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Introduction

Here, we first compare the lifetimes of our atomic cat states and common intracavity photonic cat states.
We next present how to eliminate the second-order effect and as a result to make the desired third-order
effect dominant. Then, the Purcell single-atom decay induced by single-photon loss of the signal cavity
is derived, and quantum Monte-Carlo trajectories of the ensemble-cavity system are shown. Furthermore,
we give the detailed derivation of atomic cat states stabilized by the two-atom decay, and show the strong
suppression of spin dephasing by this nonlinear two-atom decay. We then discuss the source of spin
dephasing due to inhomogeneous broadening in nitrogen-vacancy center ensembles. Finally, we discuss
the effects of spin relaxation and thermal noise on the cat state lifetime, and also show the maximum cat
state lifetime limited by them.

S1. Comparison of the lifetimes of our atomic cat states and intracavity photonic cat states

The cat state lifetime can be defined as the inverse cat state decoherence rate. Sec. S8 shows how to derive the
cat state decoherence rate and then obtain the cat state lifetime. In this section, let us first compare the lifetime of
intracavity atomic cat states resulting from our approach with that of common intracavity photonic cat states, under
some realistic parameters. Our atomic cat states refer to superpositions of two spin coherent states, i.e.,

|C±〉 = A± (|θ, φ〉 ± |θ, φ+ π〉) , (S1)

TABLE I. Some relevant parameters of experimentally implemented intracavity photonic cat states |C±〉ph. Here, |α|2

characterizes the cat size, Tc is the cavity photon lifetime, κs = 1/Tc is the cavity photon loss rate, τexp is the cat state lifetime
measured in experiments, and τtheor = 1/(2 |α|2 κs) is the theoretical prediction of the cat state lifetime. For comparison, we
also list at the end of the table the corresponding theoretical predictions for our atomic cat states |C±〉.

Ref. approach type |α|2 Tc (µs) κs/2π (kHz) τexp (µs) τtheor (µs)

[S1] unitary evolution 3.0 1.3× 105 1.2× 10−3 1.7× 104 2.2× 104

[S2] reservoir engineering 5.8 3.0 53.0 0.2 0.26

[S3] unitary evolution 28 22.1 7.2 — 0.4

[S4] reservoir engineering 2.4 20 8.0 — 4.1

[S5] reservoir engineering 5 92 1.7 8 9.2

[S6] unitary evolution 3.3 160 1.0 38.4 35

[S7] unitary evolution 1.4 0.14 1.1× 103 — 5.3× 10−2

[S8] unitary evolution 11.3 8.1× 103 2.0× 10−2 200 360

[S9] unitary evolution 2 692 0.2 — 173

our results reservoir engineering 4
16 10 — 2× 104

5.3× 103 3.0× 10−2 — 2× 106
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Here, A± = 1/{2[1 ± exp(−2 |α|2)]}1/2, and the state |θ, φ〉, where φ = π/2 and θ = 2 arctan(|α| /
√
N), is the

spin coherent state that is obtained by rotating the ground state of the ensemble by an angle θ about the axis
(sinφ,− cosφ, 0) of the collective Bloch sphere. For a large ensemble, we can apply the bosonic approximation,
which maps the collective spin of the ensemble to a quantum harmonic oscillator. Under this approximation, the
spin coherent states |θ, φ〉 and |θ, φ+ π〉 become bosonic coherent states |α〉 and | − α〉, respectively, with coherent
amplitudes ±α. The atomic cat states in Eq. (S1) likewise become

|C±〉 = A± (|α〉 ± | − α〉) . (S2)

Furthermore, the intracavity photonic cat states refer to

|C±〉ph = A±
(
|α〉ph ± | − α〉ph

)
, (S3)

where | ± α〉ph are the photonic coherent states with coherent amplitudes ±α. It is seen, from Eqs. (S2) and (S3),

that |α|2 is the average number of excited atoms or photons and, thus, can characterize the cat size.

In Table I, we list some parameters of intracavity photonic cat states |C±〉ph implemented in experiments. For

comparison, we also show the corresponding results of our atomic cat states |C±〉 at the end of the table. With
modest parameters the lifetime of our atomic cat states is predicted to be longer, by up to four orders of magnitude,
compared to those photonic cat states under the same parameter conditions. For a modest single-photon loss rate of
κs/2π = 10 kHz (i.e., a cavity decay time of Tc ∼ 16 µs), the lifetime of our atomic cat states can reach ∼ 20 ms for

a cat size of |α|2 = 4. This lifetime is comparable in length to that (∼ 17 ms) reported in Ref. [S1] in Table I, which,
to our best knowledge, is the longest lifetime of intracavity photonic cat states to date. We stress that in such a
comparison our cat state lifetime is achieved with a modest cavity decay time of Tc ∼ 16 µs. This is in stark contrast
to the cat state lifetime reported in Ref. [S1], which was achieved with an extreme cavity decay time of Tc = 0.13 sec.
This means that our approach can stabilize (for an extremely long time) large-size cat states, even with common
setups.

