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S1. PRACTICAL DETAILS FOR METHOD (I)
A. Analytical imaginary time evolution for transverse-field Ising model

In Method (I), we construct a DBM such that the imaginary-time evolution is realized analytically within the

Trotter error. As a concrete example, let us consider the transverse-field Ising (TFI) model on the Nt spin chain
with periodic boundary condition,

H = Hi + Ho, (S1)
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FIG. S1. Analytical construction of a DBM which realizes the imaginary-time evolution of the transverse-field Ising model.
(a) Starting from the DBM representing the infinite-temperature state, we first encode the interaction propagator (v = 1)
by introducing a single hidden spin for every interacting visible spins. Then, for the magnetic-field propagator (v = 2), we
add deep- and hidden-spin layers in between the visible layer and neighboring hidden layer. (b) As we repetitively encode the
propagators, the network structure grows vertically, with the depth increasing in proportion to the number of Trotter steps.
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where Hy = —J ), 0707, is the Ising—type interaction with amplitude J and Ho = —I'), o7 is the transverse
magnetic field with amplitude T', where o (a = x,y, z) denotes the Pauli matrix operating on the i-th site. In the
following, we provide the solutlons to reahze a small-time propagation d, by updating the DBM parameters from W
to W, i.e., e 9 |Uyy) = C|¥y) (C is a constant) [1].

For v = 1 (interaction propagator), a solution is to add one hidden spin per bond and put the couplings with
strength Zarcosh(e?/7) to the visible spins on each bond [See Fig S1(a)].

This is followed by the propagator for v = 2 (transverse-field propagator), for which we perform the following for
each site: (1) cut the existing couplings between the hidden and visible spins and (2) add a new deep spin dyey, that
is coupled with the hidden spins.

After applying (1) and (2) for each site, we furthermore introduce a new hidden spin which is coupled to the visible

and the newly added deep spins {dpew} With the interaction %arcosh (m)

By repeating these operations until the desired inverse temperature is reached, we obtain a DBM that exactly
encodes the Gibbs state via the quantum-to-classical correspondence [See Fig S1(b)]. Here, the number of the hidden
and deep spins scales as O(N; Ngito), where N is the number of Trotter steps and Ny is the number of physical
spins.

While we have described the case for the lowest-order Suzuki-Trotter decomposition, we may alternatively consider
higher-order ones so that the errors are suppressed. In the actual numerical implementation for the 1D TFI model,
we employ the 2nd-order expansion

exp [, (M1 + Ha)] = oxp(—8,H1 /2) exp(~8,Ha) exp(—6,H1/2) + O(52). (52)

B. Monte Carlo sampling scheme for Method (I)

Here, we describe how we calculate the expectation value of a physical observable (O) from the constructed DBM
states. Considering that the norm of the DBM states is given by

(U|w) = Z‘\I/ o,0)|" = Z Z ¢*(0,0';hy,dy)p(o, 0" ha,yda) = ZZM(O’, o'sh,d) (S3)

0,0’ h1,d1,h2,d2 0,0’ h,d
with w(o,o’; h,d) = ¢*(0,0'; hi,d1)d(0,0’; ha, ds), the expectation value (O) can be evaluated as

<\II(T)‘O @ l/‘\I’(T» _ 2070’ Zh,d w(07 U/; ha d)Oloc(Ua OJ; h7 d)
(W(T)[w(T)) >0 2on,aw(o,0';h, d) ’

where the sum over o, ¢’, h, and d is numerically approximated by MC sampling with weight w(o, 0’; h, d). Here, the
“local” observable Oyoc(c,0’; h,d) reads

(0) = (S4)

Oucle st ) = 52 <<§' O oy T 1O oo hz,d2)> ’ (%)
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where the sum over ¢ = (1, ..., Sy, ) is taken over all configurations. Note that non-diagonal elements (s|O|o) (s # o)
are mostly zero when the size of the support of O is finite. For instance, if O is a product of Pauli operators with
the total number of bit-flipping operators (i.e., o, or g,) given as k, the number of non-zero elements contributing in
Eq. (SH) is 2*.
Alternatively, we can use a marginal probability as the weight for the Monte Carlo (MC) method by tracing out
one of h and d degrees of freedom. Here, as an example, we show the case where the h spins are traced out (we can
also trace out the d spins and sample the h spins). In this case, the marginal probability is given by

(0,0";d) Z ¢*(0,0";h1,d1)¢(0,0'; ha,do) = (ZNS*(O', 0/;d1)(;~5(0, o';ds), (S6)
hi,h2

with

¢(o,0';d) HQcosh b; +Z Wjioi + Wo0) + Z Trde | (S7)



The formula for the expectation value (O) is recast as

Za,a/ >_qw(o,0'; d)éloc(o, a';d)

<O> = EU’U, Zdw(o_7 0_/; d) ’ (88)
where the local observable Ojoc(0,0'; d) is given by
3 1 ¢ (s, 0" dh) 6(s,0"; d3)
Oroc(0,0"5d) = = |0y =—"—"—~L 4+ (o] Ol¢) =% ]. S9
ol i) =53 << 0l0) E0T 4 (ol0l) E2T (59)

In the present study, we evaluated the physical observables based on Eq. (S8), since the degrees of freedom participating
in the sampling are mitigated.

