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SUPPLEMENTAL MATERIAL

In this Supplemental Material, we first present more details on realizing the mechanical parametric am-
plification (MPA) through modulating the spring constant of the cantilever with a time-dependent pump
in this setup. Second, we derive the total Hamiltonian of this hybrid system and discuss the basic idea
of enhancing the spin-phonon and spin-spin coupling at the single quantum level. Meanwhile, we show
detailed descriptions and discussions on the validity of the effective Rabi model in this work. We also
discuss one potential strategy for engineering the effective dissipation rate of the mechanical mode. Third,
we discuss two specific applications of the spin-mechanical setup with the proposed method, i.e., adiabati-
cally preparing Schrödinger cat states and entangling multiple separated NV spins via exchanging virtual
phonons. Finally, we present some discussions on applying the basic idea to enhance the strain coupling
between the NV spins and the diamond nanoresonator.

Realizing MPA through modulating the spring constant

In this scheme, in order to realize MPA, we apply the periodic drive to modulate the spring constant of the cantilever.
This can be accomplished by positioning an electrode near the lower surface of the cantilever and applying a tunable
time-varying voltage. As shown in Fig. 1(a) in the main text, the electrode materials are homogeneously coated on
the lower surface of the cantilever, and another electrode plate with the tunable oscillating pump is placed just under
the cantilever. The Hamiltonian of this mechanical system with the time-dependent spring constant is

Ĥmec =
p̂2
z

2M
+

1

2
k(t)ẑ2 =

p̂2
z

2M
+

1

2
k0ẑ

2 +
1

2
kr(t)ẑ

2. (S1)

The gradient of the electrostatic force from the electrode has the effect of modifying the spring constant according to
k(t) = k0 + kr(t), with k0 = ω2

mM the unperturbed fundamental spring constant and the time-varying pump item

kr(t) ≡ ∂2(CrV
2)/(2∂ẑ2) = ∂Fe/∂ẑ = ∆k cos(2ωpt). (S2)

Here, Fe = ∂(CrV
2)/(2∂ẑ) is the tunable electrostatic force exerted on the cantilever by the electrode, ẑ is the

cantilever displacement, ∆k is the variation of the spring constant, and 2ωp is the pump frequency. Therefore, these
two electrode plates form a general parallel-plate capacitor, and its capacitance is Cr = εS/(d + ẑ). Here, ε ≡ ε0εr
is the permittivity, ε0 and εr are the vacuum and the relative permittivity, respectively, S is the effective area, and
(d + ẑ) is the distance between the two plates. Here we assume the voltage V = V0 + Vp cos 2ωpt with V0 > Vp.
Substituting this into (S2) and keeping only the 2ωp item, we can obtain the time-varying spring constant

kr(t) '
2V0VpεS

d2
× cos 2ωpt. (S3)

Defining the displacement operator ẑ = zzpf(â
† + â) with the zero field fluctuation zzpf =

√
~/2Mωm, we can

quantize the Hamiltonian of the cantilever Ĥmec (~ = 1),

Ĥmec = ωmâ
†â− Ωp cos(2ωpt)(â

† + â)2, (S4)

where ωm =
√
k0/M is the fundamental frequency, and Ωp = −∆kz2

zpf/2 is the nonlinear drive amplitude. As a
result, utilizing this method, we obtain the second-order nonlinear drive through modulating the spring constant in
time. As illustrated in Fig. S1, we plot this nonlinear amplitude Ωp varying with the distance d between this two
electrode plates.

Note that we can tune the spring constant of this mechanical resonator through modifying V , ε, S, and d. Therefore,
we can assume that ∆k is a time-independent constant (∂t∆k = 0) for the case of exponentially enhancing the spin-
phonon and spin-spin couplings in this spin-mechanical system. On the other hand, to ensure the adiabaticity of this
dynamical process and to accomplish the adiabatic preparation of the Schrödinger cat state, we can also assume that
∆k(t) is a slowly time-varying parameter (which means ∂t∆k ≈ 0). For these two different cases, we will make specific
discussions in the following sections.
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FIG. S1. (Color online) The pump amplitude Ωp varying with the distance d between the cantilever’s lower surface and the
electrode plate. The parameters are set as: the static voltage V0 = 10 V , the oscillating voltage Vp = 2 V , the zero field
fluctuation zzpf ∼ 2.14× 10−13m, and the parallel-plate effective area S ∼ 1.0 µm× 0.1 µm.

The Hamiltonian for this hybrid system

The motion of the cantilever attached with the magnet tip produces the time-dependent gradient magnetic field
~B(t) = ~B cosωmt at the corresponding NV spin, with ~B = (Bx, By, Bz) the gradient magnetic field vectors and the
cantilever’s fundamental frequency ωm. Because ωm is much smaller than the energy transition frequency (ωm �
D± δ/2), we can ignore the far-off resonant interactions between the NV spin and the gradient magnetic fields along
the x and y directions. In the rotating frame at the frequency ωm, the Hamiltonian for describing the magnetic
interaction between the mechanical mode and the single NV center is

Ĥint = µBgeGmẑŜz = λ0(â† + â)Ŝz, (S5)

where λ0 = µBgeGmzzpf is the magnetic coupling strength.
Then we apply the dichromatic microwave classical fields B±x (t) (with frequencies ω+ and ω−) polarized in the x

direction to drive the transitions between the states |0〉 and | ± 1〉. The Hamiltonian for describing the single NV
center driven by the dichromatic microwave fields is ĤNV = DŜ2

z + 1
2δŜz +µBge(B

+
x (t) +B−x (t))Ŝx, with the classical

periodic driving fields B±x (t) = B±0 cos(ω±t + φ±). For a single NV center, we can obtain the Hamiltonian in the
rotating frame with the microwave frequencies ω±,