When decreasing the single-photon loss rate κs, i.e., increasing the cavity decay time Tc, our atomic cat state
lifetime can further increase. For example, a single-photon loss rate κs/2π = 3.0 × 10−2 kHz, corresponding to a
cavity decay time Tc ∼ 5.3 ms, results in a cat state lifetime of ∼ 2 sec, more than two orders of magnitude longer
than the lifetime, i.e., 17 ms, reported in Ref. [S1] in Table I. Ultimately, the maximum value of our cat state lifetime
is determined by extremely weak spin relaxation and thermal noise, reaching ∼ 3 sec.

The essential reason for such an improvement in the cat state lifetime is because, as shown in Fig. S1, single
excitation loss of ensembles (i.e., spin relaxation) is extremely weak compared to that of cavities (i.e., single-photon
loss). At the same time, spin dephasing, though stronger than photon dephasing, is greatly suppressed by the
engineered two-atom decay. This is in close analogy to the mechanism of using two-photon loss to suppress photon
dephasing.

dephasing

thermal noise

single
excitation lossintracavity

photonic cat
intracavity
atomic cat

lifetime ~ 10 μs  ~ 0.1 sec

two
excitation loss

FIG. S1. Comparison of the effects of noise on intracavity photonic cat stats and our atomic cat states. Solid arrows represent
the strong effects, and dashed arrows represent the extremely weak or strongly suppressible effects. While the lifetime of
photonic cat states is ∼ 10 µs, our atomic cat states can have a ∼ 0.1 sec lifetime.
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S2. Elimination of the second-order effect

The time-averaged Hamiltonian Havg in Eq. (3) in the main article describes a third-order process, and there exists
a stronger second-order process, which is described by the Hamiltonian

H(2) = −g
2

∆

(
2a†sasSz + S+S−

)
− J2

∆′
(
2a†pap − a†sa†sasas + 4a†papa

†
sas
)
, (S4)

where ∆′ = 2ωs − ωp. In order to make the third-order Havg dominant, we need to eliminate the second-order H(2).

Since the signal cavity is initialized in the vacuum state, the Hamiltonian H(2) is thus reduced to

H(2) = −g
2

∆
S+S− −

2J2

∆′
a†pap. (S5)

We further focus our attention on the low-excitation regime, where the average number of excited atoms is much
smaller than the total number of atoms. In this regime, the operator Sz can be expressed as Sz = −N/2 + δSz, where
δSz is a small fluctuation. As a result, we find

S+S− ≈ NδSz, (S6)

according to the identity N (N/2 + 1) /2 = S2
z − Sz + S+S−, and then obtain

H(2) = −g
2
col

∆
δSz −

2J2

∆′
a†pap. (S7)

It is seen that the second-order process causes a Lamb shift (i.e., the first term), and a dispersive resonance shift for
the pump cavity (i.e., the second term). These additional shifts can be compensated by properly detuning the pump
cavity resonance ωp from twice the atomic resonance ωq. Hence, the second-order process can be strongly suppressed,
such that the third-order process becomes dominant.

S3. Purcell single-atom decay induced by single-photon loss of the signal cavity

Since the signal cavity is largely detuned from both the ensemble and the pump cavity, the average number of
photons inside the signal cavity is thus very low. In this case, we can only consider the vacuum state |0〉 and the
single-photon state |1〉 of the signal cavity. We work within the limit where δs ≈ ∆ � {δp, δq, gcol, J}, and the
Hamiltonian in Eq. (1) in the main article can thus be rewritten as H = He +Hg + V + V †. Here,

He = δs|1〉〈1|, (S8)

Hg = δpa
†
pap + δqSz + Ω

(
ap + a†p

)
, (S9)

represents the interactions inside the excited- and ground-state subspaces, and

V = gS−|1〉〈0| (S10)

describes the perturbative interaction between the excited- and ground-state subspaces. Then, according to the
formalism of Ref. [S10], we can define a non-Hermitian Hamiltonian He

NH = He − iκs|1〉〈1|/2, and obtain an effective
Lindblad dissipator for the ensemble

κsL
[
|0〉s〈1| (H

e
NH)

−1
V
]
ρens =

κ1at
N
L (S−) ρens, (S11)

where

κ1at =
κsg

2
col

δ2s + κ2s/4
≈
(gcol

∆

)2
κs. (S12)

This means that the single-photon loss process of the signal cavity gives rise to the single-atom decay of the ensemble.
Importantly, the resulting decay rate κ1at is smaller than the cavity decay rate κs by a factor of (gcol/∆)

2
. Thus, our

atomic cat states have an extremely long lifetime.
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(a)

(b) (d)

(c)

state |00>|1>: 
0 photons in both cavities,
1 atom excited

initial state |00>|3>: 0 photon in both cavities, 3 atoms excited

state |10>|1>: 1 photon in the pump cavity, 1 atom excited

initial state |00>|4>: 0 photon in both cavities, 4 atoms excited
state |10>|2>: 1 photon in the pump cavity, 2 atoms excited

state |20>|0>: 2 photons in the pump cavities, 0 atom excited

state |00>|2>: 0 photon in both cavities, 2 atoms excited
state |10>|0>: 1 photon in the pump cavity, 0 atom excited

quantum jump: 
one photon leaks 
out  of the pump cavity

�rst jump: 
one photon 
leaks out of 
the pump cavity

second jump: 
another photon 
leaks out of 
the pump cavity

state |00>|0>: 0 photon in both cavities, 0 atom excited

FIG. S2. Quantum Monte-Carlo trajectory pictured through the probabilities of the system being in the states |mp0〉|n〉 for
the initial states (a, b) |00〉|3〉 and (c, d) |00〉|4〉. A single quantum jump ap gives rise to the two-atom decay in the ensemble.
In all plots, we used the full Hamiltonian H in Eq. (1) in the main article, and set N = 100, J = 3gcol, δp = J2/20gcol, and
κp = 0.2χ. In order to show more clearly the quantum jump responsible for the two-atom decay, we further set κs = Ω = 0.

