the bath Gibbs state at inverse temperature β, i.e.,
ρð0Þ ¼ jψgð0Þihψgð0Þj ⊗ ρβB. Denoting the unitary time-
evolution operator by Uτ ¼ T exp ½−i R τ

0 dtHφðtÞ�, the final
state of the composite system is given by ρðτÞ ¼ Uτρð0ÞU†

τ.
Since we are interested in the performance of the CD under
the influence of the bath, we consider the fidelity F ¼
hψgðτÞjρSðτÞjψgðτÞi between the target ground state
jψgðτÞi and the time-evolved state ρSðτÞ ¼ TrB½ρðτÞ�.
Note that for an isolated system, the CD is designed to
obtain unit fidelity F ¼ 1, but this is no longer true when
the system is influenced by the heat bath.
Exact STA via time-dependent coupling angle.—Before

deriving a bound on the fidelity, we discuss an interesting
observation by using the unitary rotation Rt that we

FIG. 1. Schematic diagrams of (a) the concept of levels of
controllability and (b) the setup. (a1) Controllability of a general
many-body system. (a2) Controllability of the spin-boson model.
Unit fidelity is achieved by the exact STA protocol [Eq. (3)]
which requires a time-dependent control of the interaction. The
lower bound on the fidelity F set by the CD on the system alone is
characterized by cos2lBD via the inequality in Eq. (9). (b) We
consider the spin-boson model to study the controllable limit of
the spin system via CD under the influence of the environment.
Here, controllability is measured by the ground state fidelity of
the system.
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introduced to explain the CD. Suppose that we allow a
time-dependent rotation of the coupling angle φ ¼ θt of the
Hamiltonian [Eq. (2)] and denote it as HθtðtÞ. Then,
in the rotated frame, we have R†

t HθtðtÞRt − iR†
t ∂tRt ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ q2

p
σz þ σz ⊗ BþHB. Note that this Hamiltonian

in the rotated frame simply describes a pure dephasing
effect from the bath, and the ground state of the system is
unaffected during the time evolution. In fact, we can obtain
an explicit form of the time-evolved density matrix in the
original frame, which is parallel transported along the
ground state:

ρSTAðτÞ¼USTAρð0ÞU†
STA¼ jψgðτÞihψgðτÞj⊗ ρ−BðτÞ: ð3Þ

Here, USTA ¼ T exp½−i R τ
0 dtHθtðtÞ� is the time-evolution

operator with φ ¼ θt, and ρ−BðτÞ ¼ e−iH
−
BτρβBe

iH−
Bτ is the

time-evolved bath density matrix with respect to the
position-shifted bath Hamiltonian H−

B ¼ HB − B. In sum-
mary, the Hamiltonian [Eq. (2)] with the choice of φ ¼ θt
realizes an exact STA under the influence of the heat bath,
i.e., the Hamiltonian transports the state of the system along
its instantaneous ground state [Eq. (3)] and realizes unit
fidelity F ¼ 1.
It is interesting to note that controlling all of the bath

degrees of freedom is unnecessary to achieve unit fidelity.
Only a precise control of the coupling angle φ ¼ θt is
needed. Theoretically, this observation is important and has
several advantages since the protocol and the time-evolved
state have simple analytical expressions. In particular, we
make use of this explicit form of the exact STA protocol to
derive bounds on the performance of the CD on the system
alone, i.e., with uncontrolled coupling angle φ, which is
more relevant for most experimental situations where the
coupling cannot be controlled directly.
General bounds on the dissipative Landau-Zener CD.—

We now derive a lower bound on the fidelity of obtaining
the target ground state for the CD under the influence of the
heat bath. We first map the fidelity into the Bures angle
defined as Lðρ; σÞ ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; σÞp

