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This supplementary material includes the following: In Sec. I, we discuss the lumped-circuit model of

a Josephson chain working as a metamaterial SQUID transmission line (STL), and find the parameter

regime where the linear dispersion relation is valid. In Sec. II, we show how to realize a tunable photonic

crystal waveguide (PCW) by periodic modulation of the STL’s Josephson inductance via an external flux

bias. In Sec. III, we discuss the coupling between the PCW and a superconducting giant atom, and derive

the analytical form for the chiral bound states. In Sec. IV, we discuss the chiral bound state resulting

from the interference effect due to nonlocal coupling of the giant atom. In Sec. V we derive, by employing

standard resolvent-operator techniques, the chiral dipole-dipole interactions between giant atoms mediated

by virtual photons, and discuss how to realize topological pumping of the atomic chain by shifting the

modulating signal of the PCW.
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I. DISPERSION RELATION OF A SQUID TRANSMISSION LINE

As shown in Fig. S1(a), we consider a microwave transmission line composed of a chain of N superconducting

quantum interference devices (SQUIDs), with capacitances Cg connecting each node to the ground. The SQUIDs are

separated by an equal spacing d0. The jth SQUID can be viewed as a lumped inductance Lj , in parallel with the

Josephson capacitance Cj [S1–S7]. The relation between Lj and the external flux Φj is [S8–S10]

Lj =
L0

cos
∣∣∣πΦj

Φ0

∣∣∣ , L0 =
Φ2

0

8π2Es0
, (S1)
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FIG. S1. (a) A SQUID-chain platform for waveguide quantum electrodynamics involving superconducting giant atoms: each

SQUID works as a tunable inductance which is controlled by a bias current I(n) produced by an external coil. The Josephson

capacitance Cj (not shown) is in parallel with the Josephson inductance, and can be neglected in the linear-dispersion regime.

At position n, the node flux is denoted by φn, with a capacitance Cg connecting to ground. (b) Instead of modulating the

inductance site-by-site, the inductance of the SQUID chain (represented here by rectangles) can also be modulated group-

wise. The periodic high and low impedances Z can be tuned by a common current coil, which will produce a photonic-crystal

waveguide (PCW) structure.

where Es0 is the junction Josephson energy, which is assumed to be identical for each cite, and Φ0 is the flux quantum.

Alternatively, as indicated in Fig. S1(b), a group of SQUIDs can be tuned by sharing the same current coil. Denoting

the flux at node j as φj , we obtain a Kirchoff current equation for the SQUID chain:

Cgφ̈j +
φj − φj−1

Lj
+ Cj

(
φ̈j − φ̈j−1

)
− φj+1 − φj

Lj+1
− Cj

(
φ̈j+1 − φ̈j

)
= 0. (S2)

By assuming the capacitances and effective inductances identical, Cj = CJ and Lj = LJ , the dynamical equation in

Eq. (S2) leads to the Hamiltonian [S4, S5]

H0 =
1

2
~QT Ĉ−1 ~Q+

1

2
~ΦT L̂−1~Φ, (S3)

~ΦT = (φ0, φ1, . . . , φN ) , ~Q = Ĉ ~̇Φ, (S4)

where the capacitance and inductance matrices are given by

Ĉ =


CJ −CJ 0 . . .

−CJ 2CJ + Cg −CJ 0 . . .

0 −CJ 2CJ + Cg −CJ 0 . . .
... 0

. . .
. . .

. . .
. . .

 , (S5)

and

L̂−1 =


1
LJ

− 1
LJ

0 ...

− 1
LJ

2
LJ

− 1
LJ

0 ...

0 − 1
LJ

2
LJ

− 1
LJ

0 ...
... 0

. . .
. . .

. . .
. . .

 . (S6)

Using the transformation ~ψsk = Ĉ1/2~Φ, the eigenfrequency ωk for the system can be derived from [S4]

Ĉ−1/2L̂−1Ĉ−1/2 ~ψsk = ω2
k
~ψsk, (S7)

where ~ψsk is the wavefunction for mode k with frequency ωk.

As derived in Ref. [S4], by assuming an open-ended boundary condition for the chain, the Hamiltonian in Eq. (S4)

can be quantized as HSC =
∑
k ~ωk(a†kak + 1/2), and the charge density operator is expressed as

~Q = −iĈ1/2
∑
k

~ψsk

√
~ωk

2
(a†k − ak), (S8)
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where ak (a†k) is the annihilation (creation) operator of mode k. From Eq. (S2), we find that, due to the Josephson

capacitances CJ , the equations of motion of the SQUID chain are nonlinear. In the limit CJ ' 0, the dynamical

equation (S2) reduces to the lumped-element model of an ordinary 1D transmission line [S11]. In this case, the

capacitance matrix is simplified to

Ĉ ' diag[. . . , Cg, Cg, Cg, . . .]. (S9)

Moreover, the eigenfunction ~ψsk can be approximately written as

~ψsk '
√

2

N

(
. . . , sin

kjπ

N
, sin

k(j + 1)π

N
, . . .

)
, 0 6 j 6 N, (S10)

and the charge-density operator at the antinode position in Eq. (S8) is approximately expressed as

Q ' −iCg
∑
k

√
~ωk
Ct

(a†k − ak), (S11)

where Ct = NCg is the total capacitance of the SQUID chain. In fact, to view the whole chain as a conventional 1D

SQUID transmission line (STL), the condition CJ ' 0 is too strong.

In the following, we present the parameter regime where the STL has an approximately linear dispersion relation.

We use the plane-wave ansatz with φ = A exp (iωkt− ikjd0), and by substituting it into Eq. (S2), we obtain [S3, S12]

ωk =
1√
LJCg

√
1− cos (kd0)

CJ

Cg
[1− cos (kd0)] + 1

2

. (S12)

Moreover, we assume that the STL is approximately in the quasi-continuous regime with infinite length L → ∞.