S4. Quantum Monte-Carlo trajectory for the initial states |00〉|3〉 and |00〉|4〉

The dynamics described by the time-averaged Havg in Eq. (3) of the main article implies that pairs of atoms can
jointly convert their excitations into pump single photons, and then the subsequent single-photon loss process of the
pump cavity results in the simultaneous decay of two atoms, i.e., the two-atom decay.

In Fig. S2, we plot single quantum trajectories, utilizing the quantum Monte Carlo method, for the initial states
|00〉|3〉 and |00〉|4〉. Here, the first ket |mpms〉 (mp,ms = 0, 1, 2, . . .) in the pair refers to the cavity state with
mp pump photons and ms signal photons, and the second |n〉 (n = 0, 1, 2, . . .) refers to the collective spin state
|S = N/2,mz = −N/2 + n〉, corresponding to n excited atoms in the ensemble.

For the former case, where initially the ensemble has three excited atoms, we find from Figs. S2(a, b) that two
excited atoms, as a pair, decay via a single-photon loss process of the DPA pump (corresponding to a quantum jump),
and one excited atom is kept in the ensemble because alone it cannot emit a single photon. If there are initially four
excited atoms as shown in Figs. S2(c, d), all excited atoms, as two pairs, can decay sequentially via two single-photon
loss processes of the DPA pump (corresponding to two quantum jumps).

S5. Stabilized atomic cat states by the two-atom decay

In this section we show a detailed derivation of atomic cat states stabilized by the engineered two-atom decay. We
begin with the effective master equation given in Eq. (4) of the main text

ρ̇ens = i [ρens, Hens] +
κ1at
N
L (S−) ρens +

κ2at
N2
L
(
S2
−
)
ρens, (S13)
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Here,

Hens =
i

N
χ2at

(
S2
− − S2

+

)
, (S14)

χ2at =
2Ωχ

κp
, (S15)

κ1at =
(gcol

∆

)2
κs, (S16)

κ2at =
4χ2

κp
. (S17)

To proceed, we assume that κ1at = 0, such that the single-atom decay induced by the signal cavity is subtracted.
Then, we obtain in the steady state(

S2
− −Nα2

)
|D〉〈D|S2

+ − S2
+

(
S2
− −Nα2

)
|D〉〈D|+ H.c. = 0, (S18)

where |D〉 is the dark state of the ensemble, and

α = i
√

2χ2at/κ2at = i
√

Ω/χ. (S19)

This indicates that the dark state |D〉 satisfies (
S2
− −Nα2

)
|D〉 = 0. (S20)

We now express |D〉, in terms of the eigenstates |S = N/2,mz = −N/2 + n〉 of the collective spin operator Sz, as

|D〉 =
∑
n

cn|n〉, (S21)

where, for simplicity, we have defined |n〉 ≡ |S = N/2,mz = −N/2 + n〉. Here, n refers to the number of excited
atoms in the ensemble. The condition in Eq. (S20) gives two recursion relations as follows

c2n+k =
εn√

(2n+ k)!
ck, (S22)

where k = 0, 1. Here, we have worked within the low-excitation regime, in which 〈Sz〉 ≈ −N/2, such that the main
contributions to the dark state |D〉 are from these components with n� N .

The recursion relation in Eq. (S22) reveals that, when the ensemble is initially in a collective spin state |n〉 with an
even n, e.g., in the ground state |0〉 (i.e., a spin coherent state with all atoms in the ground state), the dark state |D〉
can be expressed as,

|D〉even =
1√

cosh |α|2
∑
n

α2n√
(2n)!

|2n〉. (S23)

Similarly, when the ensemble is initially in a collective spin state |n〉 with an odd n, e.g., in the single-excitation state
|1〉 (i.e., a state with only one atom is excited), the dark state |D〉 becomes

|D〉odd =
1√

sinh |α|2
∑
n

α2n+1√
(2n+ 1)!

|2n+ 1〉. (S24)

On the other hand, the spin coherent state |θ, φ〉 is defined as

|θ, φ〉 = R (θ, φ) |0〉. (S25)

Here,

R (θ, φ) = exp (τS+) exp
[
ln
(
1 + |τ |2

)
Sz
]

exp (−τ∗S−) , (S26)
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is a rotation operator with τ = exp (iφ) tan (θ/2). In the low-excitation limit, Sn+|0〉 ≈
√
n!Nn|n〉, and then

|θ, φ〉 ≈ exp
(
−N |τ |2 /2

)∑
n

(√
Nτ
)n

√
n!