S2. PRACTICAL DETAILS OF METHOD (II)
A. Stochastic Reconfiguration method

The Stochastic Reconfiguration (SR) method [2, 3] employs a variational principle such that the exact imaginary-
time evolution is approximated within the expressive power of the wave function ansatz. In other words, the SR
method provides an update rule of variational parameters so that the distance, whose definition relies on the employed
variational principle, between states following exact and approximate imaginary-time evolution is minimized. In the
following, we provide a concise derivation of the parameter update rule used in the SR method.

Let |¥y) be a variational wave function with a set of complex variational parameters 6. In the SR method, we
update the variational parameters as 6 < 6+ 6 according to a variational principle based on the Fubini-Study metric

F:

30 = argéénin Fle ™ W), [T ys0)], (510)
FlI) o)) = areeos | {108 (s11)

Here, H is the Hamiltonian of the system and ¢, is a small step of imaginary-time evolution. Note that the metric
F measures the distance between two quantum states |¢)) and |¢) after imposing an appropriate normalization, and
therefore it is closely related with the fidelity between pure states F' as F = arccos v F2, where the fidelity is defined
as F2[|¢y), |¢)] = % Consequently, the parameter update 60 also satisfies

60 = arg max F2[e =07 |Wy) | [Wg.50)]. (S12)
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After some algebraic calculations, we obtain the explicit expression, up to the second order, of the squared fidelity
F2as

F2=1— [ 6058060, + 6, Y _(frd0; + c.c.) + S2((H?) — (H)?) | . (S13)
k,l k

where the variance of the energy, contributing to the intrinsic algorithm error, is estimated using the MC sampling

as (-) = (Wol- \‘I’e)

Ty Te) [See S2 C for further information.] We have introduced an element of the covariance matrix Sy; as

_ (OkVel|01Ve)  (OkWol [Wo) (Po|[01T0)
S T W) (W] W) (W) (514)

= (0]0) — (O} (0y), (S15)

and the generalized force fj as

_ (OkWo|H[Wy)  (OkTol Vo) (Yol H[Vo)
Ji= (Wol |¥o) (Wol [Wo)  (Wol [V) (516)

= (O}H) — (O])(H), (S17)




TABLE S1. Character table of the Cy, point group.

E 2Cy Cy 20, 204

Ay 1 1 1 1 1

Ao 1 1 1 —1 -1

B1 1 —1 1 1 -1

B 1 —1 1 —1 1

E 2 0 -2 0 0
_ Ok¥e(0)

where Oy, denotes a diagonal matrix with each element given as Oy (o) = ¥, (o) - Equations. (S15) and (S17) indicates
that all the elements Si; and fi can be estimated by MC sampling. Finally, by using the stationary condition for the
optimal solution of Eq. (S13), the expression for the parameter update can be obtained as

30, =—0: > Sg' fi- (S18)
l

In the actual calculation, we add a stabilization factor to the diagonal elements of S as S + €, where ¢ is
typically taken uniformly as ~ 10*45diag, where S'diag is the mean value of diagonal elements. We observe that the
calculation becomes more reliable when the time step 4, is initially taken to be small; O(10~%). After tens to hundreds
of iterations, d, is increased gradually up to O(1072).

B. Symmetrization

In Method (II), we numerically optimize a purified DBM wave function with the form:
¥(o,0") = [] 2 cosh [bj+Z(Wjioi+W;ia£)] (S19)
j i

Here, b, W, and W' are variational parameters. We assign the site index ¢ for the pair of physical o and ancilla o’
spins.

To improve the quality of the calculation, we consider the symmetry of the system. In the case of the 2D Ji-Jo
Heisenberg model, we encode the translational and point-group symmetry in the purified DBM wave function. We ob-
serve that the initial state, i.e., the purified infinite-temperature state, is invariant under certain symmetry operations:
(1) translation Tr that shifts all the spins by the amount R as (o,0’) — (Tro,Tro’), and (2) symmetry operation R
of C4, point group that maps a spin configuration as (o, 0’) — (Ro, Ro’). Alternatively, we can understand that the
purified state is in the zero wave-number sector and belongs to the A; representation of the Cy, point group (see also
Table S1) of a bilayer system. Along the imaginary time evolution, the purified DBM wave function stays within the
identical symmetry sector at arbitrary temperature. Hence, we impose such a condition by symmetrizing the purified
DBM wave function as

Vgym.(0,0") = > U(TgRo, Tp Ro’). (S20)
RR

We employ this formula to impose the symmetry on the wave function on the left-hand side Wy (0,0”). Observe
that Wyym (0,0) satisfies the symmetry even when the bare DBM wave function ¥(o,0’) on the right-hand side
does not preserve the symmetry. We emphasize that the corresponding Gibbs state of the target system consists of
contributions from all symmetry sectors of the original Hamiltonian.