Consequently, one can find that, under the conditions

d0 � λk � L, k � 1

d0

√
Cg
CJ

, (S13)

the dispersion relation is reduced to

ωk0 '
kd0√
LJCg

= kvJ , cg =
Cg
d0
, lJ =

LJ
d0
, (S14)

where ωk0 is the mode frequency without CJ , cg (lJ) represents the capacitance (inductance) per unit length, and

vJ = 1/
√
lJcg is the phase velocity. Under the conditions in Eq. (S14), the capacitance of Josephson junctions CJ

can be neglected, and the wavefunction in Eq. (S2) is the same as that of the discretized lumped-element circuit of a

1D transmission line.

In Table I, we list the parameters employed in our numerical simulations. These parameters are adopted from the

experimental work in Refs. [S3, S7, S12]. In Fig. S2(a), we plot the dispersion relation according to Eqs. (S12) and

(S14), respectively. We find that, in the low-frequency regime ωk/(2π) < 10 GHz, the dispersion is approximately

linear even with CJ = 450Cg. In Fig. S2(b), setting N = 3000, we numerically solve the eigenproblem in Eq. (S7)

and plot the eigenfrequency ratio ωk/ωk0 as a function of Josephson capacitance CJ and mode index k. Note that

the fundamental wavevector is kd = 2π/(Nd0). For nonzero CJ , the mode frequencies will be lower than those with

CJ = 0. The parameter regime within the white curve ωk/ωk0 = 0.9 is where CJ will not have significant effects. The

bandwidth of the deep blue area, where the STL has linear dispersion, becomes narrower when increasing CJ/Cg and

mode index (i.e., higher mode frequency). In the following discussions, we only focus on the parameters regime where

the linear dispersion relation is valid.

Compared to the standard 1D transmission line, the STL has the following advantages: First, the characteristic

impedance of the STL, ZR =
√
lJ/cg, can be much higher, which allows to realize strong coupling between

superconducting atoms and STL modes [S7]. Second, the impedance of each SQUID in the chain is tunable via

the external flux. We can thus control the impedance of the STL via local coils, and the desired dispersion relation

and exotic microwave propagating effects can be conveniently tailored for quantum optics and quantum information

processing. Next, in the linear dispersion regime, we propose how to realize a PCW by periodically modulating the

STL’s impedance.
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FIG. S2. (a) The dispersion relation of the SQUID chain for CJ = 0 and CJ = 450Cg, respectively. In the low-frequency limit

ωk < 10 GHz, the dispersion is approximately linear. (b) The frequency ratio ωk/ωk0 between CJ = 450Cg and CJ = 0 changes

with mode index k and Josephson capacitance CJ . The area delimited by the contour curve ωk/ωk0 = 0.9 is the parameter

regime where the linear dispersion relation is approximately valid. The considered SQUID number is N = 3000.

d0 Cg CJ L0 α0 δα km vJ

1µm 0.4 fF 90 fF 0.2 nH 0.3 0.045 2π × 0.3× 104 m−1 ∼ 106 m/s

TABLE I. The lumped-circuit parameters of the microwave PCW based on a SQUID chain that we employed for numerical

simulations.

II. PHOTONIC CRYSTAL WAVEGUIDES VIA SPATIALLY MODULATING THE IMPEDANCE
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FIG. S3. The parameter L−1
j changes with external flux bias around Φext

0 . The photonic crystal waveguide (PCW) is realized

by periodically modulating the impedance with a bandwidth δα/L0.

As depicted in Fig. (S1), to periodically modulate the STL’s impedance, we consider that the flux in each SQUID

loop is independently controlled by a dc modulator according to the relation

Φj = Φext
0 + δΦf(j), (S15)
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where Φext
0 is the static flux, δΦ is the modulation amplitude, and fj is the position-dependent modulation signals.

The modulation is depicted in Fig. (S3). We assume the STL is working as a microwave PCW, where the modulation

is periodic in space. Then, the Josephson inductance can be written as

1

Lj
' 1

L0
[α0 + δαf(j)] , α0 = cos

(
πΦext

0

Φ0

)
, (S16)

δα = − sin

(
πΦext

0

Φ0

)
πδΦ

Φ0
. (S17)

The inductance term in Eq. (S2) is rewritten as

φj − φj−1

Lj
− φj+1 − φj

Lj+1
=
φj − φj−1

Lj
− φj+1 − φj

Lj
+
φj+1 − φj

Lj
− φj+1 − φj

Lj+1
. (S18)

We assume that the distance d0 between neighboring SQUIDs is much smaller than the wavelength of the field.

Therefore, by replacing jd0 → x, we use quasi-continuous functions to describe the modulation signal and fields.

Consequently, we have

φj(t)→ φ(x, t), f(j) = f(x). (S19)

Moreover, by defining the inductance and capacitance per unit length for the STL

l(x) =
L0

d0

1

α0 + δαf(x)
, cg,J =

Cg,J
d0

, (S20)

Eq. (S18) is rewritten as

φj − φj−1

Lj
− φj+1 − φj

Lj+1
= − ∂

∂x

[
1

l(x)

∂φ(x, t)

∂x

]
d2

0. (S21)

Similarly, the capacitance terms in Eq. (S2) can also be rewritten as a quasi-continuous function

Cgφ̈j + CJ

(
φ̈j − φ̈j−1

)
− CJ

(
φ̈j+1 − φ̈j

)
= Cg

∂2φ(x, t)

∂t2
− CJ

∂2φ(x, t)

∂t2∂x2
d2

0. (S22)

Therefore, in the quasi-continuous regime, Eq. (S2) is written as

cg
∂2φ(x, t)

∂t2
= cJd

2
0

∂4φ(x, t)

∂t2∂x2
+

∂

∂x

[
1

l(x)

∂φ(x, t)

∂x

]
, (S23)

where the Josephson capacitance cJ induces a nonlinear term involving both spatial and temporal differentials. For

simplicity, in our numerical simulations, we first consider the modulation to be on cosine form, i.e.,

1

l(x)
=
d0

L0
[α0 + δα cos(kmx)], (S24)

where km is the modulation wavevector. Consequently, the field operator φ(x, t) is written in terms of a Bloch

expansion:

φ(x, t) = ei(ωlt+kx)uk(x), uk(x) =

n=∞∑
n=−∞

cnke
inkmx, (S25)

where ωl is the eigenfrequency with l the index of the energy bands, uk(x) is a spatially periodic function satisfying

uk(x) = uk(x+ λm), with λm = 2π/km being the period, and cnk is the coefficient of the nth Fourier order for uk(x).