|n〉. (S27)

By setting
√
Nτ = α, we further have

|D〉even,odd = A± (|θ, φ〉 ± |θ, φ+ π〉) = |C±〉, (S28)

where A± = 1/{2[1± exp(−2 |α|2)]}1/2. This is what we have already given in Eq. (S1).
We now consider the case when the atomic ensemble is initialized in a spin coherent state |θ0, φ0〉. In this case, the

atomic ensemble evolves into a subspace spanned by the cat states {|C+〉, |C−〉} and, thus, its steady state is

ρssens = c++|C+〉〈C+|+ c−−|C−〉〈C−|+ c+−|C+〉〈C−|+ c∗+−|C−〉〈C+|. (S29)

To obtain the amplitudes c++, c−−, and c+−, we follow the method in Refs. [S11, S12], and after straightforward
calculations, find that

c++ =
1

2

[
1 + exp

(
−2 |α0|2

)]
, (S30)

c−− =1− c++ =
1

2

[
1− exp

(
−2 |α0|2

)]
, (S31)

c+− =−
α∗0 |α| exp

(
− |α0|2

)
√

2 sinh
(

2 |α|2
) ∫ π

0

dϕI0
(∣∣α2 − α2

0 exp (i2ϕ)
∣∣) exp (−iϕ) , (S32)

where α0 =
√
N exp (iφ0) tan (θ0/2), and I0 (•) is the modified Bessel function of the first kind.

The above results show that the ensemble states are steered into a 2D quantum manifold spanned by the cat states
|C+〉 and |C−〉. In typical atomic ensembles, spin relaxation is extremely weak, such that the dominant noise source
is spin dephasing. However, the engineered two-atom decay can protect the cat states of the quantum manifold
against spin dephasing. As a result, these cat states have a very long lifetime even with modest parameters, and thus,
can be used for fundamental studies of quantum physics. Moreover, this atomic-cat-state manifold stabilized by the
two-atom decay could also be used to encode logical qubits (i.e., cat qubits) for fault-tolerant quantum computation,
as an alternative to the photonic-cat-state manifold stabilized by two-photon loss [S12].

S6. Strongly suppressed spin dephasing

In this section, we discuss the strong suppression of spin dephasing of atomic ensembles by the engineered two-
atom decay. In general, the ensemble dephasing noise can be classified into three different types, i.e., collective
spin dephasing, local spin dephasing, and inhomogeneous broadening. Below we show that as long as the rate γ of
convergence of cat states (γ > |α|2κ2at) is much stronger than the collective dephasing rate γcol, the local dephasing
rate γloc, and the inhomogeneous linewidth ∆inh, the engineered two-atom decay is capable of suppressing all of these
dephasing processes. Here, the rate γ describes how rapidly the steady cat states can be reached. As a result, steady
cat states can be achieved with high fidelity.

To proceed, we note that our atomic cat states are stored in the superradiant subspace, rather than in the subradiant
subspace. Here, the superradiant (subradiant) subspace refers to the manifold of total spin S = N/2 (S < N/2), as
shown in Fig. S3.

A. Collective spin dephasing

We first consider collective spin dephasing, which can be described with the Lindblad dissipator,

γcolL(Sz)ρens = γcol

(
SzρensSz −

1

2
SzSzρens −

1

2
ρensSzSz

)
. (S33)
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FIG. S3. Dicke space for an ensemble consisting of N identical two-level atoms or spins. The full space can be separated into the
superradiant subspace of total spin S = N/2 and the subradiant subspace of total spin S < N/2. The blue solid double-headed
arrow represents the two-atom excitation (χ2at), and the dashed arrows represent the dissipative processes, including single-
atom decay (κ1at), two-atom decay (κ2at), collective dephasing (γcol), local dephasing (γloc), and inhomogeneous broadening
(∆inh). The two-atom decay and excitation only act inside the superradiant subspace, and thus the resulting cat states are
stored inside this subspace. While collective dephasing does not couple the superradiant subspace to the subradiant subspace,
local dephasing and inhomogeneous broadening couple these subspaces.

It arises when the atoms or spins of the ensemble are simultaneously coupled to a common bath. For example, the
coupling to the collective phonon modes of the diamond can lead to collective dephasing for NV spin ensembles [S13].
Such a dephasing process does not couple the superradiant to subradiant subspace as shown in Fig. S3, and as a
result, the excitation-number parity of the superradiant subspace is conserved. Thus, collective spin dephasing can
be suppressed by the two-atom decay, as long as the condition

|α|2κ2at � γcol (S34)

is satisfied. This dissipative suppression can be better understood from the quantum-jump approach. The jump
operator Sz, when acting, e.g., on the state |C+〉, excites a state

|ψ〉 = A+ [R (θ, φ)−R (θ, φ+ π)] |1〉, (S35)

according to

Sz|C+〉 =

(
−N

2
+ |α|2

)
|C+〉+ α|ψ〉, (S36)

where A+ = 1/{2[1 + exp(−2 |α|2)]}1/2, and R (θ, φ) is defined in Eq. (S26). It is seen that the state |ψ〉 still has
even parity, and thus can be autonomously driven back to the target state |C+〉 by the two-atom decay. As shown in
Fig. S4, a steady cat state is achieved in the presence of collective spin dephasing.
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FIG. S4. Effects of collective spin dephasing on the preparation error η of the state |C+〉 of size |α|2 = 2. We integrated

the effective master equation (4) in the main article, with an additional collective spin dephasing γcol
∑N

j=1 L(σz
j )ρens. For

simplicity, we set κ1at = 0, so that only the effects of collective spin dephasing are shown. Other parameters are: N = 10,
J = 3gcol, δp = J2/(20gcol), κp = 5χ, and κs = 0.3κp.

