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We develop two cutting-edge approaches to construct deep neural networks representing the purified
finite-temperature states of quantum many-body systems. Both methods commonly aim to represent the
Gibbs state by a highly expressive neural-network wave function, exemplifying the idea of purification.
The first method is an entirely deterministic approach to generate deep Boltzmann machines representing
the purified Gibbs state exactly. This strongly assures the remarkable flexibility of the ansatz which can
fully exploit the quantum-to-classical mapping. The second method employs stochastic sampling to
optimize the network parameters such that the imaginary time evolution is well approximated within the
expressibility of neural networks. Numerical demonstrations for transverse-field Ising models and
Heisenberg models show that our methods are powerful enough to investigate the finite-temperature
properties of strongly correlated quantum many-body systems, even when the problematic effect of
frustration is present.
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Introduction.—The thermal behavior of quantum many-
body systems is one of the most fundamental problems in
physics. Statistical mechanics states that the density matrix
describing a system in thermal equilibrium, governed by a
Hamiltonian H at an inverse temperature β, is given by the
Gibbs state ρ ¼ e−βH=Tr½e−βH�. Computing and extracting
physical properties from the Gibbs state is a significant
challenge to understand natural phenomena, which in
reality all occur at finite β.
One of the most celebrated numerical techniques in lattice

systems is the quantum Monte Carlo (QMC) method [1–4],
typically based on the path integral formalism of the partition
function. The QMC method yields numerically exact solu-
tions when the positive definiteness is assured; otherwise, the
infamous negative sign problem arises. Many physically
intriguing systems fall into the latter category, and therefore
various efforts have been devoted to overcome this difficulty:
tensor-network-based algorithms [5–8] mostly applied to
one-dimensional (1D) systems, dynamical mean-field theory
[9] which becomes exact in the infinite coordination-number
limit, diagrammaticMonte Carlo methods [10,11], to name a
few [12–14]. In another notable approach [15–18] using
the thermal pure quantum (TPQ) states, one can extract the
ensemble property from a single pure state that represents the
thermal equilibrium. We point out, however, that it remains
extremely challenging to establish a methodology that is
both reliable and scalable for finite-temperature calculations
in two-dimensional (2D) systems—the most exotic and
intriguing realm in quantum many-body problems.

Neural networks, initially developed for classical data
processing in the context of machine learning, offer a very
strong methodology for quantum physics [19–25]. As was
first demonstrated by Carleo and Troyer [19], neural
networks applied as variational wave functions, commonly
dubbed as the neural quantum states, are capable of
simulating ground states [19,26–28], excited states [29–
31], and even out-of-equilibrium property [19,32–38] of
strongly correlated systems up to unprecedently large size.
Among the tremendous variety of network structures,
Boltzmann machines with restricted connectivity, known
to be universal approximators for arbitrary real/complex
amplitudes [39,40], are useful for statistical mechanics and
quantum information. The Boltzmann machines with the
shallowest structure are already powerful enough to com-
pactly express complex quantum states with extensively-
growing quantum entanglement [41,42]. Furthermore, deep
Boltzmann machines (DBMs), i.e., the ones with multiple
hidden layers, are guaranteed to provide an efficient
description for an even wider range of quantum states
[43]. Strongly motivated by their extremely high represent-
ability, the ground states in quantum many-body spin
systems have been successfully simulated by DBMs [44].
In the present study, we provide two state-of-the-

art methods to construct DBMs that capture the finite-
temperature behavior of quantum many-body systems.
Both methods share the strategy of employing DBMs to
express the purified Gibbs state. Namely, a mixed state
under imaginary time evolution is compactly encoded as a
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pure DBM wave function in the enlarged Hilbert space. In
the first method, we find a completely deterministic way to
construct DBMs, realizing the exact purified expression of
finite temperature states. This proves the remarkable
flexibility and power of DBMs for investigating finite-
temperature many-body phenomena. In the second method,
we provide a stochastic way to simulate the imaginary time
evolution which exploits the versatile expressive power of
DBMs as approximators. For demonstration, we apply
these methods to the 1D transverse-field Ising (TFI) model
and the 2D J1–J2 Heisenberg model on the square lattice to
find surprisingly high accuracy compared to numerically
exact methods. We emphasize that only a polynomial
number of auxiliary spins suffices in both approaches,
yielding a huge computational advantage even under the
presence of the problematic effect of frustration.
DBM for purification.—Throughout this work, we utilize