[58,59]. Here, the
relation between F and L is flipped: the Bures angle takes
the minimal value L ¼ 0 (the maximal value L ¼ π=2)
when the fidelity takes the maximal value F ¼ 1 (the
minimal value F ¼ 0). In what follows, we derive an upper
bound on the Bures angle, which is later converted into a
lower bound on the fidelity.
We begin by using the contractivity of the Bures angle

under partial trace of the bath degrees of freedom [58].
Then, the Bures angle between the target ground state and
the CD-controlled state of the system can be bounded from
above as

L½jψgðτÞi; ρSðτÞ� ≤ L½ρSTAðτÞ; ρðτÞ�; ð4Þ

where ρSTA is given in Eq. (3). We then apply the QSL
inequality obtained by Suzuki and Takahashi [56], which in
our case reads

L½ρSTAðτÞ; ρðτÞ� ≤
Z

τ

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VρSTA ½Hθt −Hφ�

q
; ð5Þ

where Vσ½X� ¼ Tr½σX2� − ðTr½σX�Þ2 is the variance. By
following Ref. [56], the inequality [Eq. (5)] is obtained
from the standardQSL [54,55] as follows. TheQSLgives an
upper bound on the Bures angle between the initial and
the final state in terms of the energy fluctuation:
L½σðτÞ; σð0Þ� ≤ R

τ
0 dt

ffiffiffiffiffiffiffiffiffiffiffiffi
Vσ½H�p

. Here, the time evolution
of σðtÞ is generated by HðtÞ. Now, let us define
X̃ðtÞ ¼ U†

t XðtÞUt. Then, the unitary invariance of the
Bures angle reads L½ρSTAðτÞ; ρðτÞ� ¼ L½ρ̃STAðτÞ; ρ̃STAð0Þ�,
by noting that ρ̃STAð0Þ ¼ ρð0Þ. Moreover, the time-evolu-
tion equation of ρ̃STA reads ∂tρ̃STA ¼ −i½H̃θt − H̃φ; ρ̃STA�.
Therefore, by substituting σ ¼ ρ̃STA and H ¼ H̃θt − H̃φ

inside the QSL and noting V σ̃½X̃� ¼ Vσ½X�, we obtain
Eq. (5).
Note that Ref. [56] applied the QSL to obtain a bound on

the performance of adiabatic quantum computation,
whereas we are here interested in quantifying the perfor-
mance of the CD under the influence of the bath.
Now, the explicit and simple form of ρSTA given in

Eq. (3) allows us to analytically calculate the right-
hand side of Eq. (5). First of all, Hθt −Hφ ¼ ΔHS

int ⊗ B
with ΔHS

int ¼ ðcos 2θt − cos 2φÞσz þ ðsin 2θt − sin 2φÞσx.
Therefore, the variance in Eq. (5) reads

VρSTA ½Hθt −Hφ� ¼ hψgjðΔHS
intÞ2jψgiTr½B2ρ−BðtÞ�

− hψgjΔHS
intjψgi2fTr½Bρ−BðtÞ�g2: ð6Þ

The system-dependent part in Eq. (6) can be easily obtained
as hψgjðΔHS

intÞ2jψgi ¼ 4sin2ðθt − φÞ ¼ −2hψgjΔHS
intjψgi.

The bath-dependent part reads [60] Tr½Bρ−BðtÞ� ¼ Xt, where
Xt ¼

R
dωð2=πωÞJðωÞð1 − cosωtÞ quantifies the expect-

ation value of the (coupling-constant multiplied) bath posi-
tion that is shifted by H−

B. Also, Tr½B2ρ−BðτÞ� ¼ S þ X2
t ,

where S ¼ R
dωðJðωÞ=πÞ cothðβω=2Þ is the bath correla-

tion function hBðtÞBð0Þi at t ¼ 0. We further note that S
scales asOðβ−1Þ in the high-temperature limit, whereas it is
the integrated spectral density in the zero-temperature limit.
We now obtain our main result by combining Eqs. (4)–

(6), which gives an upper bound on the Bures angle
between the target ground state and the CD-controlled
state of the system:

L½jψgðτÞi; ρSðτÞ� ≤ lBD ð7Þ

with

lBD ¼
Z

τ

0

dtj2 sinðθt − φÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S þ cos2ðθt − φÞX2

t

q
: ð8Þ

Here, the left-hand side of Eq. (7) quantifies the error of the
CD, since a small value of L means that the CD-controlled
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state ρSðτÞ is close to the target ground state. The bound lBD
gives a general upper bound on the error, in the sense that it
does not require information about the actual nonequili-
brium dynamics of the system. As we see from Eq. (8), lBD
depends only on predefined quantities, such as the driving
protocol qðtÞ through θt, the coupling angle φ, and the bath
properties S and Xt. The error becomes larger as either the
system-bath coupling strength (i.e., S and Xt) becomes
larger or the driving protocol is unoptimized, such that θt
deviates from φ.
Note that the bound Eq. (7) is tight and can be saturated

by the exact STA protocol (φ ¼ θt) with Eq. (3). For the
general case, the analytical form of the upper bound allows
us to optimize the parameters through minimizing lBD, and
increase the performance of the CD. Later, in the appli-
cations, we demonstrate the usefulness of the bound Eq. (7)
by optimizing the driving protocol qðtÞ.
Since the maximum value of the Bures angle is given by

π=2, the bound Eq. (7) is meaningful when lBD ≤ π=2. In
such cases, we can convert the inequality [Eq. (7)] into a
lower bound on the fidelity, given by

F½jψgðτÞi; ρSðτÞ� ≥ cos2lBD: ð9Þ

To summarize, both inequalities in Eqs. (7) and (9) quantify
the performance of the CD under the influence of the heat
bath. In the following, we give several additional comments
on our results. First, it is straightforward to generalize the
result to the case of obtaining the excited state, or a classical
mixture of the ground and excited states, whereas we find
that the upper bound in Eq. (8) is unchanged and Eq. (7) is
still valid. Second, we discuss the dependence of the
system-bath coupling strength λ on the bound. Since S ¼
Oðλ2Þ and X2

t ¼ Oðλ4Þ, the inequality in Eq. (9) becomes
F ≥ 1–4S½R τ

0 dtj sinðθt − φÞj�2 þOðλ4Þ in the weak-
coupling limit, and the discrepancy from unit fidelity
scales quadratically with λ. In addition, by using reservoir
engineering, one can in principle engineer the bath spectral
density to reduce S, suppressing the CD error.
Applications.—We now consider finding a protocol qðtÞ

that would give better fidelity by reducing lBD [Eq. (8)]. We
assume that the initial and final values of qðtÞ are fixed, i.e.,
qð0Þ ¼ qi and qðτÞ ¼ qf, but at intermediate times, qðtÞ is
unfixed. Then, the optimal drive qðtÞ that minimizes lBD is
given by qð0Þ ¼ qi, qðtÞ ¼ q� (0 < t < τ), and qðτÞ ¼ qf,
where q� ¼ Δ cotð2φÞ. To show this claim, we discretize
the time integral in Eq. (8) with Δt being the time duration
of one step and N being the total number of steps, i.e.,
τ ¼ NΔt, We denote f½qðtÞ� as the integrand given in
Eq. (8) and use the property f½q�� ¼ 0 to obtain lBD ¼
f½qi�Δtþ f½qf�ΔtþOðΔt2Þ → 0 as Δt → 0, and thus qðtÞ
given above is optimal.
As a concrete example, we set qi ¼ −1 and qf ¼ 1 and

assume a σx coupling (φ ¼ π=4). Note that the optimal
drive requires sudden changes of the drive at inital and final

times, causing the CD control field _θt ∝ _qðtÞ to diverge. To
circumvent this point, we consider the smooth functional
form qðtÞ ¼ sinh½aðt − τ=2Þ�= sinhðaτ=2Þ to approximate
the optimal drive. For larger a, this becomes a better
approximation to the optimal drive, and the lower bound on
the fidelity cos2 lBD becomes larger, as plotted by dashed
curves in Fig. 2. It is worth noting that the actual
performance of the CD, measured by the fidelity, also
becomes better for large a (solid curves), suggesting the
practical usefulness of the bound Eq. (9). Here, the
numerical calculation is performed using the hierarchal
equations of motion method [61] implemented in the
BoFiN extension [62,63] for QuTiP [64,65], where the
following underdamped Brownian motion spectral density
is used: JðωÞ ¼ γλ2ω=½ðω2 − ω2