B. Local spin dephasing

We now consider local spin dephasing, described by the Lindblad dissipator

γloc

N∑
j=1

L
(
σzj
)
ρens = γloc

N∑
j=1

(σzj ρensσ
z
j − ρens). (S37)

The quantum jump, σzj , when acting on the superradiant state |n〉 ≡ |S = N/2,mz = −N/2 + n〉, results in a

superposition of the state |n〉 with a subradiant state |n〉⊥j . This indicates a dissipative coupling of the superradiant
to subradiant subspace, as shown in Fig. S3, yielding

σzj |n〉 =

(
1− 2n

N

)
|n〉 − 2

√
n

N
|n〉⊥j . (S38)

Here, the subradiant state |n〉⊥j is orthogonal to the superradiant state |n〉 and has the same magnetic quantum

number mz as |n〉.
As an example, we consider the action of the quantum jump σzj on the even cat state |C+〉. Note that similar results

hold for the odd cat state |C−〉. According to Eq. (S38), we obtain

σzj |C+〉 =
∑
n

c2nσ
z
j |2n〉 =

∑
n

c2n

(
1− 4n

N

)
|2n〉 − 2

∑
n

c2n

√
2n

N
|2n〉⊥j . (S39)

It is seen that the quantum jump σzj distorts the cat state |C+〉, but conserves the excitation-number parity of the
superradiant subspace, although it carries some information about the cat state |C+〉 away from the superradiant to
subradiant subspace. Thus as long as

|α|2κ2at � γloc, (S40)

the two-atom decay and excitation, which act only inside the superradiant subspace (see Fig. S3), can autonomously
steer the dephasing-distorted cat state [i.e., the superradiant component

∑
n c2n (1− 4n/N) |2n〉] back to the target

state |C+〉. This indicates that, as confirmed in Fig. S5, local spin dephasing can be strongly suppressed and,
consequently, that a steady cat state can be achieved in the superradiant subspace.

C. Inhomogeneous broadening

Let us now consider inhomogeneous broadening of the ensemble. Its detrimental effects can, in principle, be
completely canceled by spin-echo pulses [S14]. For ensembles of ultracold atoms [S15], these detrimental effects can
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FIG. S5. Effects of local spin dephasing on the preparation error η of the state |C+〉 of size |α|2 = 2. We integrated the effective

master equation (4) in the main article, with an additional local spin dephasing γloc
∑N

j=1 L(σz
j )ρens. For simplicity, we set

κ1at = 0, so that only the effects of local spin dephasing are shown. Other parameters are set the same as in Fig. S4.

also be minimized through spin self-rephasing collisions, even without the need for spin-echo pulse sequences [S16, S17].
The Hamiltonian modeling inhomogeneous broadening is given by

Hinh =
1

2

N∑
j=1

δjσ
z
j , (S41)

where δj = ωj −ωq. Here, ωj is the transition frequency of the jth qubit spin, and ωq can be viewed as the average of
transition frequencies of all the qubit spins. Under the time evolution, each constituent of the symmetric superradiant
state |n〉 acquires a random phase originating from inhomogeneous broadening. As a result, the superradiant state
|n〉 is coupled to a subradiant state as shown in Fig. S3, thus destroying the cat states.

Nevertheless, according to the action of the operator σzj on the cat state |C+〉, as given in Eq. (S39), inhomogeneous
broadening conserves the excitation-number parity of the superradiant subspace. Thus, the two-atom decay can
strongly suppress inhomogeneous broadening when

|α|2κ2at � ∆inh. (S42)
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FIG. S6. Effects of inhomogeneous broadening on the preparation error η of the state |C+〉 of size |α|2 = 2. We integrated

the effective master equation (4) in the main article, with an additional inhomogeneous broadening Hinh = 1
2

∑N
j=1 δjσ

z
j . For

simplicity, we set κ1at = 0, so that only the effects of inhomogeneous broadening are shown. The frequency shifts δj are
randomly given according to a Lorentzian distribution of linewidth ∆inh. Other parameters are set the same as in Fig. S4.
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To confirm the suppression of inhomogeneous broadening, we perform numerical simulations, as shown in Fig. S6.
Inhomogeneous broadening is assumed to be, as an example, the Lorentzian distribution with a width ∆inh, and similar
results hold for other spectra. It is seen from Fig. S6 that a cat state is stabilized in the presence of inhomogeneous
broadening, as expected.

D. Total effects of collective dephasing, local dephasing, and inhomogeneous broadening

In Fig. S7, we show the total effects of collective dephasing, local dephasing, and inhomogeneous broadening on the
superposition, ρssens, of the even and odd cat states, as a supplement to Fig. 3(a) in the main article which shows the
case of the state |C+〉. As expected, the steady 2D cat-state manifold can be obtained, even when these three sources
of dephasing noise are present simultaneously.