By substituting the wave function in Eq. (S25) into Eq. (S23), we obtain the dispersion relation between ωl(k) and k

by solving the following quadratic eigenvalue problem:[
ω2
l (k)M̂2 + M̂0

]
Û(k) = 0, (S26)
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where

M̂2 = diag
[
. . . ,−cJ(d0)2(k + nkm)

2 − cg, . . .
]
, (S27)

M̂0 =


. . .

. . .
. . . 0 0 0

... Tn−1,n−2 Tn−1,n−1 Tn−1,n 0 0

... 0 Tn,n−1 Tn,n Tn,n+1 0
... 0 0 0

. . .
. . .

 , (S28)

with

Tn,n =
1

l0
(k + nkm)

2
, l0 =

L0

α0d0
, (S29)

and

Tn,n±1 =
δα

2l0

{
(k + (n± 1)km)

2
+ (k + (n± 1)km)km

}
. (S30)

From the formulas for M̂2 and Tn,n, we find that, under the condition

cJ(d0)2(k + nkm)
2 � cg −→ k + nkm �

1

d0

√
cg
cJ
, (S31)

the nonlinear terms due to the Josephson capacitance CJ will not have significant effects. The condition in Eq. (S31) is

similar to the condition for the linear dispersion in Eq. (S13). For the higher Fourier orders (large n) beyond Eq. (S31),

we require that their contributions are much smaller than the lower orders. Numerical calculations indicate that by

adopting small modulation amplitudes δα, the coefficients cnk decrease quickly with Fourier order n. Therefore, the

nonlinear effects due to CJ can be neglected. In our main text, we only consider the lowest band with l = 1. According

to Eqs. (S11) and (S25), the charge-density operator Q can be expressed with the mode operators in the first Brillouin

zone (BZ)

Q(x) ' −iCg
∑
k∈BZ

√
~ωk
Ct

[
a†ke

ikxuk(x)− ake−ikxu∗k(x)
]
. (S32)

The above charge-density operator will be employed for the coupling between the PCW and a superconducting atom.

In Fig. S4(a), employing the parameters listed in Table. I, we plot the band structure for the Josephson-chain

PCW. We find that, even under the condition CJ = 450Cg, the dispersion relations for the 1st and 2nd bands are well

described by the linear approximation with CJ = 0. In the low-frequency limit, we can view the chain as a linear-

dispersion medium by neglecting the Josephson capacitance under the condition in Eq. (S31). In the first Brillouin

zone k ∈ (−0.5km, 0.5km], there are two symmetric bandgaps with width ∆g around k = ±0.5km, which has been

predicted in studies of 1D superconducting PCWs [S13, S14]. The bandgap regime is around ωk/(2π) ' 4 GHz, which

matches with the transition frequency of superconducting atoms. In Fig. S5(a), we plot the amplitudes of the Bloch

wavefunctions |uk(x)| versus x for the modes around the band edge. Figure. S5(b) shows the position-dependent

impedance Z(x) =
√
l(x)/cg (in units of constant impedance Z0 =

√
l0/cg) of the PCW. We find that, for the modes

in the first band, |uk(x)| are highest (lowest) at the impedance dip (peak) positions, and their spatial periods all equal

λm.

In the following, we will discuss the waveguide QED for superconducting atoms interacting with the Josephson

PCW.

III. CHIRAL BOUND STATES INDUCED BY GIANT-ATOM EFFECTS

The conventional interaction between cold atoms and a PCW requires optical trapping of each atom at a single

position with the lowest (or highest) refractive index [S15, S16]. The natural atomic size is much smaller than the
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FIG. S4. (a) The two lowest bands for the PCW via spatial modulation of the SQUID inductance for CJ = 450Cg and CJ = 0,

respectively. Parameters are taken from Table I. Around k = ±0.5km, there are two symmetric bandgaps with width ∆g. (b)

Zoom-in around the bandgap regime. The solid curve is a quadratic fit for the dispersion relation. In our discussions, the

considered atom frequency lies inside the gap with a detuning δ0 = 0.1∆g.
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FIG. S5. (a) Amplitudes of the Bloch wavefunctions |uk(x)| as a function of x for the modes of the lowest band around the

band edge. The impedance-modulating signal is depicted in (b). The PCW parameters are adopted from Table I.

length of the PCW unit cell. In solid-state SQC systems, these limitations do not exist. As shown in Fig. 1 of the

main text, we consider a superconducting giant atom interacting with the PCW at two positions x± via capacitances

Cg±J . The following discussion takes the charge qubit as an example [S11], but can also be applied for the transmon

qubit [S17, S18]. The Hamiltonian for the superconducting atom is expressed as

Hq = 4EC(n̂− ng)2 − 2EqJ cos

(
πΦq

Φ0

)
cosφ, (S33)

where EC = e2/(2CΣ) is the charging energy of the atom’s junctions, CΣ = CqJ +Cg−J +Cg+J , with CqJ the Josephson

capacitance, and EqJ is the Josephson energy of one junction in the atom. Note that Φq is the control flux through the
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split junction’s loop. This flux is employed for tuning the atom’s transition frequency. Around the charge degeneracy

point ng = 1/2, the above Hamiltonian can be quantized in a qubit basis as

Hq = −EqJ cos

(
πΦq

Φ0

)
(|0〉〈1|+ |1〉〈0|)− 4ECδng(|1〉〈1| − |0〉〈0|). (S34)

The offset-charge deviation δng is written as

δng =
∑
±

Q(x±)

