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This supplemental material provides details of the results presented in the main text.

I. 3D INTEGRATED SUPERCONDUCTING QUANTUM CIRCUITS

We consider 3D integrated superconducting quantum circuits [S1, S2] to simulate and detect many-body systems.
In quantum computation, two-dimensional arrays require multi-layer wiring [S3, S4]. In Fig. S1(a), we show the 3D
circuit QED with an atom array. The top layer contains a transmission line resonator and an atom array. The atoms in
the array are coupled by LC resonators (not shown). The superconducting coplanar waveguides are fabricated on the
bottom layer, as shown in Fig. S1(b). The atoms can be coupled to the waveguides via vertical interconnects [S1, S2].
Here, we consider that these two atoms in the same unit cells are coupled to the same waveguides. The coupling of
two atoms to a waveguide is presented in Fig. S1(c). We assume that atoms A and B have the same frequency ω0.
The effective coupling and correlated decay of these two atoms are [S5, S6],

gAB =
γ0

2
sin
(2πdAB

λ0

)
, γAB = γ0 cos

(2πdAB
λ0

)
, (S1)

respectively. Here, γ0 is the decay rate of the atoms to the waveguide, λ0 = 2πc/ω0, and dAB is the distance between
atoms A and B along the waveguide. As the positions of the atoms are properly chosen, e.g., dAB = mλ0 (m
is an integer), the interaction between these two atoms can be zero, but the correlated decay of the two atoms is
maximum [S6]. In Fig. S1(d), we show the atom array coupled by LC resonators. The resonator modes are represented

by operators âj , b̂j , ĉj , d̂j with j ∈ [1, N − 1].
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FIG. S1. (a) Schematic of 3D circuit QED with a topological atom array. The atoms in the array interact with their
neighboring atoms via LC resonators, as shown in Fig.1(b) in the main text. (b) The bottom layer with superconducting
coplanar waveguides. Each waveguide couples to a unit cell on the top layer. (c) The atoms A and B in a unit cell couple to
a waveguide via interconnects in the middle layer. (d) Resonator-mediated atom array (see Fig.1(b) in the main text). Here
the operators µ̂j , with µ = a, b, c, d and j ∈ [1, N − 1], correspond to resonator modes. The index i labels the unit cell of the
lattice.
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resonator resonator

(a) (b)

FIG. S2. Single-resonator-mediated two atoms. (a) The coupler â1 mediates the interaction between atoms A1 and B2. (b)
The two atoms A1 and A2 are mediated by a resonator ĉ1.

A. single-resonator coupled two atoms

As an example, we consider the resonator-mediated interaction between atom A and and atom B in the first and
second unit cells [shown in Fig. S2(a)], respectively. The Hamiltonian is

HAB =ωa1 â
†
1â1 + ω1Aσ

+
1Aσ

−
1A + ω2Bσ

+
2Bσ

−
2B − g1A(â†1σ

−
1A + σ+

1Aâ1)− g2B(â†1σ
−
2B + σ+

2B â1), (S2)

with ω1A = ω2B = ω0. Here, â1 and â†1 represent the annihilation and creation operators of the LC resonator mode
that couples to the A1 and B2 atoms. The operators for atoms A and B are σ+

1A = |A1〉〈α1| and σ+
2B = |B2〉〈β2|. We

use |αi〉 and |βi〉 to represent the ground states of the A and B atoms in the ith unit cell. We use giµ (µ = A,B)
to denote the resonator-atom couplings [see Fig. S2(a)]. In Eq. (S2), the total number of excitations is conserved.

Therefore, we can rewrite the Hamiltonian in a rotating frame with Hrot = ωa1(â†1â1 + σ+
1Aσ

−
1A + σ+

2Bσ
−
2B). The

Hamiltonian becomes

H ′AB =∆Aσ
+
1Aσ

−
1A + ∆Bσ

+
2Bσ

−
2B − g1A(â†1σ

−
1A + σ+

1Aâ1)− g2B(â†1σ
−
2B + σ+

2B â1). (S3)

where ∆A = ω1A − ωa1 and ∆B = ω2B − ωa1 . We now make a unitary transformation with

U = exp[M ] = exp
[g1A

∆A
(â†1σ

−
1A − σ

+
1Aâ1) +

g2B

∆B
(â†1σ

−
2B − σ

+
2B â1)

]
. (S4)

We obtain

H̃AB = UH ′ABU
† = H ′AB + [M,H ′AB ] +

1

2!
[M, [M,H ′AB ]] + . . . (S5)

When the detunings are large, i.e.,

g1A, g2B � ∆A,∆B , (S6)

it is reasonable to consider the effective Hamiltonian to second order in the coupling coefficients g1A, g2B . We can
then obtain

H̃AB =
(

∆A +
g2

1A

∆A

)
σ+

1Aσ
−
1A +

(
∆B +

g2
2B

∆B

)
σ+

2Bσ
−
2B +

g1Ag2B

2

( 1

∆A
+

1

∆B

)
(σ+

1Aσ
−
2B + σ+

2Bσ
−
1A). (S7)