Note that in Fig. S7, the preparation error η, especially for the κ2at = 10γdeph case, is limited by the small number N
which is chosen for the convenience of numerical simulations. Here, we have assumed that γdeph ≡ γcol = γloc = ∆inh.
A larger N leads to a smaller η, until the bosonic approximation is valid well, i.e., until the collective behavior of the
ensemble can be well approximated by a harmonic oscillator. A similar increase in η can also be observed in Figs. S4,
S5, and S6.

0 1000 2000 3000 4000 5000
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FIG. S7. Total effects of collective dephasing, local dephasing, and inhomogeneous broadening on the preparation error η of the
state ρssens of size |α|2 = 2. We integrated the effective master equation (4) in the main article, with an additional spin dephasing

γcolL(Sz)ρens, local spin dephasing γloc
∑N

j=1 L(σz
j )ρens, and inhomogeneous broadening 1

2

∑N
j=1 δjσ

z
j . The frequency shifts δj

are randomly given according to a Lorentzian distribution of linewidth ∆inh. For simplicity, we set γcol = γloc = ∆inh ≡ γdeph,
and κ1at = 0, so that only the effects of these dephasing processes are shown. Other parameters are set the same as in Fig. S4.

S7. Inhomogeneous broadening in nitrogen-vacancy center ensembles

In Sec. S6, we have discussed three types of dephasing noise for our model. Different types of atomic or spin
ensembles have different dephasing mechanisms. Below, we take ensembles of nitrogen-vacancy (NV) center electron
spins in diamond, as an example, to discuss the source of dephasing. In these systems, the source of dephasing is
inhomogeneous broadening of the NV transition.

The electronic ground state of NV centers is a spin triplet, which has ms = 0 and ±1 sublevels. We use |0〉 and
| ± 1〉 to label these three sublevels. The zero-field splitting between the states |0〉 and | ± 1〉 is ∼ 2.87 GHz. In the
presence of a static field, the degenerate states | ± 1〉 are split with a Zeeman splitting ∆zm. In order to encode a
two-level atom or qubit here, we assume that the state |0〉 is used as the ground state and the state |+ 1〉 as the
excited state. Inhomogeneous broadening of the spin transition can be described by the Hamiltonian in Eq. (S41),
which for convenience is recalled here

Hinh =
1

2

N∑
j=1

δjσ
z
j , (S43)
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where σzj = |+ 1〉j〈+1| − |0〉j〈0|, and δj = ωj − ωq. Here, ωj is the transition frequency of the jth qubit spin, and ωq
can be viewed as the average of transition frequencies of all the qubit spins.

In general, inhomogeneous broadening of NV ensembles originates from the interactions of the NV centers with (A)
the local strain field, (B) the 13C and 14N nuclear spins, and (C) the P1 centers. Thus, the frequency shift δj can be
separated into three parts, i.e.,

δj = δstrj + δnucj + δP1
j , (S44)

which includes contributions from the strain field (δstrj ), the 13C and 14N nuclear spins (δnucj ), and the P1 centers

(δP1
j ).

A. Local strain

The local strain field breaks the C3v symmetry of the NV center, and as a result shifts the frequency of the states
| ± 1〉. The NV electronic spin is coupled to the local strain field via the Hamiltonian [S18]

Hstrain = d‖EzstrS2z + d⊥Exstr
(
S2y − S2x

)
+ d⊥Eystr (SxSy + SySx)

= Πz(|+ 1〉〈+1|+ | − 1〉〈−1|) + (Π⊥|+ 1〉〈−1|+ H.c.) , (S45)

where Πz = d‖Ezstr, Π⊥ = −d⊥ (Exstr + iEystr), and ~S = (Sx,Sy,Sz) is the NV spin operator. Here, ~Estr = (Exstr, E
y
str, Ezstr)

represents the strain field, and d‖ ∼ 2π×0.35 Hz cm/V, d⊥ ∼ 2π×17 Hz cm/V are the axial and non-axial components
of the ground-state electric dipole moment. The first term in Eq. (S45) corresponds to the frequency shifts of the
states | ± 1〉, and the second term describes their coupling. Due to the Zeeman splitting ∆zm, the coupling between
the states | ± 1〉 becomes largely detuned. As a result, the transition frequency of the qubit spin (i.e., the transition
|0〉 → |+ 1〉) is shifted by

δstr = Πz +
|Π⊥|2

∆zm
. (S46)

For a realistic parameter |Π⊥| = 2π×5 MHz [S19], and a common Zeeman splitting ∆zm = 2π×100 MHz, an estimate
of δstr is therefore given by δstr ∼ 2π × 0.3 MHz.