Cg

Cg±J
2e

= −i
∑
±

∑
k∈BZ

Cg±J
2e

√
~ωk
Ct

[
a†ke

ikx±uk(x±)− ake−ikx±u∗k(x±)
]
, (S35)

where Q(x±) is the charge-density operator at two coupling positions x± described by Eq, (S32). In the basis

|e〉 =
|1〉 − |0〉√

2
, |g〉 =

|1〉+ |0〉√
2

, (S36)

the Hamiltonian for this coupled circuit-QED system is written as

H0 =
1

2
~ωqσz +

∑
k

~ωka†kak + i
∑
k

~
(
gka
†
k − g

∗
kak

)
(σ+ + σ−), (S37)

where

ωq =
2EqJ
~

cos

(
πΦq

Φ0

)
(S38)

is the atomic transition frequency. The giant-atom coupling strength with mode k is

gk =
∑
i=±

gike
ikxiuk(xi), g±k =

e

~
Cg±J
CΣ

√
~ω(k)

Ct
' e

~
Cg±J
CΣ

√
~ωq
Ct

, (S39)

where the mode frequency ω(k) is approximately replaced by the qubit frequency ωq. Consequently, g±k will

approximately become independent of k. Note that Eq. (S39) is derived by assuming the impedance of the STL,

ZJ =
√
LJ/Cg is much smaller than the impedances of the coupling capacitance and the superconducting atom, i.e.,

ZJ � max{(ωqCgJ)−1, Zq}, (S40)

where Zq is the characteristic impedance of the atom, which can be estimated from its lumped-circuit model [S1].

In this case, we can view the STL as a low-impedance environment. However, compared with the conventional

transmission line with character impedance Z0 ' 50 Ω, ZJ can be much larger, and enables the realization of strong

coupling between a superconducting atom and STL modes [S2, S7]. For example, employing the parameters in Table I,

the estimated STL impedance is about ZJ ' 550 Ω. When the characteristic impedances of the superconducting

atom and the STL match up with ZJ ∼ Zq, the system enters into the overdamped regime, with the coupling

strength reaching its maximum value [S7]. Consequently, the coupling form in Eq. (S39) will be significantly modified.

Therefore, to satisfy the impedance relation in Eq. (S40), the coupling capacitance should be smaller than that

employed in the standard 1D transmission line, together with the atom working as a high-impedance circuit element.

As shown in Fig. S4, we assume that the qubit transition frequency ωq is close to the first band, and the detuning

δ0 from the band edge is much smaller than the bandgap width ∆g. Therefore we can approximately consider only

the contributions of the first band. In our discussions here, we set δ0 ' 0.1∆g. In a frame rotating with ωq, adopting

the rotating-wave approximation, the Hamiltonian in Eq. (S37) becomes (setting ~ = 1)

Hint =
∑
k∈BZ

∆k(a†kak) +
∑
k∈BZ

(gka
†
kσ− + g∗kakσ+), (S41)

where ∆k = ωk − ωq is the frequency detuning. We first define the spatial field operator expanded in terms of the

Bloch wavefunctions

φ†(x) =
1√
L

∑
k∈BZ

a†ke
ikxuk(x), (S42)
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where φ†(x) [φ(x)] represents creating (annihilating) a photon at position x and satisfies [φ(x), φ†(x′)] = δ(x−x′). The

bound state of the system is the eigenstate for Hint with eigenenergy εb, i.e., Hint|ψb〉 = εb|ψb〉. In the single-excitation

subspace, |ψb〉 is

|ψb〉 = cos(θ)|e, 0〉+ sin θ
∑
k

ck|g, 1k〉, (S43)

The solution for the bound state reads

ck =
gk

tan θ(εb −∆k)
, (S44)

εb =
∑
k∈BZ

|gk|2

(εb −∆k)
, (S45)

tan θ =
∑
k∈BZ

|gk|2

(εb −∆k)2
. (S46)

We consider the conventional case where most of the energy of the excitation is localized in the atom, while the

photonic modes are weakly populated [S13, S19]. In this case, cos(θ) ' 1 and εb ' 0. Consequently, the wavefunction

φb(x) of the photonic part in the PCW is

φb(x) = sin θ〈x|
∑
k∈BZ

cka
†
k|0〉

=
∑
k∈BZ

ck sin θ√
L

∫
dx′〈x|e−ikx

′
u∗k(x′)φ†(x′)|0〉. (S47)

By substituting ck [Eq. (S44)] into Eq. (S47), we obtain

φb(x) '
√
L

2π

∫
k∈BZ

gku
∗
k(x)e−ikx

εb −∆k
dk, (S48)

where the integration is limited to the first BZ. As shown in Fig. 2(c) in the main text, around the band edge

k0 ' km/2, the real part of gk is approximately constant. However, the imaginary part is not constant, but changes

with δk = k − k0 rapidly and linearly, which is completely different from the small-atom case. Therefore, we should

write

gk ' (A+ iBδk), (S49)

where A is the average of the real part for gk around k0 and B is the slope of the imaginary part of gk changing with

k. For giant atoms, B is non-zero. Around the band edge of the PCW, we use the effective-mass approximation by

expanding the dispersion relation as a parabolic function [S19, S20]. As depicted in Fig. S4(b), the dispersion relation

of the PCW is well described by a quadratic function, i.e., ∆k = −δ0 − αm(k − k0)2.

Finally, we obtain

φb(x) ' Am
∑
±

∫ ∞
−∞

dδk

 C±e
−iδkx

√
2π(
√

δ0
αm
∓ iδk)

, (S50)

Am =

√
Lu∗k0(x)e−ik0x

2
√

2παmδ0
, (S51)

where Am is the amplitude for the bound state’s photonic part, and C± are determined by the behavior of the

imaginary and real parts of gk:

C± = A±B
√

δ0
αm

. (S52)
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By integrating Eq. (S50), we obtain

φb(x) = Am[C−Θ(−x) + C+Θ(x)] exp

(
− |x|
Leff

)
, (S53)

where Leff =
√
αm/δ0 is the length scale determining the exponential decay of the localized bound state with distance,

which is similar to previous studies [S19, S21, S22]. Moreover, during the derivation of Eq. (S53) we assume |x+−x−| <
λm � Leff. When considering the bound-state distribution, we have x+ ' x− = 0. Therefore, the photonic energy

localized between two coupling points can be neglected.