C. Computing expectation values of physical observables

As in Method (I), expectation values are numerically evaluated by the MC method. The formula for the expectation
value (O) in Method (II) reads

20,00 P(0,0")Oloc (0, 0")
20,00 P(0,07)

<0> = ) (821)



1D, trans. sym. 2D, trans. sym. 2D, trans. sym. + Cy,, sym.
0.5} , [
(a) — Exact (b) ” o — Exact (C) — Exact
0.4l - Nj, = Naie - Nj, = Naie - Nj, = Naie
@ Nj, = 8Nite \ @ Nj, = 8Nite @ Nj, = 8Nite

C/Nsitc

FIG. S2. Method (II) results (symbols) for the specific heat C for (a) the 1D Heisenberg model on the 16-site chain and (b,c)
the 2D Heisenberg model on the 4x4 lattice. In all cases, we take the periodic boundary condition, and the number of sites is
16 (Nsite = 16). In (a) and (b), we impose translational symmetry on the purified DBM wave function for the extended system.
In (c), we use both translational and C4, point-group symmetry. The solid black curves are obtained by exact diagonalization.

where p(o,0’) is the weight p(c,0’) = |[Vsym.(0,0”)|?, and the local observable Oy (0, 0”) is given by

Oloc(o,0') = % Z <<a| O|) ‘IM + c.c.) . (S22)

We perform the Metropolis sampling over the ¢ and ¢’ spins with the weight p(o, ¢’) to compute expectation values.

D. Calculation conditions

In the present calculations for the 2D J;—J; Heisenberg model on the 6 x 6 lattice (Figure 3 in the paper), we
introduce 8 Ngito (=288) hidden spins. We set the b parameters (magnetic field) to zero, so that the “up” and “down”
spins are equivalent, and optimize only the W and W’ parameters. With this setting, the purified DBM wave function
becomes even with respect to the global spin inversion.

The initial W and W’ parameters are prepared to represent the infinite-temperature state. The infinite-temperature
state can be reproduced exactly by setting W;; = WJ’z = i7dj;, for 1 < j < Njte, and Wy; = W]Iz = 0, for
Niite + 1 < j < 8Ngite- In the actual calculations, to make the initial gradient of the parameter optimization finite,
we put small perturbations to the above setting by adding small random numbers.

As we describe in the main text, starting from the initial W and W’ values, we optimize the parameters with
the SR method [3], which makes it possible to reproduce the imaginary time evolution as much as possible within
the representability of the DBM. To reduce the number of variational parameters, we take half of the W and W’
parameters to be complex and the rest real as in Ref. 4. We do not impose symmetry constraints on the W and
W' parameters, but instead, the symmetry is restored with the projection [Eq. (S20) in the case of the 2D J;—Js
Heisenberg model]. We observe that the most time-consuming part of the calculation is the MC sampling to estimate
the expectation values of the energy and the gradient of the parameter optimization; its time scales as O(N,NZ,.),
where N}, is the number of hidden spins (N}, = 8 Ngjte in the present case).

E. Benchmark calculations for 1D and 2D Heisenberg models

Here, we show the benchmark results of Method (II) for the 1D and 2D Heisenberg models. The Hamiltonian reads
H=J] Z<i7j> S; - S;, where J; = 1 and (4, j) denotes a pair of neighboring sites. In the 2D case, the Hamiltonian
corresponds to the Jo = 0 case for the 2D J;—J> Heisenberg model. We take the 16-site chain for the 1D model, and
the 4 x 4 square lattice for the 2D model. In both cases, periodic boundary conditions are assumed and the number

of sites is 16 (Nsite = 16). We consider the zero magnetization sector (3}, S7 = 0) as in the main text.



As we have discussed above and in the main text, the quality of the Method (II) calculations can be improved
by increasing the number of hidden units N, and/or by imposing symmetry. For a numerical demonstration, we
compare Nj = Ngte and Nj, = 8Nt cases. We follow the conditions described above (Sec. S2 D), except that all the
parameters are taken to be complex in the Nj, = Ngt. case (note that when Nj, = Ngite, all the hidden units need to
have complex couplings to prepare infinite-temperature states).

Figure S2 shows the Method (IT) results for the specific heat C for (a) the 1D model when imposing translational
symmetry, (b) the 2D model when imposing translational symmetry, and (c¢) the 2D model when imposing translational
and point-group symmetries. We see that in the case of the 1D model, the Method (II) result agrees well with the
exact result already at N = Ngte [Figure S2(a)]. On the other hand, in the case of the 2D model, when only the
translational symmetry is imposed as in the 1D model case, the result with N, = Nt shows a visible (but small)
deviation from the exact result [Figure S2(b)]. The result improves by increasing N [Figure S2(b)] or imposing
an additional symmetry (point-group symmetry) [Figure S2(c)]. From this benchmark, we indeed observe that the
number of hidden units N}, and the symmetrization are important factors to ensure the quality of the Method (II)
calculations.
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