B. Nuclear spins

Natural diamond samples consist of ∼ 98.9% spinless 12C atoms and ∼ 1.1% 13C isotopes of nuclear spin IC = 1/2.
These 13C atoms are randomly distributed in the diamond lattice. Moreover, the 14N atoms constituting the NV
centers each have a nuclear spin IN = 1. The NV centers are coupled to these 14N and 13C nuclear spins through
hyperfine interactions, given by

Hnuc = ~S · AN · ~IN + ~S ·
∑
j

AC · ~IjC, (S47)

where ~IN and ~IjC are the spin operators for the 14N atom and the jth 13C atom, respectively, while AN and AjC are
the corresponding hyperfine interaction tensors. Working under the secular approximation, i.e., neglecting the Sx and
Sy terms, the Hamiltonian Hnuc becomes approximated by Hnuc ≈ δnucSz [S20, S21], with

δnuc = ANmN +
∑
j

AjCm
j
C, (S48)

where mN = 0, ±1 and mj
C = ±1/2 are magnetic quantum numbers.

The coupling to the 14N nuclear spin splits the state |+ 1〉 (or | − 1〉) into three hyperfine sublevels, equally spaced
by AN ∼ 2π × 2.16 MHz. This results in a linewidth broadening ∼ 2π × 4.3 MHz.

The 13C hyperfine splitting depends on the positions of the 13C nuclear spins relative to the NV center. According
to the studies in Ref. [S22], the coherence time induced by the 13C hyperfine coupling is ∼ 2 µs, implying a
linewidth broadening of ∼ 2π × 80 kHz. If 12C-enriched methane is used as a carbon source to prepare the diamond
samples [S23], then the concentration of 13C nuclear spins (and as a result the corresponding linewidth broadening)
can be significantly reduced.
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C. P1 centers

In diamond samples, single substitutional nitrogen atoms (so-called P1 centers), which were not converted into
the NV centers, are the main paramagnetic impurities and each of them has an unpaired electron. These inevitable
impurities form an electron spin bath, and the NV center is coupled to it through the dipole-dipole interaction, which
is described by the Hamiltonian [S24]:

HP1 =
∑
j

µ0g
2
sµ

2
B

4π |~rj |3
Sz [~nz − 3 (~nz · ~nj)~nj ] · ~Sj , (S49)

where ~Sj is the bath spin located at position ~rj , and ~nj = ~rj/|~rj |. In most experiments implementing the strong
coupling of a high-density NV ensemble to a superconducting resonator [S19, S25–S30], the residual P1 centers are the
main source of decoherence of the NV ensemble, and a typical linewidth broadening is δP1 ∼ 2π×7 MHz [S19, S26, S29].

A solution to reduce the inhomogeneous linewidth induced by the P1 centers is to improve the efficient conversion
of the P1 centers to the NV centers. The inhomogeneous linewidth would therefore be dominated by the hyperfine
interaction with the 14N nuclear spin [i.e., the first term on the right-hand side of Eq. (S48)]. That is, the
inhomogeneous linewidth would be limited to ∼ 2π × 4.3 MHz, as experimentally reported in Refs. [S23, S31].

D. Short summary

The detrimental effects of inhomogeneous broadening mentioned above are reversible and can in principle be
completely eliminated by spin-echo techniques or dynamical decoupling pulse sequences. The residual inhomogeneous
broadening can be further suppressed by the engineered two-atom decay in our proposal (see Sec. S6). Note that
although we discuss the ensembles of NV spins, our model is generic and can be implemented with other types of
ensembles, e.g., ensembles of trapped ultracold atoms. Inhomogeneous broadening of ultracold-atom ensembles, which
arises mainly due to the trapping potential and the atomic interactions [S15], can be strongly reduced through spin
self-rephasing collisions without the use of spin-echo or dynamical decoupling pulses [S16, S17].

S8. Spin relaxation, thermal noise, and the maximum cat state lifetime

In the main article, we discussed the effects of spin dephasing, and also showed that it can be strongly suppressed
by the engineered two-atom decay. In this section, let us consider the effects of spin relaxation and thermal noise,
and also the maximum cat state lifetime limited by them. Here, we proceed with the bosonic approximation. Such an
approximation maps the spin coherent states |θ, φ〉 and |θ, φ+ π〉 to the bosonic coherent states | ± α〉, respectively.
Correspondingly, the cat states |C±〉 = A± (|θ, φ〉 ± |θ, φ+ π〉) become |C±〉 = A± (|α〉 ± | − α〉), as given in Eq. (S2).

Spin relaxation and thermal noise can be described by the Lindblad dissipators, γrelax(nth + 1)L (b) ρ and

γrelaxnthL
(
b†
)
ρ. Here, γrelax is the spin relaxation rate, and nth = [exp (~ωq/kBT )− 1]

−1
is the thermal average

boson number at temperature T . The Purcell decay rate of the cat state coherence, which is induced by single-photon
loss of the signal cavity, is given by

Γ1at = 2 |α|2 κ1at, (S50)

with κ1at = (gcol/∆)
2
κs as given in Eq. (S12). At the same time, for a thermal background at T 6= 0, an additional

decay rate of the cat state coherence, which is induced by spin relaxation and thermal noise, is given by [S32]

Γrelax =
[
2 |α|2 (1 + 2nth) + 2nth

]
γrelax. (S51)