IV. THE INTERFERENCE MECHANISM OF THE BOUND STATES IN GIANT ATOMS
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FIG. S6. By setting {x−, x+} = {0, 0.5λm} and g+k ' 3.4g−k , the bound-state components (a) φ−b , (b) φ+
b , (c) the bound state

φb, and (d) the phase difference δθ(x), change with position x. The PCW parameters are adopted from Fig. S4.

When considering a giant atom, the bound-state distribution in Eq. (S53) is significantly affected by the interference

effects between different coupling points. To verify this, we can rewrite the bound state in Eq. (S48) as

φb(x) = φ+
b (x) + φ−b (x),

φ±b (x) '
√
L

2π

∫
k∈BZ

g±k e
ikx±uk(x±)u∗k(x)e−ikx

εb −∆k
dk = A±b (x)eiθ±(x), (S54)

where φ±b (x) are the bound states induced by a small atom coupling at the single position x±, and A±(x) [θ±(x)] are

their amplitudes (phases), which are both position-dependent. Equation (S54) indicates that the total bound state

φb(x) is the result of interference effects, and is determined by the phase difference δθ(x) = θ+(x)− θ−(x).

In Fig. 2 of the main text, by considering x− (x+) at the lowest (highest) impedance position (i.e., {x−, x+} =

{0, 0.5λm}), we discuss the bound-state behavior affected by the interference effects. In numerical discussions, the

PCW parameters are adopted from the experimental data in Table I, and the atom frequency is assumed to be
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inside the gap with a detuning δ0 ' 0.1∆g. As depicted in Fig. S6(a, b), both φ+
b (x) and φ−b (x) show no chirality.

However, their phase difference is approximately described by δθ ' πΘ(x), with Θ(x) the Heaviside step function [see

Figure S6(d)], indicating that the interference is constructive (destructive) in the direction x < 0 (x > 0). By setting

g+
k ' 3.4g−k , we find that A+(x) ' A−(x). Therefore, the bound state of the giant atom is strongly localized in the left

part. On the right-hand side, the bound state is mostly cancelled by the destructive interference [see Figure S6(d)].

Note that the oscillating amplitudes of the bound states are due to the periodic Bloch wavefunctions. As shown in

Eq. (S48), all the periodic modes uk(x) around the band edge will contribute to the bound states φb(x) and φ±b (x).

According to Fig. S5, uk(x) has the same period as λm. Therefore, the amplitude of the bound state rapidly oscillates

on the scale of the decay length Leff, which is much larger than the length of the PCW unit cell. For both giant and

small atoms, the distance between two peaks in the bound states is also equal to λm (see Fig. S6).
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FIG. S7. By setting {x−, x+} = {0, 0.75λm} and g−k = g+k , the bound-state components (a) φ−b , (b) φ+
b , (c) the bound state

φb, and (d) the phase difference δθ(x), change with the position x. The PCW parameters are adopted from Fig. S4.

When considering the second coupling point shifted to x+ = 0.75λm, we find another interference pattern affecting

the chirality of the bound state. In Fig. S7, we plot φ±b (x), φb(x) and δθ as a function of x. The bound state

φ+
b (x) is slightly chiral due to breaking the mirror symmetry of the PCW [see Fig. S7(b)]. However, the chirality

is not large. As shown in Fig. S7(d), the phase difference δθ is approximately equal to π when |x| � 0. Therefore,

the interference is always destructive. The amplitude for the bound state φb(x) of the giant atom is approximately

Ab(x) = A−b (x)−A+
b (x). Under the condition g+

k ' g
−
k , we have the relations

Ab(x) = A−b (x)−A+
b (x) ' 0, x > 0,

Ab(−x)� Ab(x) ' 0, x > 0, (S55)

which indicate that the bound state is strongly localized on the left side due to the quantum interference. In this

case, the quantum interference effect significantly enhances the bound-state chirality.

As shown in Fig. S7, due to the destructive interference effects, the photonic energy of the bound state φb(x) is

suppressed and smaller than φ±b (x). Similar to optical interference, we can define the interference visibility of the
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bound state as

W =

∫∞
−∞ dx|φb(x)|2∫∞

−∞ dx|φ+
b (x)|2 +

∫∞
−∞ dx|φ−b (x)|2

, (S56)

from which one finds that W = 0 (W = 2) indicates that the interference is maximally destructive (constructive),

and the bound state vanishes (is enhanced).

In Fig. S8(a), setting x− = 0 and g−k = g+
k , we plot the interference visibility W as a function of x+. We find

another unconventional behaviour of the bound state: when the separation distance satisfies

dg = x+ − x− = (2N + 1)λm

with N integer, W ' 0, indicating that the bound state is completely cancelled. The mechanism for the disappearance

of the bound state can be understood as follows: only the modes around the band edge contribute significantly to the

bound state. In the coupling formula in Eq. (S39), we approximately replace k with km/2. Therefore, for mode k, we

can write

eikx+uk(x+) = eik(x−+dg)uk(x− + dg) '

{
−eikx−uk(x−), dg = (2N + 1)λm,

+eikx−uk(x−), dg = 2Nλm,
(S57)

where we have employed the properties of the Bloch wavefunctions uk(x− + Nλm) = uk(x−), and kmλm/2 = π.

Equation (S57) indicates that, when dg = (2N+1)λm, the interference between φ±b (x) will cancel the two contributions

completely, leading to φb(x) ' 0, i.e., the bound state vanishes completely. Conversely, at positions dg = 2Nλm the

interference is maximally constructive with W ' 2.
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FIG. S8. (a) Setting x− = 0 and g−k = g+k , the interference visibility W changes with the second coupling position x+. The

PCW parameters are adopted from Fig. S4. (b) The bound-state chirality changes with the coupling position of a small atom.