ĤNV =
∑
j=±
−∆j |j〉〈j|+

Ωj
2

(|0〉〈j|+ |j〉〈0|), (S6)

where ∆± ≡ |D − ω± ± δ/2| and Ω± ≡ geµBB
±
0 /
√

2. For simplicity, we set ∆± = ∆ and Ω± = Ω in the following
discussions. The Hamiltonian (S6) couples the state |0〉 to a “bright” state |b〉 = (|+ 1〉+ |−1〉)/

√
2, while the “dark”

state |d〉 = (| + 1〉 − | − 1〉)/
√

2 is decoupled. The resulting eigenbasis of ĤNV is therefore given by |d〉 and the two
dressed states |g〉 = cos θ|0〉 − sin θ|b〉 and |e〉 = cos θ|b〉 + sin θ|0〉, where tan(2θ) = −

√
2Ω/∆. Under this dressed

basis, we acquire the eigenfrequencies ωd = −∆, and ωe/g = (−∆ ±
√

∆2 + 2Ω2)/
√

2. The energy level diagram of
the dressed spin states is illustrated in Fig. 1(c) in the main text. The parameters Ω and ∆ are adjustable, and we
can get the suitable energy level which is comparable with the frequency ωm.

Therefore, we obtain the total Hamiltonian

ĤTotal = ĤNV + Ĥmec + Ĥint

= ωmâ
†â+ ωeg|e〉〈e|+ ωdg|d〉〈d|+

1

2
(â† + â)(λ|g〉〈d|+ λ

′
|d〉〈e|+ h.c.)− Ωp cos(2ωpt)(â

† + â)2, (S7)

where the parameters are expressed as ωeg = ωe − ωg, ωdg = ωd − ωg, λ = −λ0 sin θ and λ
′

= λ0 cos θ. Utilizing the

unitary transformation Û0(t) = e−iĤ0t with Ĥ0 = ωp(â
†â + |e〉〈e|+ |d〉〈d|), we can simplify the Hamiltonian for this

hybrid system by dropping the high frequency oscillation and the constant items,

ĤTotal ' δmâ†â+
δdg
2
σ̂z −

Ωp
2

(â†2 + â2) + λ(â†σ̂− + âσ̂+). (S8)
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FIG. S2. (Color online) Dynamical evolution with different Hamiltonian ĤS
Total and ĤS

Rabi. (a) Average phonon number 〈â†â〉,
and (b) average spin population 〈σ̂z〉. Here, the initial state is |ΨS(0)〉 = |0〉ph|g〉, the coefficients are ∆m = 20λ and δdg = 2λ,
and the squeezing parameter is r = 1.25.

In this new basis {|d〉, |g〉}, we define σ̂z ≡ (|d〉〈d| − |g〉〈g|), σ̂+ ≡ |d〉〈g|, and σ̂− ≡ |g〉〈d|, with δm = ωm − ωp and
δdg = ωdg − ωp.

Enhanced spin-phonon coupling at the single quantum level

Considering the Hamiltonian (S8), we can diagonalize the mechanical mode of ĤTotal by the unitary transformation
Ûs(r) = exp[r(â2 − â†2)/2], where the squeezing parameter r is defined via the relation tanh 2r = Ωp/δm. We can
obtain the Hamiltonian in the squeezed frame with the form

ĤS
Total = ĤS

Rabi + ĤS
D, (S9)

where

ĤS
Rabi = ∆mâ

†â+
δdg
2
σ̂z + λeff(â† + â)σ̂x, (S10)

ĤS
D =

λe−r

2
(â− â†)(σ̂+ − σ̂−). (S11)

In this squeezed frame, ĤS
Rabi is the Hamiltonian for describing the Rabi model, with ∆m = δm/ cosh 2r. In ĤS

Rabi,
we can obtain the exponentially enhanced coupling strength λeff ≈ λer/2, which will be comparable with ∆m and
δdg, or even stronger than both of them when increasing r. The remaining Hamiltonian ĤS

D describes the undesired
correction to the ideal Rabi Hamiltonian. This item (with coefficient λe−r/2) is explicitly suppressed when we increase
the squeeze parameter r, and it is negligible in the large amplification regime 1/er ∼ 0. Therefore, for enhancing the
spin-phonon magnetic coupling through MPA, we can neglect the influence caused by ĤS

D in this scheme.
To verify the discussions above, we make numerical simulations and present the results in Fig. S2. The initial

state is chosen as |ΨS(0)〉 = |0〉ph|g〉 for different types of Hamiltonian ĤS
Total and ĤS

Rabi. Here |0〉ph denotes the
vacuum state of the phonon modes. The time evolution of the average phonon numbers â†â and spin population σ̂z is
displayed in Fig. S2 (a) and (b). We find that, in spite of the negative influence caused by ĤS

D in ĤS
Total, the dynamical

process given by ĤS
Total maintain a high degree of consistency with the standard Rabi model ĤS

Rabi. Therefore, in this
work, we have acquired the effective Rabi type spin-mechanical interaction with the exponentially enhanced coupling
strength λeff ≈ λer/2.

Here we note that, in the presence of parametric amplification, the noise coming from the mechanical bath is
also amplified inevitably. This adverse factor could corrupt any nonclassical behaviour induced by the enhanced
spin-motion interaction. To circumvent this detrimental effect, a possible strategy is to use the dissipative squeezing
method to keep the mechanical mode in its ground state. Therefore, taking the effective dissipation rate ΓSm and the
dephasing rate γNV into consideration, in this squeezed frame we can obtain the master equation as follow

˙̂ρ = i[ρ̂, ĤS
Rabi] + ΓSmD[â]ρ̂+ γNVD[σ̂z]ρ̂, (S12)

where D[x̂]ρ̂ = x̂ρ̂x̂† − x̂†x̂ρ̂/2 − ρ̂x̂†x̂/2. Here we assume that the effective dissipation rate ΓSm is comparable with
the dephasing rate γNV in the following numerical simulations.
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FIG. S3. (Color online) The dynamical evolution of the fidelity for different states for single NV spin (|g〉 and |d〉 correspond
to the ground state and excite state) and the mechanical mode (|n〉ph stands for the phonon-number state (n = 0, 1, 2, · · · )),
with the coefficients δm = 2λ, δdg = 0, and γNV = ΓS

m = 0.01λ. The different squeezed parameters correspond to (a) r = 0 (no
squeezing), (b) r = 0.5, (c) r = 1, (d) r = 1.25, (e) r = 1.5, and (f) r = 2.0.