The terms g2
1A/∆A and g2

2B/∆B are the Lamb shifts for atoms A and B, respectively. The last term in the above
Hamiltonian is the effective coupling between these two atoms. We call it cross coupling, because it couples different
kinds of atoms. As shown in Fig. S1(a), the bright blue dashed lines represent cross couplings. For simplicity, we
consider giA = gA and giB = gB . The cross coupling is

tc =
gAgB

2

( 1

∆A
+

1

∆B

)
. (S8)

The couplings between the same atoms can also be implemented. These couplings are called parallel couplings for
realizing the couplings between the same kinds of atoms. For example, the effective Hamiltonian for atoms A1 and
A2 [as shown in Fig. S2(b)] is

H̃AA =
(

∆A +
ḡ2

1A

∆A

)
σ+

1Aσ
−
1A +

(
∆A +

ḡ2
2A

∆A

)
σ+

2Aσ
−
2A +

ḡ1Aḡ2A

∆A
(σ+

1Aσ
−
2A + σ+

2Aσ
−
1A). (S9)

As we consider ḡiA = ḡA, the effective coupling between atoms A becomes

tp =
ḡ2
A

∆A
. (S10)
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resonator resonator

FIG. S3. Two-resonator-mediated three atoms.

B. two-resonator coupled three atoms

In our system, one atom is coupled to several atoms via different virtual-photons-exchange interactions. We now
consider three atoms which are mediated by two LC resonators, as shown in Fig. S3. The corresponding Hamiltonian
is

HBAB =ωb1 b̂
†
1b̂1 + ωa2 â

†
2â2 + ωBσ

+
1Bσ

−
1B + ωAσ

+
2Aσ

−
2A + ωBσ

+
3Bσ

−
3B

−(g̃1B b̂
†
1σ
−
1B + g̃2Ab̂

†
1σ
−
2A + H.c.)− (g2Aâ

†
2σ
−
2A + g3B â

†
2σ
−
3B + H.c.). (S11)

Here, we assume ωb1 = ωa2 = ωr. Similar to the last section, in the rotating frame, we have

H ′BAB =∆Bσ
+
1Bσ

−
1B + ∆Aσ

+
2Aσ

−
2A + ∆Bσ

+
3Bσ

−
3B

−(g̃1B b̂
†
1σ
−
1B + g̃2Ab̂

†
1σ
−
2A + H.c.)− (g2Aâ

†
2σ
−
2A + g3B â

†
2σ
−
3B + H.c.), (S12)

where ∆B = ωB − ωr and ∆A = ωA − ωr. For simplicity, the above Hamiltonian can be expressed as

H ′BAB = H1 +H2 +H3 +H12 +H23, (S13)

where H1,2,3 are the Hamiltonians for individual atoms. Here, H12 and H23 are interactions mediated by LC

resonators. We make a unitary transformation Ũ = exp[M̃ ], with M̃ = M1 + M2. Here, M1 and M2 are given
by

M1 =
g̃1B

∆B
(b̂†1σ

−
1B − σ

+
1B b̂1) +

g̃2A

∆A
(b̂†1σ

−
2A − σ

+
2Ab̂1),

M2 =
g2A

∆A
(â†2σ

−
2A − σ

+
2Aâ2) +

g3B

∆B
(â†2σ

−
3B − σ

+
3B â2). (S14)

Then,

ŨH ′BABŨ
† = H ′BAB + [M̃,H ′BAB ] +

1

2!
[M̃, [M̃,H ′BAB ]] + . . . , (S15)

with [M̃,H ′BAB ] = [M1, H
′
BAB ] + [M2, H

′
BAB ]. We first consider the term [M1, H

′
BAB ],

[M1, H
′
BAB ] = [M1, H1 +H2 +H12] + [M1, H23]. (S16)

We now look at the second term on the right-hand side of the above expression,

[M1, H23] =
[ g̃2A

∆A
(b̂†1σ

−
2A − σ

+
2Ab̂1),−g2A(â†2σ

−
2A + σ+

2Aâ2)
]

= − g̃2Ag2A

∆A
(b̂†1â2 + â†2b̂1)(|α2〉〈α2| − |A2〉〈A2|). (S17)

In our system, the couplers are set to be vacuum states. The real photon exchange can be ignored. Therefore,
[M1, H23] = 0. So,

[M̃,H ′BAB ] = [M1, H1 +H2 +H12] + [M2, H2 +H3 +H23]. (S18)

Similarly,

[M̃, [M̃,H ′BAB ]] = [M1, [M1, H1 +H2 +H12]] + [M2, [M2, H2 +H3 +H23]]

+ [M2, [M1, H1 +H2 +H12]] + [M1, [M2, H2 +H3 +H23]]. (S19)
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To second order in g, we have

[M2, [M1, H1 +H2 +H12]] = 0, (S20)

and

[M1, [M2, H2 +H3 +H23]] = 0. (S21)