0Þ2 þ γ2ω2�. Here, ω0, γ,
and λ are the resonance frequency, width, and system-bath
coupling strength, respectively.
Generalizations.—Finally, we discuss generalizations of

Eq. (7) to multiple heat baths HB ¼ P
i H

i
B, an arbitrary

system Hamiltonian H0ðtÞ, and a system-bath interaction
Hint ¼

P
i Ai ⊗ Bi, where Ai is an arbitrary operator acting

on the system and Bi is the operator B defined previously
for the ith bath. The total Hamiltonian is given by
HðtÞ ¼ H0ðtÞ þH1ðtÞ þHint þHB, where H1ðtÞ is the
CD Hamiltonian for H0ðtÞ. We take the nth energy
eigenstate jψnð0Þi of H0ð0Þ as the initial state of the
system. An exact STA can be constructed by choosing
the time-dependent system-bath interaction HSTA

int ðtÞ ¼
−jψnðtÞihψnðtÞj ⊗

P
i Bi. By following a derivation sim-

ilar to that for Eq. (7), we obtain an upper bound on the
Bures angle as L½jψnðτÞi; ρSðτÞ� ≤ lBD ¼ R

τ
0 dt

ffiffiffi
g

p
, with

FIG. 2. Numerical demonstration of the bound Eq. (9) by
varying Δ. The solid curves show the fidelity F½jψgðτÞ; ρSðτÞ�,
and the dashed curves are the lower bound cos2 lBD [Eq. (8)] for
different values of a. The inset shows the functional form of the
external driving qðtÞ ¼ sinh½aðt − τ=2Þ�= sinhðaτ=2Þ, which is
designed to better approximate the optimal drive qð0Þ ¼ −1,
qðtÞ ¼ 0 (0 < t < τ), and qðτÞ ¼ 1, as a increases. Therefore, the
lower bound cos2 lBD and also the fidelity become closer to unity
as a becomes larger, demonstrating the effectiveness of our
inequality in Eq. (9). The parameters are φ ¼ π=4 (σx coupling),
β ¼ 1, γ ¼ 0.1, w0 ¼ 1, λ ¼ 0.1, τ ¼ 2.
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g ¼
X
i

hψnjðAi þ IÞ2jψniSi þ
X
i;j

CovjψniðAi; AjÞXi
tX

j
t :

ð10Þ

Here I is the identity matrix of the system, CovjϕiðA;BÞ ≔
hϕjABjϕi − hϕjAjϕihϕjBjϕi is the covariance, and Si and
Xi
t are S and Xt defined previously for the ith bath. Note

that, similar to Eq. (8), the generalized bound depends
solely on the system properties Ai and jψnðtÞi and the bath
properties Si and Xi

t. In addition, we note that Eq. (10)
reproduces the bound Eq. (8) for the LZ model [Eq. (2)]
with the target state being jψgðtÞi.
Conclusions.—We have derived general bounds on the

performance of the CD under the influence of an environ-
ment by considering the spin-boson model. The upper
bound on the error of the CD does not depend on the time-
evolved state of the system, and is solely characterized by
the parameters of the system and the bath. The obtained
bound is tight and can be saturated by allowing a time-
dependent system-bath coupling angle, realizing unit fidel-
ity, and we call this protocol an exact STA protocol. Our
work clarifies the controllable limit via CD, and has an
immediate impact on current quantum information process-
ing experiments by providing tools for error estimation and
parameter optimization. Generalizations of our main result
to arbitrary system Hamiltonian have been discussed, and
further extensions to characterize the controllable bound
and control error in generic many-body systems via
approximate CD protocols would be an interesting direc-
tion of research.
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