By setting the parameters as δm = 2λ and δdg = 0 in Hamiltonian ĤS
Rabi, we plot the time-varying fidelity for

the quantum states of one NV spin (|g〉 and |d〉) and the phonon mode (|n〉ph, n = 0, 1, 2, · · · ) in Fig. S3. Here, the
fidelity for the quantum states of NV spin and phonon mode are respectively expressed as F lNV(t) = 〈l|ρ̂NV

prace(t)|l〉1/2

(l = g, d) and Fphonon(t) =ph 〈n|ρ̂phonon
prace (t)|n〉1/2ph . We show that, without MAP ( r = 0) in Fig. S3(a), we can obtain

the relative weak oscillation curves for both the NV spin and the mechanical mode. However, when we increase this
parameter from r = 0.5 to r = 2.0, corresponding to Fig. S3(b)-(f), the amplitude of the time-varying fidelity for
the NV spin and phonon mode becomes much larger. Furthermore, the interval period for these oscillations can also
be substantially shortened with the rate ∼ er when we increase r. These results indicate that, we can realize the
exponentially enhanced strong spin-phonon coupling at the single quantum level in this scheme.

Engineering the effective dissipation rate in the squeezed frame

We note that in the presence of the mechanical amplification, the noise coming from the mechanical bath is also
amplified. To circumvent this detrimental effect, a possible strategy is to use the dissipative squeezing approach to
keep the mechanical mode in its ground state in the squeezed frame. One possible strategy is to apply an additional
optical or microwave mode to this spin-mechanical system, and utilize it as an “engineered squeezed reservoir” to
keep the mechanical mode in its ground state via dissipative squeezing [S1–S5]. And this steady-state technique has
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recently been implemented experimentally [S6–S8]. According to the basic idea from the optomechanical system, we
assume this cantilever couples with an additional optical or microwave mode, and we can describe the coupled system
by the Hamiltonian

ĤOM = ∆mâ
†â+ ωcavĉ

†ĉ− g0ĉ
†ĉ(â† + â) + (α+e

−iν+t + α−e
−iν−t)ĉ† + H.c. (S13)

In which, ĉ (â) is the photon (phonon) mode annihilation operator, g0 is the optomechanical coupling, ν± and α± are
the frequency and amplitude of the two drive lasers, respectively. In the interaction picture, we apply the displacement
transformation ĉ = c+e

−iν+t + c−e
−iν−t + Ĉ into Eq. (S13), with c± the coherent light field amplitude due to the two

lasers. Then we can linearize this optomechanical Hamiltonian as

ĤL
IP = −Ĉ†(D+â

† +D−â)− Ĉ†(D+âe
−i2∆mt +D−â

†ei2∆mt) + H.c. (S14)

Here, the effective coupling D± = g0c± are strengthened by the factors c±. Then we can assume that D+ < D− and

D± > 0 without loss of generality, and apply another unitary squeezing operation Ŝ
′

= exp[ r
′

2 (â2 + â†2)] to Eq. (S14),
we can get the well known optomechanical cooling Hamiltonian

ĤS
IP = −OĈ†â+ H.c. (S15)

In equation (S15) above, we have discarded the high frequency oscillation items, and the relevant definitions are

tanh r
′

= D+/D−, sinh r
′

= D+/O, cosh r
′

= D−/O, and O =
√
D2
− −D2

+. Thus, despite being driven with the

classical fields, this cavity mode acts as a squeezed reservoir leading to mechanical squeezing. In this new squeezed
frame, we can cool the mechanical mode into its ground state |0〉ph, and in its original frame, this vacuum state

corresponds to the squeezed vacuum state Ŝ
′ |0〉ph.

On the other hand, in this ancillary photon-phonon interaction system, the cavity mode at here plays the role of the
auxiliary engineered squeezed reservoir, which can implement an assistance on suppressing the realistic mechanical
noise of this cantilever. For the realistic condition, this cavity is assumed to obey the bad-cavity limit with the large
cavity damping rate κC , and its photon state will always stay in the vacuum state. So we can eliminate this cavity
degree Ĉ and derive the Lindblad master equation for the reduced density matrix %̂ of the mechanical resonator.

˙̂% = ΓSm(â%̂â† − â†â%̂/2− %̂â†â/2). (S16)

Here, ΓSm = 4O2/κC .
Thus, we have accomplished the target of the engineered cavity reservoir, and we can suppress the mechanical noise

by utilizing the general squeezed-vacuum-reservoir technique [S9]. As a result, this additional cavity mode in this
scheme acts as an engineered reservoir which can cool the mechanical resonator into a squeezed state, and we can
reach the target of engineering the effective mechanical dissipation ΓSm.

Enhancing the phonon-mediated spin-spin interaction

We consider a row of separated NV centers (the spacing is about ∼ 50 nm) magnetically couple to the same
mechanical mode of the cantilever, as illustrated in Fig. S4.

According to Eq. (3) in the main text, we can obtain the total Hamiltonian,

ĤTotal ' δmâ†â−
Ωp
2

(â†2 + â2) +

N∑
j=1

[
δjdg
2
σ̂jz +

λj

2
(â†σ̂j− + âσ̂j+)]. (S17)

Applying the same unitary transformation Ûs(r) to ĤTotal, then we can obtain the valid and effective Rabi Hamiltonian
by discarding the weak interaction terms in this squeezed frame.