If a small SQC atom does not couple to the lowest (or highest) impedance position, it can see different semi-infinite

waveguide structures in different directions if we split the PCW into two halves at the single coupling point. As shown

in Fig. S7(b), the bound state of a small atom already shows chiral behaviour given that the coupling position is at

x+ = 0.75λm. In Fig. S8(b), considering a small SQC atom, we plot the chirality Cb [defined in Eq. (8) in the main

text] as a function of the coupling position, and find that the chirality changes rapidly around the highest impedance

position x = 0.5λm. The chirality for the small atom is not due to the quantum interference effects discussed for

giant atoms. In a narrow regime x ∈ [0.43λm, 0.57λm] (grey area), the bound state varies from close to maximally

left to close to maximally right chirality, indicating that the coupling position has to be fixed accurately to achieve a

certain chirality. In the giant-atom case, as depicted in Fig. 3 of the main text, the opposite chiral relations occur only

when x+ is located in the opposite direction of x−, with a much larger separation distance. Moreover, in small-atom

systems, the chirality cannot be tuned by changing the coupling strength, while in giant-atom systems, the chirality
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can be continuously changed by modulating the relative giant-atom coupling strengths [see Fig 3(b) in the main text].

In conclusion, compared to the small atom, the chirality in giant atom system is due to a different mechanism, and

is more flexible in experimental implementations.

V. CHIRAL DIPOLE-DIPOLE INTERACTIONS MEDIATED BY VIRTUAL PHOTONS

A. Chiral dipole-dipole interactions

Here we derive the chiral dipole-dipole interactions between multiple atoms induced by the giant-atom effects. We

assume that all atomic transition frequencies are identical, ωq. In a frame rotating with ωq, the Hamiltonian of the

whole system reads

Hm
0 =

∑
k∈BZ

∆ka
†
kak +

∑
i

∑
k∈BZ

(gkiσ
−
i a
†
k + H.c.), (S58)

where gki is given in Eq. (S39). As depicted in Fig. 4 of the main text, we first consider the intracell coupling

(i = A,B). Since the modes ±k are degenerate with ω(k) = ω(−k), we restrict 0 < k+ < km/2 in the positive BZ.

The coupling strengths satisfy g∗ki = g−ki. The atomic operators can be written in the symmetric and antisymmetric

forms as S± = (σ−A ± σ
−
B)/
√

2. Moreover, we define the supermode operator of the bath modes as

ak,± =
(g∗kA ± g∗kB)ak + (gkA ± gkB)a−k√

2|gkA ± gkB |
, (S59)

where the commutation relation satisfies

[ak,β , ak′,β′ ] = δkk′δββ′δ(|gkA| − |gkB |). (S60)

which indicates that, under the condition |gkA| = |gkB |, the symmetric and antisymmetric operators S± are coupled to

independent baths ak,±, and their evolutions are separable [S23]. Therefore, the interaction Hamiltonian in Eq. (S58)

is rewritten as

Hm
0 =

∑
k+,β=±

[
∆ka

†
k,βak,β +Gβk(Sβa

†
k,β + H.c.)

]
, (S61)

where

G±k = |gkA ± gkB | (S62)

are the coupling strengths between S± and the supermodes ak,±. Note that ∆k = ωk − ωq in Eq. (S61) is kept

unchanged but only limited by k+ > 0. We denote the initial states as |Ψ±〉 = S±|g, g, 0〉, where |g(e)〉 and |0〉
represent the qubit in the ground (excited) state and the PCW in the vacuum state, respectively. Using standard

resolvent-operator techniques [S24], the probability amplitudes C±(t) (t > 0) that the whole system remains in |Ψ±〉
are derived as

C±(t) =
i

2π

∫ ∞
−∞

dEG±(E + i0+)e−iEt, (S63)

where G±(z) are the retarded Green functions [S24], and z = E+ i0+ is Fourier frequency above the real axis. Given

that |gkA| = |gkB |, G±(z) are expressed in simple analytical forms as

G±(z) =
1

z − Σe(z)∓ ΣAB(z)
, (S64)

Σe(z) =

∫ k0

0

dk
2(|gkA|2 + |gkB |2)

z −∆k
, (S65)

ΣAB(z) =

∫ k0

0

dk
2<(gkAg

∗
kB)

z −∆k
, (S66)
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where Σe(z)∓ΣAB(z) is the atomic self-energy that describes the coupling effect between the atoms and PCW modes.

In our discussions, we always assume that |gkA| ' |gkB |. When the coupling strengths |gkA| and |gkB | differ by a lot,

the orthogonality condition of the modes ak,± in Eq. (S60) is not valid [S23]. Consequently, there is a tunnelling term

(a†k,+ak,− + H.c.) between two baths, which describes the entangled evolutions between states |Ψ±〉. In this case, the

energy denominators for the Green functions G±(z) become much more complicated.

By assuming that the giant-atom couplings are sufficiently weak [S24], the standard Born-Markov approximation

is valid, and we can replace E as the atom frequency. We then approximately obtain

Re[Σe(z)] ' Re[Σe(ωq + i0+)] = δqs (S67)

Re[ΣAB(z)] ' Re[ΣAB(ωq + i0+)] = JAB , (S68)

where the imaginary parts of Σe(z) and ΣAB(z), describe the individual and collective decay of the atoms, respectively.

Since the atoms interact with the PCW bandgap, in next section we show that the decay effects are strongly suppressed

with a large detuning δ0. Note that δqs represents the vacuum Stark shift of the atoms due to coupling with the PCW

modes, which is the same for states |Ψ±〉 [see Fig. S10(a)]. The important quantity is JAB , the real part of ΣAB(z),

which is in fact equal to the Rabi frequency of the coupling between states |g, e, 0〉 and |e, g, 0〉, and describes the

coherent dipole-dipole coupling mediated by virtual photons in the PCW [S19, S23]. As discussed in the main text,

even when the atoms are equally spaced, due to giant-atom-induced interference effects, the coupling strengths show

chiral preference with JAB 6= JBA.