the idea of purification to represent the Gibbs state.
Namely, the finite-temperature density matrix ρ of a target
system S is encoded as a pure state in an extended system
S þA, such that ρ is obtained by tracing out the ancillary
system A [45]. For instance, the purification of an infinite-
temperature state can be generated by the superpositionP

x jxiSjaxiA, where fjxiSg is the complete orthonormal
basis set of the target system, while fjaxiAg is an ortho-
normal but not necessarily complete basis set of ancillary
system.
For the sake of concreteness, let us consider a quantum

many-body spin-1=2 system. We introduce Nsite binary
degrees of freedom fσig so that jσi ¼ jσ1;…; σNsite

i spans
the Hilbert space of the target system S. Hereafter we
call them physical spins. As the ancillary system A, we
introduce an identical number of ancilla spins fσ0ig so
that an arbitrary mixed state can be purified in princi-
ple. While the purification of a mixed state is not unique,
here we exclusively take the purified infinite-temperature
state as jΨðT ¼ ∞Þi ¼⊗Nsite

i¼1 ðj↑↓0i þ j↓↑0iÞi, and perform
the imaginary time evolution as jΨðTÞi ¼ e−βH=2 ⊗
10jΨðT ¼ ∞Þi, with β ¼ 1=T to simulate the finite-
temperature Gibbs state. Note that the infinite-temperature
state ρ∞ ¼ 1=2Nsite and the finite-temperature state ρT ¼
e−βH=Tr½e−βH� are reproduced by tracing out the ancilla
spins.
Intriguingly, the purified Gibbs state at each temperature

can be efficiently expressed by the DBM. In particular, we
use the DBMwith two hidden layers [see Fig. 1(a)] to repre-
sent a purified wave function whose amplitude Ψðσ; σ0Þ ¼
hσ; σ0jΨi is parametrized as

Ψðσ; σ0Þ ¼
X
h;d

ϕðσ; σ0; h; dÞ; ð1Þ

ϕðσ; σ0; h; dÞ ¼ exp

�X
j

bjhj þ
X
ji

hjðWjiσi þW0
jiσ

0
iÞ

þ
X
jk

W0
jkhjdk

�
; ð2Þ

where we have introduced hidden spins fhjg and deep spins
fdkg, in addition to the physical spins fσig constituting the
visible layer and ancilla spins fσ0ig allocated in the second
hidden layer (we define all spins to be eitherþ1 or−1). This
structure is “universal” in terms of the DBM architecture;
arbitrary multi-hidden-layer structure can be rearranged to
have only two hidden layers as shown in Fig 1(b). The
number of complex variational parametersW ¼ fb;W;W0g
[46] are directly related to the number ofh and d spins, which
controls the representability of theDBMwave function.Note
that the purification technique for neural networks has been
considered in the context of quantum tomography [47] and
dissipative quantum physics [34–37].
Method (I): Analytic purification using DBM.—In

method (I), we analytically construct DBMs that exactly
reproduce the behaviours of Gibbs states. First, to represent
the infinite-temperature state, we introduce a DBM with
Nsite hidden and ancilla spins [Fig. 1(c)]. By setting the
parameters W∞ as bj ¼ 0 and Wji ¼ W0

ji ¼ iðπ=4Þδji, we
find that the analytical expression of the DBM wave

(b)

(c)

(d)

(a)

FIG. 1. (a) Structure of the three-layer DBM used in the present
study. The visible layer (blue) corresponds to physical spins σi.
Two hidden layers are distinguished as hidden (green) and deep
(red) layers; while the hidden layer simply consists of hidden
spins hj, the deep layer is composed of the deep spins dk and
ancilla spins σ0i, which are introduced to purify the Gibbs-state
density matrix. Here, the numbers of physical, hidden, and deep
spins are denoted as N, M, M0, respectively. The number of
ancilla spins is taken asN. (b) Two different ways of depicting the
identical DBM structure. A network with seemingly many hidden
layers can always be recast into that with only two hidden layers.
(c) The DBM representing the infinite-temperature state
jΨðT ¼ ∞Þi for quantum spin-1=2 systems. (d) The DBM
construction for the finite-temperature states of the 1D TFI
model [jΨðTÞi in Eq. (3)]. The arrow denotes the growth of
the DBM structure along the imaginary-time τ propagation. Light
blue, orange, and purple bonds in (c) and (d) have couplings
iðπ=4Þ, 1