ĤN
Rabi = ∆mâ

†â+

N∑
j=1

[
δjdg
2
σ̂jz + λjeff(â† + â)σ̂jx]. (S18)

For simplicity, we set δjdg = 0 for each NV spin, and apply another unitary transformation Û = exp(−iẐ) to ĤN
Rabi

in Eq. (S18), with Ẑ = i
∑N
k=1 ηk(â† − â)σ̂kx and ηk = λkeff/∆m. Here we note that ηk can be considered as the Lamb-

Dicke parameter used in the ion trap system. We can obtain the effective spin-spin interactions through exchanging
the virtual phonons in this spin-mechanical system, with the constraint ηk � 1, which corresponds to δm � λe3r/4.
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FIG. S4. (Color online) A row of magnet tips are placed at the end of the silicon cantilever.The spring constant of the cantilever
is modified (pumped) at frequency 2ωp by the electric field from the capacitor plate. Moreover, the amplitude of the pump Ωp

can also be tunable. Each NV center is set just on top of the corresponding magnet tip with identical distance h ∼ 25 nm. In
addition, two microwave fields polarized in the x direction are applied to drive the NV centers between the state |ms = 0〉 and
the states |ms = ±1〉.

Through using the Schrieffer-Wolff transformation Ĥeff = ÛĤN
RabiÛ

†, the mechanical mode can be eliminated from
the dynamics. Then we have the following expressions

Û(∆mâ
†â)Û† = ∆mâ

†â−
N∑
j=1

λjeff(â† + â)σ̂jx +
N∑

j,k=1

λjeffλ
k
eff

∆m
σ̂jxσ̂

k
x +O(η3). (S19)

Û [

N∑
j=1

λjeff(â† + â)σ̂jx]Û† =

N∑
j=1

λjeff(â† + â)σ̂jx − 2×
N∑

j,k=1

λjeffλ
k
eff

∆m
σ̂jxσ̂

k
x +O(η3). (S20)

Keeping only the leading order terms in ηk, we can get the effective Ising type spin-spin interactions,

Ĥeff =

N∑
j,k=1

Λjkσ̂jxσ̂
k
x = Ĥx

Ising, (S21)

where Λjk =
λj
effλ

k
eff

∆m
≈ (1 + e4r)λ

jλk

8δm
is the effective coupling strength between the jth NV spin and the kth NV spin.

In the case of homogeneous coupling, we have

ĤOAT = ΛĴ2
x , (S22)

where Λ = (1 + e4r) λ2

8δm
, and Ĵx =

∑N
j=1 σ̂

j
x. This Hamiltonian corresponds to the one-axis twisting interaction or

equivalently the well-known Lipkin-Meshkov-Glick (LMG) model. This one-axis twisting Hamiltonian can be used to
produce spin squeezed states which generally exhibit many-body entanglement.

When we increase the squeezing parameter r, λeff will be naturally enhanced with a rate ∼ er. Meanwhile, the
parameter ∆m will be reduced with a rate ∼ e2r. In order to acquire the indirect spin-spin couplings via the virtual
phonon process, we require ∆m � λeff, which corresponds to the Lamb-Dicke condition ηk ≡ η � 1. To obtain the
strong spin-spin coupling and ensure the validity of the virtue-phonon process, we plot the numerical results and find
the valid area (the yellow area) in Fig. S5. We also point out that the yellow area with red solid dots is the optimal
regime for the value of δm, which corresponds to the condition 0.1 ≤ η ≤ 0.2.

Taking the effective mechanical dissipation ΓSm and the dephasing rate γjNV into consideration, we can also write
the master equation as follow

˙̂ρ = i[ρ̂, ĤN
Rabi] + ΓSmD[â]ρ̂+

N∑
j=1

γjNVD[σ̂jz]ρ̂. (S23)

In the following numerical simulations, we assume that the effective mechanical dissipation rate ΓSm is comparable
with the dephasing rate γjNV.

Here, we take the systematic disorder into consideration for the realistic experimental implementation, and assume
δjdq = 0±∆δjdq and λj = λ±∆λj are both inhomogeneous. We constrain the disorder factors ∆δjdq and ∆λj to less

than %5 of λ. Under the Hamiltonian HN
Rabi and Hx

Ising with different conditions (homogeneous and inhomogeneous
NV spins), the simulation results for the population in the ground states |g〉j for these four NV centers are plotted
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FIG. S5. (Color online) The constraint value of the parameter δm for achieving the effective spin-spin couplings versus the
squeezing parameter r. Here, the yellow area shows the valid regime of δm, the black solid line and the red solid line with open
star represent η = 0.2 and η = 0.1, the yellow area with red solid dots represents the regime for optimal value of δm varying
with r.
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FIG. S6. (Color online) The comparison of the dynamical population for the ground states |g〉j of four different NV centers.
(a) for state |g〉1, (b) for state |g〉2, (c) for state |g〉3, and (d) for state |g〉4, with the different Hamiltonian HS

Rabi without
disorder (the black solid line with open square), HS

Rabi with disorder (the blue solid line with open up triangle), Hx
Ising without

disorder (the red solid line with open star), Hx
Ising with disorder (the green solid line with open down triangle). Here, the

initial states for this four NV spins and the phonon mode are |g〉1|e〉2|g〉3|e〉4 and |0〉phonon, respectively, and the coefficients
are r = 1.25, δm = 60λ, and γj

NV = ΓS
m = 0.01λ. For homogeneous spins (no disorder), we assume δjdq = 0 and λj = λ; while

for inhomogeneous spins (disorder), we set the disorder distributions with {δ1
dq = −0.03λ, δ2

dq = 0.03λ, δ3
dq = 0, δ4

dq = −0.02λ}
and {λ1 = 1.03λ, λ2 = 0.98λ, λ3 = 0.99λ, λ4 = 1.01λ}.