Finally, we discuss the effects of different kinds of impedance modulation signals on our proposal. We consider the

following square and cosine modulation signals:

1

l(x)
=

{
d0
L0

[α0 + δα cos(kmx)], cosine wave,
d0
L0
{α0 + δα sgn[cos(kmx)]} square wave,

(S69)

where sgn is the signum function. We plot the chirality Cb versus x+ in Fig. S9(a). In spite of the quite different

shapes of the modulation signals, their chiralities remain nearly the same. In Fig. S9(b), we show the dipole-dipole

interaction strengths JAB and JBA as a function of the separation Dq of two atoms. Relative to the case for the

cosine modulation, the coupling strengths decay a little faster for the square-wave modulation due to its smaller decay

length Leff. However, by comparing JAB and JBA, we can infer that the dipole-dipole interactions remain chiral for

both impedance modulations. Therefore, our proposal is insensitive to the shape of modulation signals.
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FIG. S9. (a) Chirality Cb as a function of x+ for square- and cosine-wave modulations. The parameters used are the same as

those in Fig. 3(a) of the main text. (b) Dipole-dipole interaction strengths JAB and JBA as a function of separation Dq for the

two modulations. Parameters are adopted from Fig. 5(a) of the main text.
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B. The decay effects of multiple atoms interacting with PCW

We now show that, with a large detuning δ0, the atomic decay to the PCW can be effectively suppressed, and the

first-order iterative results can well describe the dipole-dipole interactions between atoms. We start from Eq. (S63),

which describes the probability amplitudes C±(t) (t > 0) for states |Ψ±〉. It can be exactly derived via the inverse

Laplace transform. To go beyond the first-order iterative approximation (i.e., assuming z ' ωq+ i0+), it is convenient

to calculate the Laplace transform by using contour integral in the lower half-plane of the complex plane [see

Fig. S10(b)]. To proceed, we need to calculate the poles of the Green function [S24, S25]

z − Σe(z)∓ ΣAB(z) = 0, (S70)

which is a transcendental iterative equation, and cannot be analytically solved. As depicted in Fig. S10(a), and

explained in previous section, Σe(z) has the same value for both G±(z), which is just the Stark shift δqs. Therefore,

we can simply assume Σe(z) ' δqs as a constant. By replacing z − δqs → z, we have

z ∓ ΣAB(z) = 0, ΣAB(z) ' L

2π

∫ 0

−k0
dδk

2<(gkAg
∗
kB)

z + δ′0 + αmδk2
, (S71)

where δ′0 = δ0 + δqs is the renormalized detuning. When the coupling gkA and gkB are sufficiently weak, we have

δ′0 ' δ0. Since only the modes around the band edge have significant contributions to the system’s dynamics, the

couplings can be approximate as gkAe
−ikxA ' gkBe−ikxB ' gk0. We note that the lower bound of the integral can be

extended to −δk0 ' −∞. With these approximations, ΣAB(z) can be written as

ΣAB(z) ' πg2
0

z + δ′0

L

2πLeff
e
−| Dq

Leff
|
,

√
αm
z + δ′0

= Leff, Dq = xA − xB , (S72)

where 2π/L = dk is the mode discretization space of the PCW. Note that z ∓ ΣAB(z) = 0 is still a transcendental

equations. The exponential term in ΣAB(z) indicates that the qubit-qubit interactions decays as their separation

distance Dq increases. This analytical result matches the numerical ones, as shown in Fig. S9(b). By taking the first-

order iterative results with z ' ωq = 0 (note that we work in the rotating frame at the atomic transition frequency),

the effective decay length have the same formula in Eq. (S53).

(a) (b)

BC

FIG. S10. (a) The energy-level diagram for two atoms interacting with the first PCW band. The detuning to the band edge of

|Ψ±〉 are slightly renormalized as δ′0 due to the Stark shift. The splitting between |Ψ+〉 and |Ψ−〉 results from the dipole-dipole

interaction JAB . The decay rate is denoted as Γc. (b) Contour integral used in the calculation C+(t). Both the inside real

poles z0 and complex poles z1 contribute to the dynamics. The branch cut (BC) leads to apparent effects when δ′0 ' 0, which

can be neglected in our discussion.

For simplicity, we consider the case where Dq � Leff, i.e., the two atoms are close enough compared to the spatical
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FIG. S11. (a) The dipole-dipole coupling strength JAB and the atomic decay rate Γc versus detuning δ0. (b) The Residues

|Res(zi)| of the coherent coupling and decay terms for the evolution C+(t) versus detuning δ′0.

decay length. ΣAB(z) is now simplified as

ΣAB(z) ' πg2
0√

αm (z + δ′0)

L

2π
. (S73)

As depicted in Fig. S10(a), the symmetric Rabi splittings between |Ψ±〉 are due to the coupling between two atoms.

Therefore, we can just take |Ψ+〉 to calculate JAB and the decay Γc. As depicted in Fig. S10(b), by solving

z − ΣAB(z) = 0, (S74)

we obtain two poles for the green funtion G+(z), where z0 (on the real axis) and z1 (a complex pole with Im(z1) < 0)

are both inside the contour for C+(t). As discussed in Refs. [S23, S25, S26], since ΣAB(z) is a multivalued function

due to the square root term
√
z + δ′0, at point z = −δ′0 one has to introduce branch cuts [BC, red dashed arrows

in Fig. S10(b)]. This branch cut describes a non-exponential decay process. However, its contribution only plays an

important role when the atom frequency approaches the band edge (i.e., δ′0 ' 0) [S23]. Thus, in our discussions, we

can neglect this effect. Consequently, the evolution can be derived via the residue theorem

C+(t) ' Res(z0)e−iz0t + Res(z1)e−iz1t, (S75)

where Res(zi) are residues of the Green function G+(z)

Res(zi) =
1

1− ∂zΣAB(z)

∣∣∣
z=zi

, i = 0, 1. (S76)

For a small detuning δ′0, the physical processes are now clear: |Im(z1)| = Γc is the atomic decay rate due to coupling

to the waveguide, and z0 just contributes to a dynamical phase due to the Rabi splitting JAB ' z0 between two

atoms (without decoherence). The dynamical evolution is described as a fractional decay, where the atomic excitation

is partly leaked into the PCW, and the other part is localized [S23]. The contributions of these two processes are
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evaluated from their residues |Res(zi)|. Since the term with z1 is unstable under decay, in the long-time limit, the

probability that the atoms remain in the superposition state is [S25, S26]

|C(t→∞)|2 ' |Res(z0)|2. (S77)

Given that |Res(z1)| ' 0 and |Res(z0)| ' 1, the atomic energy leaking into the waveguide approximately vanishes,

and the interaction between two atoms is purely coherent. In this case, two atoms remain in the initial superposition

state |Ψ+〉 with |C(t =∞)|2 ' 1.