2
arcosh½1= tanhðΓδτÞ�, and 1

2
arcoshðe2JδτÞ, respectively.
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function becomes Ψðσ; σ0Þ ¼ Q
i 2 cosh ½iðπ=4Þðσi þ σ0iÞ�.

This exactly reproduces the jΨðT ¼ ∞Þi described above.
Next, to express finite-temperature states jΨðTÞi ana-

lytically, we introduce the Suzuki-Trotter decomposition
[1]. Namely, given the Hamiltonian H ¼ P

ν Hν, the
purified Gibbs state up to the Trotter error is expressed as

jΨðTÞi ≔
��Y

ν
e−δτHν

�
Nτ

⊗ 10
�
jΨðT ¼ ∞Þi; ð3Þ

where δτ ¼ β=2Nτ is the propagation time step.
Remarkably, thanks to the flexible representability of the
DBM, we can find analytical solutions for Eq. (3): Starting
from the initial DBM state jΨðT ¼ ∞Þi given by the W∞
parameters, each short-time propagation e−δτHν can be
implemented exactly by modifying the parameters and
structure of the DBM [48], whose the explicit expression
depends on the form of the Hamiltonian.
As a concrete example, let us consider the TFI model

on the Nsite-spin chain under periodic boundary condition.
The Hamiltonian is given by H ¼ H1 þH2, with H1 ¼
−J

P
i σ

z
iσ

z
iþ1 and H2 ¼ −Γ

P
i σ

x
i , where σai ða ¼ x; y; zÞ

denotes the Pauli matrix operating on the ith site. We take
the Ising-type interaction J as the energy unit (J ¼ 1), and
Γ as the strength of the transverse magnetic field. Using
method (I), we can analytically construct the finite-
temperature state using the DBM. Solutions to realize
the propagation by updating the DBM parameters from W
to W̄, i.e., e−δτHν jΨWi ¼ CjΨW̄i (C: a constant) can be
sketched as follows [44]: For ν ¼ 1 (interaction propaga-
tor), we add a single hidden spin for each neighboring
visible spins σi and σiþ1. For ν ¼ 2 (transverse-field
propagator), we add new hidden- and deep-spin layers
between the visible and neighboring hidden layers. All the
DBM parameters are determined analytically (see
Supplemental Material for detailed implementation [50]).
As a consequence of propagarions, the DBM architecture
grows as in Fig. 1(d), and the number of hidden and deep
spins scale as OðNτNsiteÞ, which is also common among
general local Hamiltonians.
Now that the Gibbs states are represented, let us

discuss how the physical quantities are computed
using the DBM framework in general. Since the expect-
ation value of a physical observable hOi ¼ hΨðTÞjO ⊗
10jΨðTÞi=hΨðTÞjΨðTÞi becomes analytically intractable,
we use the Monte Carlo (MC) method for its numerical
estimation. The sampling weight is based on the expression
of the normalization factor of the DBM state [Eq. (1)]
given as

hΨjΨi ¼
X
σ;σ0

jΨðσ; σ0Þj2

¼
X
σ;σ0

X
h1;d1;h2;d2

ϕ�ðσ; σ0; h1; d1Þϕðσ; σ0; h2; d2Þ: ð4Þ

Namely, we sample over the configurations of
ðσ; σ0; h1; h2; d1; d2Þ weighted by the product of ampli-
tudes as wðσ; σ0; h; dÞ≡ ϕ�ðσ; σ0; h1; d1Þϕðσ; σ0; h2; d2Þ.
Alternatively, it is possible to trace out the hidden spins
h analytically, and use