in Fig. S6. We find that, even taking disorder into consideration, the effective Ising Hamiltonian can give rise to the
results very close to those given by the Rabi Hamiltonian. Based on these results, we can accelerate the dynamical
process exponentially with a rate ∼ e4r, which also provides us the most reliable and straightforward evidence for
realizing the exponentially enhanced spin-spin couplings.
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Preparing the Schrödinger cat state adiabatically

According to the discussions above, we can also assume that the amplitude of the pump is a slowly time-varying
parameter, which can be modified slowly enough to ensure the adiabaticity during this dynamical process (the time-
varying rate satisfies ∂t∆k � ωm,p, δm, λ). Then Eq. (S8) can be expressed as follow

ĤTotal(t) ' δmâ†â+
δdg
2
σ̂z −

Ωp(t)

2
(â†2 + â2) +

λ

2
(â†σ̂− + âσ̂+), (S24)

where Ωp(t) = −∆k(t)z2
zpf/2 is the time-dependent nonlinear amplitude. Here we can also diagonalize the mechanical

mode in the time-dependent Hamiltonian ĤTotal(t) by the similar unitary transformation Ûs[r(t)] = exp[r(t)(â2 −
â†2)/2], with tanh 2r(t) = Ωp(t)/δm. Then we can obtain the total Hamiltonian in this time-varying squeezed frame,

ĤS
Total(t) = ĤS

Rabi(t) + ĤS
D(t) + ĤS

V (t), (S25)

where

ĤS
Rabi(t) = ∆m(t)â†â+

δdg
2
σ̂z + λeff(t)(â† + â)(σ̂+ + σ̂−), (S26)

ĤS
D(t) =

λe−r(t)

2
(â− â†)(σ̂+ − σ̂−), (S27)

ĤS
V (t) =

iṙ(t)

2
(â2 − â†2). (S28)

Here, ĤS
Rabi(t) is the Hamiltonian for describing the time-dependent Rabi model, with the parameter ∆m(t) =

δm/ cosh 2r(t) and the coupling strength λeff(t) ≈ λer(t)/2. The remaining terms ĤS
D(t) and ĤS

V (t) describe the

undesired corrections to the ideal Rabi Hamiltonian. Similar to the discussion above, the item ĤS
D(t) with the

coefficient λe−r(t)/2 is negligible when we increase r(t). While the other correction term ĤS
V (t) with the coefficient

iṙ(t)/2 vanishes explicitly with a time-independent (ṙ(t) = 0) drive amplitude. Here, we can tune the driving
amplitude Ωp(t) slowly enough to satisfy the relation ṙ(t) ≈ 0. Therefore, we can also neglect the influence caused by

ĤS
D(t) during this dynamical process.
To confirm the discussion and analysis above, we also carry out the numerical simulations, and plot the evolution

results in Fig. S7. Based on the Hamiltonians ĤS
Total(t) and ĤS

Rabi(t), the dynamical populations of â†â and σ̂z are

plotted in Fig. S7(a) and (b), respectively. We find that, in spite of the negative influence caused by ĤS
D(t) and

ĤS
V (t), the dynamical results induced by ĤS

Total(t) are very close to those obtained from the standard Rabi model

ĤS
Rabi(t). Therefore, maintaining the adiabaticity in the whole system, ĤS

Rabi(t) is still effective and valid to describe
this spin-phonon interaction in this squeezed frame.

Considering the Hamiltonian ĤS
Rabi(t) in Eq. (S25), we can obtain the time evolution operator as

ÛSRabi(t) = T̂ exp(−i
∫ t

0

ĤS
Rabi(t

′
)dt
′
), (S29)

where T̂ is the time-ordering operator. By setting δdg = 0 and utilizing the Magnus expansion, we can further simplify
Eq. (S29) and have

ÛSRabi(t) = e[α(t)â†−α∗(t)â]σ̂xe−iΓ(t,0)â†â, (S30)

where the time-dependent complex parameter is expressed as α(t) = λ
2i

∫ t
0
e[r(t

′
)−iΓ(t,t

′
)]dt

′
, and another coefficient

is Γ(t, t
′
) =

∫ t
t′

∆m(t
′′
)dt
′′
. We assume that this spin-mechanical system is initially prepared in the ground state

|ΨS(0)〉 = |0〉Phonon|g〉, and then apply this evolution operator ÛRabi(t) to the initial state |ΨS(0)〉. Finally, we can
obtain the target entangled cat state of the single NV spin and the mechanical mode

|ΨS
Target(t)〉 =

1√
2

[|α(t)〉|+〉x − | − α(t)〉|−〉x], (S31)

where the states |±α(t)〉 are the coherent states of the phonon mode, and the states |±〉x correspond to the two-level
states in the σ̂x representation, with the definition |±〉x ≡ (|d〉 ± |g〉)/

√
2.
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FIG. S7. (Color online) The dynamical evolution process with different types of Hamiltonian ĤS
Total(t) and ĤS

Rabi(t). (a) The
population of average phonon number 〈â†â〉, and (b) the population of the average spin 〈σ̂z〉. The initial state is |ΨS(0)〉 =
|0〉Phonon|g〉, the coefficients are ∆m(t) = δm/ cosh[2r(t)], δm = 10λ, δdg = 0, rmax = 1.25, and the time-dependent squeezing
parameter is r(t) = rmax tanh(λt/2).

s

FIG. S8. (Color online) (a) The fidelity for the target entangled cat state |ΨS
Target(tf )〉 during the adiabatically dynamical

evolution with different types of Hamiltonian ĤS
Total(t) and ĤS

Rabi(t) and the initial state is |ΨS(0)〉 = |0〉ph|g〉. (b) The curves
for the coefficient ∆m(t) and the effective coupling λeff(t) varying with time slowly for adiabaticity. The coefficients are ∆m(t) =
δm/ cosh[2r(t)], δm = 10λ, δdg = 0, rmax = 1.25, and the time-dependent squeezing parameter is r(t) = rmax tanh[t/(2τ)] with
τ = 1/λ.