By assuming realistic parameters ωq = 2π × 3 GHz, T = 100 mK, |α|2 = 4, and γrelax = 2π × 4 mHz [S25, S28], we
have Γrelax ≈ 2π×54 mHz, much smaller the decay rate, Γ1at ≈ 2π×8.0 Hz, which is obtained with κs = 2π×10 kHz
and ∆/gcol = 100. This means that the effects of both spin relaxation and thermal noise on the cat states |C±〉 can
be safely neglected. In this case, the lifetime of these cat states is determined only by the Purcell single-atom decay
rate κ1at, and is given by

τat = Γ−11at =

(
∆

gcol

)2
1

2 |α|2 κs
. (S52)
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On the other hand, the intracavity photonic cat states |C±〉ph in Eq. (S3) mainly suffer from single-photon loss, e.g,

with a rate κs, and thus their lifetime is given by [S33],

τph =
1

2 |α|2 κs
. (S53)

It is found from Eqs. (S52) and (S53) that τat is longer than τph by a factor of (∆/gcol)
2
, i.e.,

τat
τph

=

(
∆

gcol

)2

. (S54)

According to the analysis in the main article, the factor (∆/gcol)
2

can be tuned to be ∼ 104 under modest parameters.
This indicates that the lifetime of our atomic cat states is longer than that of intracavity photonic cat states by up to
four orders of magnitude for cat sizes of |α|2 ≥ 4.

In fact, the decoherence rate Γ1at can be further decreased with the smaller single-photon loss rate κs (i.e., the
longer Tc). This results in a longer cat state lifetime. When Γ1at is comparable to or even smaller than Γrelax, the
lifetime τat is given by

τat = (Γ1at + Γrelax)
−1
. (S55)

For a single-photon loss rate of κs/2π = 30 Hz, we have Γ1at = 2π×24 mH, which is smaller than Γrelax ∼ 2π×54 mHz.
In this case, Eq. (S55) gives a cat state lifetime of τat ∼ 2 sec. Ultimately, when decreasing the rate κs, the lifetime
τat increases to its maximum value,

τmax
at = Γ−1relax. (S56)

Using the parameters given above, we can predict a maximum lifetime of τmax
at ∼ 3 sec.
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[S6] M. Brune, E. Hagley, J. Dreyer, X. Mâıtre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the
Progressive Decoherence of the “Meter” in a Quantum Measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).

[S7] Z. Wang, M. Pechal, E. A. Wollack, P. Arrangoiz-Arriola, M. Gao, N. R. Lee, and A. H. Safavi-Naeini, “Quantum
Dynamics of a Few-Photon Parametric Oscillator,” Phys. Rev. X 9, 021049 (2019).

[S8] F. Assemat, D. Grosso, A. Signoles, A. Facon, I. Dotsenko, S. Haroche, J. M. Raimond, M. Brune, and S. Gleyzes,
“Quantum Rabi Oscillations in Coherent and in Mesoscopic Cat Field States,” Phys. Rev. Lett. 123, 143605 (2019).

[S9] Y. Xu, Y. Ma, W. Cai, X. Mu, W. Dai, W. Wang, L. Hu, X. Li, J. Han, H. Wang, Y. P. Song, Z.-B. Yang, S.-B. Zheng,
and L. Sun, “Demonstration of Controlled-Phase Gates between Two Error-Correctable Photonic Qubits,” Phys. Rev.
Lett. 124, 120501 (2020).

[S10] F. Reiter and A. S. Sørensen, “Effective operator formalism for open quantum systems,” Phys. Rev. A 85, 032111 (2012).
[S11] V. V. Albert and L. Jiang, “Symmetries and conserved quantities in Lindblad master equations,” Phys. Rev. A 89, 022118

(2014).
[S12] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, “Dynamically

protected cat-qubits: a new paradigm for universal quantum computation,” New J. Phys. 16, 045014 (2014).
[S13] B. Prasanna Venkatesh, M. L. Juan, and O. Romero-Isart, “Cooperative effects in closely packed quantum emitters with

collective dephasing,” Phys. Rev. Lett. 120, 033602 (2018).
[S14] E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).

https://doi.org/10.1038/nature07288
https://doi.org/10.1038/s41567-020-0824-x
https://science.sciencemag.org/content/342/6158/607
https://science.sciencemag.org/content/342/6158/607
https://science.sciencemag.org/content/347/6224/853
http://dx.doi.org/ 10.1103/PhysRevX.8.021005
http://dx.doi.org/10.1103/PhysRevLett.77.4887
http://dx.doi.org/10.1103/PhysRevX.9.021049
http://dx.doi.org/10.1103/PhysRevLett.123.143605
http://dx.doi.org/10.1103/PhysRevLett.124.120501
http://dx.doi.org/10.1103/PhysRevLett.124.120501
http://link.aps.org/doi/10.1103/PhysRevA.85.032111
http://dx.doi.org/ 10.1103/PhysRevA.89.022118
http://dx.doi.org/ 10.1103/PhysRevA.89.022118
https://doi.org/10.1088%2F1367-2630%2F16%2F4%2F045014
http://dx.doi.org/10.1103/PhysRevLett.120.033602
http://dx.doi.org/10.1103/PhysRev.80.580


14

[S15] H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sárkány, R. Kleiner, D. Koelle, and J. Fortágh,
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[S25] R. Amsüss, Ch. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser,
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