P
h1;h2 ϕ

�ðσ; σ0; h1; d1Þϕðσ; σ0;
h2; d2Þ as the MC sampling weight over configurations
of ðσ; σ0; d1; d2Þ (or trace out d spins and sample over h
spins). See Supplemental Material for more details of the
method [50].
To verify the construction of the DBM and the proposed

MC sampling strategy, we apply the method to the 16-site
TFI model. Figure 2 shows the DBM results (symbols) for
the temperature dependence of the (a) energy, (b) specific
heat, and (c) susceptibility. As expected, the DBM results
follow the exact temperature evolution (solid curves). This
confirms the remarkable representability of the DBM not
only at zero temperature [44] but also at finite temperatures,
offering an intriguing quantum-to-classical mapping.
Method (II): Numerical purification using DBM.—When

the weight of individual spin configuration can be taken to
be always positive, method (I) is quite useful and provides
numerically exact finite-temperature results. However,
when the frustration exists in the spin Hamiltonian, for
instance, we cannot avoid the existence of negative weights
as in other finite-temperature calculations based on the
QMC method. While it is possible to construct finite-
temperature states analytically, the estimation of physical
quantities becomes extremely difficult because of the
negative sign problem.
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FIG. 2. Finite-temperature calculations for the 1D TFI model
on a 16-site chain (Nsite ¼ 16) with periodic boundary condition:
(a) Energy E, (b) specific heat C, and (c) susceptibility
χ ¼ ð1=TÞPihσ0σii. The symbols denote the DBM results
[method (I) with δτ ¼ 0.05], which agree well with the exact-
diagonalization results (solid curves).
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To make the application to frustrated models possible,
we propose an alternative method which employs DBMs
with only ancilla spins σ0 in the second hidden layer. By
tracing out hidden spins h, such a purified DBM wave
function has a simple form:

Ψðσ; σ0Þ ¼
Y
j

2 cosh

�
bj þ

X
i

ðWjiσi þW0
jiσ

0
iÞ
�
: ð5Þ

Then, we can avoid negative signs by simply employing
jΨðσ; σ0Þj2 as the weight for sampling over σ and σ0 spins.
However, in this case, differently from method (I), the
imaginary-time evolution cannot be followed analytically.
Instead, we need to update parameters numerically at each
time so that the DBM obeys the imaginary-time evolution
starting from the infinite-temperature state Ψ∞ðσ; σ0Þ ¼Q

i 2 cosh ½iðπ=4Þðσi þ σ0iÞ� (recall that this infinite-temper-
ature DBM does not require d spins). For this purpose, we
employ the stochastic reconfiguration (SR) method [50–52]
[53]. The SR optimization is designed to minimize the
distance between quantum states following the exact and
variational imaginary-time evolution, as much as possible
within the expressive power of the DBM wave function in
Eq. (5). The expressive power is systematically controlled
by the number of h spins; it is ensured that any quantum
states can be represented exactly (universal approximation)
by an infinitely wide network structure [39,40].
As a demonstration of method (II), we turn to a highly

challenging problem: frustrated spin systems. As a repre-
sentative, here, we consider the 2D antiferromagnetic J1–J2
Heisenberg model on the L × L square lattices with
periodic boundary condition. The Hamiltonian reads
H ¼ J1

P
hi;ji Si · Sj þ J2

P
hhi;jii Si · Sj. Here, Si is the

spin-1=2 operator at site i, and J1ð¼ 1Þ and J2 are the
nearest-neighbor and next-nearest-neighbor couplings,
respectively. When J2 is finite, the spin configuration
cannot satisfy the energy gain by the J1 and J2 interactions
simultaneously (frustration). Around J2 ¼ 0.5, where the
frustration is strong, an exotic state of matter, quantum spin
liquid without any symmetry breaking, might be stabilized
as the ground state [21,56–61]. The model also attracts
attention because of its possible relevance to the physics of
high-Tc cuprates [62–64]. However, because numerically
exact QMC results are not available due to the sign pro-
blem, the ground-state phase diagram is still under active
debate.
For this challenging problem, the wave functions using