Therefore, during this dynamical process with the Rabi interaction ĤS
Rabi(t) from t = 0 to t = tf , we have acquired

an effective adiabatic passage between the ground state |0〉ph|g〉 and the target state |ΨS
Target(tf )〉. Here we have

discarded the negligible adverse factors induced by the ĤS
D(t) and ĤS

V (t). To confirm this theoretical analysis and
the robustness of this scheme, we make numerical simulations according to the master equation

˙̂ρ = i[ρ̂, ĤS
Total/Rabi(t)] + γNVD[σ̂z]ρ̂+ ΓSmD[â]ρ̂, (S32)

where γNV is the dephasing rate, and ΓSm is the effective dissipation rate in the squeezed frame. We simulate this
dynamical evolution with two types of Hamiltonian ĤS

Rabi(t) and ĤS
Total(t), and plot the numerical results in Fig. S8.

We find that, the fidelity reaches unity when the effective dispassion and the dephasing rate satisfy γ ≤ 0.001λ, while
it decreases to 0.97 when γ ≤ 0.01λ, and then decreases to about 0.88 when γ ≤ 0.05λ. Furthermore, the dynamical
fidelity obtained from ĤS

Rabi(t) (the solid line with open symbols) is in good agreement with that from ĤS
Total(t) (the

solid line with solid symbols).
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Entangling multiple NV spins

This spin-mechanical system with exponentially enhanced coupling strengths could allow us to carry out more
complex task: entangling multiple separated NV spins through exchanging virtual phonons. Here we consider N
separated NV centers (the spacing is about 50 nm ∼ 0.1 µm) magnetically couple to the same mechanical mode of
the cantilever. In this case, according to Eq. (S8), we can obtain the total Hamiltonian

ĤTotal ' δmâ†â−
Ωp
2

(â†2 + â2) +

N∑
j=1

[
δjdg
2
σ̂jz +

λj

2
(â†σ̂j− + âσ̂j+)]. (S33)

Applying the same unitary transformation Ûs(r) to ĤTotal, then we can obtain the effective Rabi Hamiltonian by
discarding the weak interaction terms in the squeezed frame

ĤS
eff = ∆mâ

†â+

N∑
j=1

[
δjdg
2
σ̂jz + λjeff(â† + â)σ̂jx], (S34)

where the coefficients are ∆m = δm/ cosh 2r, δjdg = ωjdg − ωp and λjeff ≈ λjer/2. By setting δjdg = 0 and λjeff = λeff for
simplicity, we can obtain the Hamiltonian in the interaction picture with the form

ĤS
IP = λeff(â†ei∆mt + âe−i∆mt)Ĵx, (S35)

in which Ĵα ≡
∑N
j=1 σ̂

j
α are the collective spin operators with α = {x, y, z}.

The dynamics of the system is governed by the unitary evolution operator ÛIP(t) = exp(−iĤS
IPt). Taking advantage

of the Mangnus formula, we can get ÛIP(τ) ' exp(−iλ2
effĴ

2
xτ/∆m), with τ = 2πn/∆m for the integer number n. This

result means that the mechanical mode is decoupled from the NV spins at that moment. Note that as this operator
has no contribution from the mechanical modes, thus in this instance the system gets insensitive to the states of the
mechanical modes. If the system starts from the initial state |ψS1 (0)〉 = |0〉ph|gg......gg〉, we can obtain the target
entangled state for the N NV spins with the form |ψNV

T1 〉 = [e−iπ/4|gg......gg〉 + eiπ/4|dd......dd〉]/
√

2, which is the
well-known GHZ state.

We assume these NV centers are homogeneous and set δjdg = 0 and λjeff = λeff for simplicity. Then, we can obtain the

Hamiltonian in the interaction picture with the form ĤS
IP = λeff(â†ei∆mt + âe−i∆mt)Ĵx. The dynamics of the system

is governed by the unitary evolution operator ÛIP(t) = exp(−iĤS
IPt). Taking advantage of the Mangnus formula, we

can get ÛIP(τ) ' exp(−iλ2
effĴ

2
xτ/∆m) when τ = 2π/∆m. This means that the mechanical mode is decoupled from

the NV spins at this moment. If the initial state of the NV centers is |gg......gg〉, we can obtain the target entangled
state for the N NV spins with the form |ψNV〉 = [e−iπ/4|gg......gg〉 + eiπ/4|dd......dd〉]/

√
2, which is the well-known

GHZ state. The quality of the produced entangled states can be improved significantly by mechanical amplification.
Taking the effective dissipation ΓSm and the dephasing rate γjNV into consideration, we have the master equation as

follow:

˙̂ρ = i[ρ̂, ĤS
IP(t)] + ΓSmD[â]ρ̂+

N∑
j=1

γjNVD[σ̂jz]ρ̂. (S36)

Then we can make numerical simulations on the dynamical process (to entangle the NV spins) according to equation
(S36). Fig. S9 displays the fidelity F of the target entangled states and the concurrence C for the case of two NV
spins varying with the evolution time and the squeezing parameter r. Starting from the initial state |gg〉, we can
obtain the target entangled state of two NV spins with the form |ψNV

T1 〉 = 1/
√

2[e−iπ/4|gg〉 + eiπ/4|dd〉]. For a fixed
interaction time and in the presence of mechanical dissipation and spin dephasing, we find that, the fidelity F and
concurrence C, can be improved significantly by increasing r The quality of the produced entangled state and the
speed for generating it can be greatly improved.