To evaluate JAB and Γc, we adopt the experimentally feasible parameters listed in Table I. As depicted in Fig. S4,

the PCW gap is about ∆g/(2π) = 800 MHz. Therefore, we set δ′0/(2π) ∼ 0.1∆g = 80 MHz in our discussion.

Moreover, the coupling is set as g0 = 0.8 MHz with a mode discretization space dk = 10−4km. In Fig. S11(a), we plot

the coupling strength JAB ' z0, and the decay rate Γc ' |Im(z1)| versus δ′0. Their contribution weights |Res(zi)| are

plotted in Fig. S11(b). We thus infer that, for a large detuning, JAB � Γc and |Res(z0)| ' 1� |Res(z1)|. Note that

|Res(z0)+Res(z1)| 6= 1 since we neglect the branch cut contribution [S23]. After δ′0/(2π) > 30 MHz, the complex pole

z1 disappears with Γc = 0 and |Res(z0)| ' 1, indicating that the coherent dipole-dipole coupling JAB contributed

by z0 dominates the evolution, while the energy leaking to the PCW takes little effect. Additionally, as shown in

Fig. S11(a), the dipole-dipole coupling is about JAB/(2π) ' 8 MHz, which is strong enough in circuit-QED for

quantum coherent control. Since JAB � δ′0, it is also reasonable to adopt the first-order approximation in Eq. (S68),

to calculate JAB by neglecting the decay effects.

C. Topological phases with giant atoms

The chiral dipole-dipole interactions in Fig. 4 of the main text provide an ideal platform to simulate the Su-

Schrieffer-Heeger (SSH model), which is described by a one-dimensional Hamiltonian with nontrivial topology [S27].

The Hamiltonian for the atomic chain reads

Hqc =
∑
i

(JABσ
−
Aiσ

+
Bi + JBAσ

−
Biσ

+
Ai+1) + H.c., (S78)

whose bulk spectrum is gapped given that JAB 6= JBA [S28]. The relation between JAB and JBA determines whether

the winding number is a nonzero integer or not [S29–S32]. The two lowest energy bands of Hqc are characterized by

the topological invariant, i.e., the Zak phase Z, and the corresponding relation is [S28]

JAB > JBA, Z = 0, trivial insulator, (S79a)

JAB < JBA, Z = π, nontrivial insulator, (S79b)

where the critical point JAB = JBA corresponds to the topological phase-transition point [S32]. In the topologically

nontrivial phase with JAB < JBA, there are zero-energy edge modes located at two ends of the finite chain, whose

energy spectra are isolated and topologically protected from the bulk modes. In the topologically trivial phase with

JAB > JBA, such edge modes do not exist. In experiments, the topological invariant is identified by the topological

phase-transition process [S32–S35]. Realizing the transition between the topologically trivial and nontrivial phase of

the SSH model requires tuning all coupling strengths simultaneously, as well as reversing the relation between JAB
and JBA, which is very challenging in experiments [S31, S32].

As shown in Fig. 5(b) of the main text, such a topological transition can be easily realized by shifting the modulation

signal of the PCW with a distance ds. The impedance of the Josephson PCW is modulated via external flux signals

instead of being fabricated with unchangeable parameters. Shifting the PCW modulation signal will change the

interference relations and the bound-state chirality. As depicted in Fig. 4(a,b) of the main text, by shifting the

programmable modulating signal a certain distance ds, the highest-impedance positions will also be moved. The phase

transition point is at ds = 0.25λm, around which JAB (JBA) decreases (increases) linearly with ds. By changing the

flux Φq through each atom’s split loop, the qubit frequency can also be modulated in time [S11].
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We can map the SSH chain to the tight-binding Rice-Mele (RM) model [S33–S35]:

Hqc =
∑
i

[
JAB(t)σ−Aiσ

+
Bi + JBA(t)σ−Biσ

+
Ai+1 + h.c.

]
+
∑
i

∆q(t)(σ
z
Ai − σzBi). (S80)

In Fig. 6(a) of the main text, the degenerate point of the RM model is at {JBA−JAB ,∆q} = {0, 0}, which is also the

phase-transition point of the SSH model. As discussed in Refs. [S33–S35], all the adiabatic quantum pump trajectories

which encircle the degeneracy point are topologically equivalent, and robust to disorder and perturbations.

In our proposal, the coupling difference JAB − JBA linearly depends on the signal shifting the distance ds. In

experiments, one can adiabatically modulate ds back and forth in cosine form. Moreover, the qubit frequencies can

be tuned in the sine form. Therefore, we can assume

JAB(t) = 1− δα cos

(
2πt

T

)
, JBA(t) = 1 + δα cos

(
2πt

T

)
, ∆q(t) = Ωp sin

(
2πt

T

)
. (S81)

As depicted in Fig. 3 in the main text, the maximum chirality of the bound state is about 0.95, indicating that

JAB or JBA cannot be exactly zero. However, the topological pumping processes encircling the degeneracy point

{JBA − JAB ,∆q} = {0, 0} are topologically equivalent [see Fig. 6(b) in the main text], and robust to disorder and

perturbations. Therefore, we just require JBA − JAB (rather than JAB and JBA) to vary across zero. In Fig. 6(b)

of the main text, by assuming an SSH chain with site number N = 12, and setting the parameters as: δα = 0.9,

Ωp = 0.3, and T = 100, we plot the evolution of an initial excitation localized at the first site on the left edge. The

minimum values for JAB and JBA are nonzero and equal to 0.1. As depicted in Fig. 6(b), the excitation is transferred

to the right edge state at the end of each pump circle (without being disturbed by a nonzero coupling strength), and

this adiabatic process is topologically protected.
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