neural networks have started to be applied to the zero
temperature calculation [61,65–70]. However, to detect a
hallmark of the possible quantum spin liquid phase
experimentally, the finite-temperature behavior needs to
be elucidated. Here, we apply method (II) to perform the
finite-temperature calculations for J2 ¼ 0 and 0.5. To
check its accuracy, we compare the results with numerically
exact ones obtained by method (I) for the non-frustrated

case (J2 ¼ 0). For the frustrated case (J2 ¼ 0.5), method (I)
suffers from the sign problem, but, up to a 6 × 6 lattice, the
TPQ results are available, which are also numerically exact.
Therefore, we perform calculations using the 6 × 6 lattice
with the total magnetization restricted to be zero
(
P

i S
z
i ¼ 0). To further improve the accuracy of the

calculation, we utilize the translational and point-group
symmetry of the extended system [70]. See Supplemental
Material for the practical details [50].
Figure 3 shows method (II) results (symbols) for the

temperature dependence of the (a) energy, (b) specific heat,
and (c) z component of spin structure factor Szðπ; πÞ, which
quantifies the Néel-type antiferromagnetic correlation. We
can see that, by the frustration, the antiferromagnetic
correlation is largely suppressed, and the entropy release
slows down. Method (II) results accurately reproduce the
exact imaginary-time evolution, showing its reliability even
in the frustrated regime.
In method (II), by optimizing parameters numerically,

we obtain a more compact and dense network to represent
finite-temperature states compared to the analytically
derived network in method (I): the number of hidden units
is Nh ¼ 8Nsite in this case, which is in contrast to
OðNτNsiteÞ in method (I). The compactness of the network
without d spins results in the absence of the negative
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FIG. 3. Finite-temperature calculations for the 2D J1-J2
Heisenberg model (J1 ¼ 1) on the 6 × 6 square lattice with
periodic boundary condition: (a) Energy E, (b) specific heat C,
and (c) z component of the spin structure factor SzðqÞ ¼
ð1=NsiteÞ

P
ij e

iq·ðRi−RjÞhSzi Szji at q ¼ ðπ; πÞ. The symbols denote
method (II) results with 8Nsite hidden spins, which show a good
agreement with the numerically exact references (solid curves)
obtained by method (I) with δτ ¼ 0.005 (J2 ¼ 0) and the TPQ
method (J2 ¼ 0.5). The TPQ calculations are performed with
HΦ [71]. The shaded regions show the size of the error bars of the
TPQ results [in method (I), the size of the error bars is small].
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weights in the MC sampling. Considering the observation
that the Nh scales polynomially with respect to the system
size, our results are strongly encouraging to expect a
computational advantage in even more dedicated simula-
tions for larger systems.
From the application to the Heisenberg model, we see

that both the implementation of symmetrization and
increasing Nh contributes to enhancing the accuracy of
calculations [50]. It is an important future task to check the
reliability of method (II) for other Hamiltonians, since the
convergence of the error in the imaginary-time evolution
with respect to Nh should be model dependent.
Summary and outlook.—In summary, we have proposed

two cutting-edge approaches that utilize DBMs to simulate
the finite-temperature properties of quantum many-body
systems. In the first approach, we provide a deterministic
construction of DBMs that exactly represents Gibbs states,
which proves the suitability and flexibility of neural net-
works for encoding thermal properties. In the second
approach, the DBM network parameters are optimized
stochastically so that the imaginary time evolution can be
approximated efficiently, even for one of the most chal-
lenging 2D problems, such as frustrated systems.
Several future directions can be envisioned. It is an

interesting question how the neural-network quantum states
perform under other schemes of finite-temperature calcu-
lation such as TPQ methods. All variational ansatz are, by
construction, not powerful enough to express Haar random
states, which are taken as the initial states in TPQ
calculations. Nonetheless, results by tensor-network-based
algorithms [8] imply that using the truncated Hilbert space
is sufficient in practical simulations. The major obstacle is
considered to be the entanglement growth along the time
propagation, which we expect to be simulated well by
neural networks, based on previous works on real-time
evolution [19,32,33]. Also, it is natural to explore the
scalability of our methods in larger and/or more complex
systems, or ask whether other network structures (e.g., deep
feed-forward networks) are suited for the finite-temperature
calculations; the trade-off relationship between the repre-
sentability and trainability of shallow and deep neural net-
works remains open.
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