Another application of this scheme is to engineer these collective NV spins into the spin squeezed state through the
one-axis twisting spin-spin interaction. Due to the computing resources, we choose the number of the NV spins as
N ≤ 10 for numerical simulations. To quantify the spin squeezed state, we use two different spin squeezing parameters
to describe this nonclassical spin state. First, we utilize the spin squeezed parameter ξ2

S to define the squeezing degree

ξ2
S =

4 min(∆Ĵ2
~n⊥)

N
, (S37)
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FIG. S9. (Color online) (a) and (b) Dynamical evolution of the fidelity F and the concurrence C versus the squeezing
parameter r for the target entangled state, with the initial state of the NV spins |gg〉 and the coefficients δdg = 0, ∆m = 40λ,
and κS

m = γNV = 0.01λ. (c) and (d) Dynamical evolution of the fidelity F and the concurrence C under different values for
the squeezing parameter r.

and this definition is first introduced by Kitagawa and Ueda in 1993 [S10]. In Eq. (S37) above, ~n⊥ refers to an axis
perpendicular to the mean-spin direction, and the term “min” is the minimization over all directions ~n⊥. The first
step is to determine the mean-spin direction ~n0 by the expectation values 〈Ĵα〉, with α ∈ {x, y, z}. We write ~n0 with
spherical coordinates ~n0 = (sin θ cosφ, sin θ sinφ, cos θ), and this description is equivalent to the coherent spin state
|θ, φ〉. We can get the other two orthogonal bases which are perpendicular to ~n0,

~n1 = (− sinφ, cosφ, 0),

~n2 = (cos θ cosφ, cos θ sinφ,− sin θ).
(S38)

Hence, ~n⊥ = ~n1 cosβ+~n2 sinβ is the arbitrary direction vector perpendicular to ~n0, and we can find a pair of optimal
quadrature operators by tuning β. Then we get two components of angular momentum,

Ĵ~n1
= − sinφĴx + cosφĴy,

Ĵ~n2
= cos θ cosφĴx + cos θ sinφĴy − sin θĴz.

(S39)

As a result, we acquire the expression of optimal squeezing parameter

ξ2
S =

2

N
[〈Ĵ2

~n1
+ Ĵ2

~n2
〉 −

√
(〈Ĵ2

~n1
− Ĵ2

~n2
〉)2 + 4Cov(Ĵ~n1

, Ĵ~n2
)], (S40)

where

Cov(Ĵ~n1
, Ĵ~n2

) =
1

2
〈Ĵ~n1

Ĵ~n2
+ Ĵ~n2

Ĵ~n1
〉.

On the other hand, the metrological spin squeezing parameter ξ2
R, first introduced by Wineland et al [S11, S12],

can also be applied to describe this squeezed state, with the relevant definition as

ξ2
R =

N(∆Ĵ⊥)2

〈ĴS〉2
. (S41)

Furthermore, we note that ξ2
S is related to the metrological spin squeezing ξ2

R via min(ξ2
R) = [ N

2〈ĴS〉
]2(ξ2

S), with the spin

length Lspin = |〈ĴS〉|
N/2 . Since |〈ĴS〉| ≤ N/2 and the spin length Lspin ≤ 1, so we can obtain ξ2

S ≤ ξ2
R. In other words,

the metrological spin squeezing ξ2
R < 1 implies the spin squeezing ξ2

S < 1 according to the definition of Kitagawa and
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FIG. S10. (Color online) (a) The strain-induced coupling scheme with NV centers and a doubly clamped diamond nanoresonator.
The spring constant of this diamond nanomechanical resonator is capacitively tunable. (b) The ground-state energy-level
diagram for single NV center with the strain-mediated phonon-spin transition process(|1〉 ↔ | − 1〉).

Ueda. However, the inverse is not true: we can’t surely get the metrological spin squeezing ξ2
R < 1 only through the

relation ξ2
S < 1 [S13–S16].

In quantum metrology, the metrological gain (the gain of phase sensitivity relative to the standard quantum limit)
Gm = (∆θSQL/∆θ)

2 is also a figure of merit, where the quantum standard limit ∆θSQL = 1/
√
N and the phase

uncertainty ∆θ = ξR/
√
N are also experimentally achieved in different systems. So we can also obtain the relation

Gm = 1/ξ2
R.

In a word, we can distinguish spin squeezed states or entangled spin states distinctly for multiple NV centers
according to ξ2

S,R < 1, which also equivalently leads to the direct implications for spin ensemble-based quantum
metrology applications as Gm > 1. And the numerical results in the main text show that these collective NV spins
can be steered into the spin squeezed state more quickly as we increasing the squeezing parameter r.

Enhancing the strain-induced coupling between NV centers and nanomechanical resonators

This proposed method is also applicable for enhancing the strain-induced spin-phonon coupling through crystal
strains in a diamond nanomechanical resonator. We can also achieve the spin-phonon interaction with an exponential
enhancement through modifying the spring constant of the nanomechanical resonator.

As illustrated in Fig. S10(a), we consider the setup consisting of NV centers embedded in a doubly clamped
diamond nanomechanical resonator, with dimensions (l, w, h). Electrodes are coated on the lower surface of the
diamond nanobeam. For single NV centers, the ground-state energy level is plotted in Fig. S10(b), without classical
driving, and its Hamiltonian is expressed as

ĤNV = (D + d‖ε‖)Ŝ
2
z + geµBŜzBz − d⊥[εx(ŜxŜy + ŜyŜx) + εy(Ŝ2

x − Ŝ2
y)], (S42)

where d‖ and d⊥ are the strain susceptibility parameters parallel and perpendicular to the NV symmetry axis, ε‖ = εz,

ε⊥ =
√
ε2x + ε2y, and {εi}i=x,y,z are the diagonal components of the stain tensor.

Vibration of the diamond nanoresonator periodically changes the local strain at the NV spin’s position. This results
in a strain-induced electric field, which will act on the corresponding NV center. Here, we focus on the resonant or
near-resonant transitions between the states | ± 1〉 caused by this strain-induced mechanical mode. Through defining
σ̂j± = | ± 1〉j〈∓1| and σ̂jz = |+ 1〉j〈+1| − | − 1〉j〈−1| for the jth NV spin, we can get the jth NV spin’s Hamiltonian
in this two level subspace {|+ 1〉, | − 1〉} with the expression

Ĥj
NV = ωmâ

†â+
δjB
2
σ̂jz + λj(â†σ̂j− + âσ̂j+), (S43)

with ωm the fundamental frequency of this resonator, δjB the Zeeman splitting, and the coupling strength λj/2π ∼
180 GHz×2dj

√
~/(l3w

√
E%)/h. For simplicity, here we assume that all of the NV centers are planted near the surface

of the diamond resonator with the same distance dj ' 0.5h.
As shown in Fig. S10(a), the electrode materials are homogeneously coated on the lower surface of the nanobeam,

and another electrode with a tunable and time-varying voltage is placed just near the lower surface. The Hamiltonian
of this mechanical system with the time-dependent spring constant is expressed as

Ĥmec =
p̂2
z

2M
+

1

2
k(t)ẑ2 =

p̂2
z

2M
+

1

2
k0ẑ

2 +
1

2
kr(t)ẑ

2. (S44)
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The gradient of the electrostatic force from the electrode has the effect of modifying the spring constant according
to k(t) = k0 + kr(t), with k0 = ω2

mM the unperturbed fundamental spring constant and the time-varying pump item
kr(t) ≡ ∂2(CrV

2)/(2∂ẑ2) = ∂Fe/∂ẑ = ∆k cos(2ωpt). Here, Fe = ∂(CrV
2)/(2∂ẑ) is the tunable electrostatic force

exerted on the nanobeam by the electrode, ẑ is the displacement, ∆k is the drive amplitude, and 2ωp is the driving
frequency. The tunable parameters Cr = ε0εrS/(d+ẑ) and V = V0+Vp cos 2ωpt correspond to the electrode-nanobeam
capacitance and the tunable voltage. Therefore, we can achieve

kr(t) ' [
2V0VpεS

d2
]× cos 2ωpt = ∆k × cos 2ωpt. (S45)

Defining the displacement operator ẑ = zzpf(â
†+ â) with the zero field fluctuation zzpf =

√
~/2Mωm, we can quantize

the Hamiltonian Ĥmec (~ = 1),

Ĥmec = ωmâ
†â− Ωp cos(2ωpt)(â

† + â)2, (S46)

where ωm =
√
k0/M is the fundamental frequency, and Ωp = −∆kz2

zpf/2 = 2V0VpεS/(d+ ẑ)2× z2
zpf/2 is the nonlinear

drive amplitude. As a result, utilizing this method, we can obtain the second-order nonlinear interaction through
modulating the spring constant in time.

In this case, we can obtain the total Hamiltonian with the same expression as the magnetic coupling scheme

ĤTotal ' δmâ†â−
Ωp
2

(â†2 + â2) +
N∑
j=1

[
δj±
2
σ̂jz + λ(â†σ̂j− + âσ̂j+)], (S47)

where the coefficients are respectively δm = ωm − ωp and δj± = δjB − ωp. Considering the Hamiltonian (S46), we can

also diagonalize the mechanical mode by the unitary transformation Ûs(r) = exp[r(â2− â†2)/2]. Define the squeezing
parameter r via the relation tanh 2r = Ωp/δm. As a result, we obtain the Rabi Hamiltonian effectively in the squeezed
frame,

ĤN
Rabi = ∆mâ

†â+

N∑
j=1

[
δj±
2
σ̂jz + λeff(â† + â)σ̂jx]. (S48)

The coefficients ∆m = δm/ cosh 2r and δj± correspond to the free Hamiltonian of the mechanical mode and the NV
spins in the squeezed frame. Furthermore, we can also obtain the exponentially enhanced spin-phonon coupling
strength λeff ∼ λer in this new frame, which can be comparable with ∆m and δj±, even stronger than both of them.
As discussed in the previous section, we can easily tune the amplitude Ωp of this nonlinear pump through modifying
εr, V0Vp, S, and d. Therefore in this scheme we can achieve Ωp varying with the regime from ∼ 2π × 1kHz to
∼ 2π × 0.1GHz. As a result, we can explore the same idea to enhance the spin-phonon and spin-spin interactions in
this strain coupling system.
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[S9] Xin-You Lü, Ying Wu, J. R. Johansson, Hui Jing, Jing Zhang, and Franco Nori, “Squeezed optomechanics with phase-
matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

http://dx.doi.org/10.1103/PhysRevA.88.063833
http://dx.doi.org/10.1103/PhysRevB.70.205304
http://dx.doi.org/ 10.1103/PhysRevA.89.013820
http://dx.doi.org/ 10.1103/PhysRevA.87.033829
http://dx.doi.org/10.1103/PhysRevLett.70.556
http://dx.doi.org/10.1103/PhysRevLett.70.556
http://dx.doi.org/10.1126/science.aac5138
http://dx.doi.org/ 10.1103/PhysRevLett.115.243601
http://dx.doi.org/ 10.1103/PhysRevX.5.041037
http://dx.doi.org/10.1103/PhysRevLett.114.093602


14

[S10] Masahiro Kitagawa and Masahito Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138–5143 (1993).
[S11] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum

noise in spectroscopy,” Phys. Rev. A 46, R6797–R6800 (1992).
[S12] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, “Squeezed atomic states and projection noise in

spectroscopy,” Phys. Rev. A 50, 67–88 (1994).
[S13] Peter Groszkowski, Hoi-Kwan Lau, C. Leroux, L. C. G. Govia, and A. A. Clerk, “Heisenberg-limited spin-squeezing via

bosonic parametric driving,” (2020), arXiv:2003.03345 [quant-ph].
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