Hence,

[M̃, [M̃,H ′BAB ]] = [M1, [M1, H1 +H2 +H12]] + [M2, [M2, H2 +H3 +H23]]. (S22)

Therefore,

H̃BAB = ŨH ′BABŨ
†

=
(

∆B +
g̃2

1B

∆B

)
σ+

1Bσ
−
1B +

(
∆A +

g̃2
2A + g2

2A

∆A

)
σ+

2Aσ
−
2A +

(
∆B +

g2
3B

∆B

)
σ+

3Bσ
−
3B

+
g̃1B g̃2A

2

( 1

∆A
+

1

∆B

)
(σ+

1Bσ
−
2A + σ+

2Aσ
−
1B) +

g2Ag3B

2

( 1

∆A
+

1

∆B

)
(σ+

2Aσ
−
3B + σ+

3Bσ
−
2A). (S23)

This effective Hamiltonian shows that the chain-like coupling scheme, as shown in Fig. S3, does not lead to long-range
couplings between atoms. By assuming g̃1B = g3B = gB and g̃2A = −g2A = −gA, Eq. (S23) can be written as

H̃BAB =
(

∆B +
g2
B

∆B

)
σ+

1Bσ
−
1B +

(
∆A + 2

g2
A

∆A

)
σ+

2Aσ
−
2A +

(
∆B +

g2
B

∆B

)
σ+

3Bσ
−
3B

+(−tcσ+
1Bσ

−
2A + tcσ

+
2Aσ

−
3B + H.c.). (S24)

C. boundary conditions

Using the periodic boundary conditions, the translational invariance makes the Lamb shifts for the same kinds of
atoms to be equal. We denote the energy splitting between atoms A and B to be 2δ. Then, the effective Hamiltonian
becomes

H̃ =

N∑
i=1

[δ
2

(σ+
iAσ
−
iA − σ

+
iBσ
−
iB) + tp(σ

+
iAσ
−
i+1A − σ

+
iBσ
−
i+1B)− tc(σ+

iAσ
−
i+1B − σ

+
iBσ
−
i+1A)

]
+ H.c., (S25)

with σ±N+1µ = σ±1µ (µ = A,B). In Eq. (S25), the effective couplings have been simplified. The topological property is
analysed in the main text. Using open boundary conditions, the atoms of unit cells at the boundaries have different
Lamb shifts compared to atoms in other unit cells. However, we can couple vacuum resonators or cavities to these
boundary atoms to generate additional Lamb shifts, such that all the atoms of the same kind have the same energy.

II. TOPOLOGICAL SUPERATOM

The single-excitation subspace is well-separated from multiple-excitation subspaces, as shown in Fig. S4(a). In our
model with superconducting quantum circuits, tc and tp are tens of MHz, ω̃0 is several GHz. We denote |Ai〉 = σ+

iA|G〉
and |Bi〉 = σ+

iB |G〉 with |G〉 = |α1β1α2β2 · · · 〉 being the ground state of the atom array. Then we have

〈Ai|σ+
iAσ
−
i+1A|Ai+1〉 = 〈G|G〉 = 1, (S26)

and similarly 〈Bi|σ+
iBσ
−
i+1B |Bi+1〉 = 1, 〈Ai|σ+

iAσ
−
i+1B |Bi+1〉 = 1, 〈Bi|σ+

iBσ
−
i+1A|Ai+1〉 = 1. Therefore, the Hamiltonian

Eq.(3) in the main text can be written in the single-excitation subspace {|Ai〉, |Bi〉} as

H̄ =

N∑
i=1

[δ
2

(|Ai〉〈Ai| − |Bi〉〈Bi|) + tp(|Ai〉〈Ai+1| − |Bi〉〈Bi+1|)− tc(|Ai〉〈Bi+1| − |Bi〉〈Ai+1|)
]

+ H.c.. (S27)

In crystal momentum space, the Hamiltonian becomes H̄(k) =
∑
k Ψ†kh(k)Ψk, with Ψ†k = (|Ak〉, |Bk〉), and

h(k) = dy(k)σy + dz(k)σz, (S28)
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FIG. S4. Topological superatom. (a) Energy levels for subspaces with different excitations. The energy levels on the left
side are produced when tc and tp are zero. Here ω̃0 represents the middle frequency of atoms A and B. On the right side,
finite tc and tp split the energy degeneracies in single-excitation and multiple-excitation subspaces. Due to tc, tp � ω̃0, the
single-excitation subspace is separated from the two-excitation subspace. (b) Large gaps between edge states and bulk states
in the single-excitation subspace of the atom array. Here j labels the eigenstates of the atom array in the single-excitation
subspace and the number of unit cells is N = 20.

where dy(k) = 2tc sin k and dz(k) = δ + 2tp cos k.
Edge states are topologically protected quantum many-body states. They are able to encode quantum information

and can be used as topological qubits. Recently, the study of Majorana zero modes has advanced considerably.
Topological quantum computation can be potentially implemented with Majorana fermions. There are theoretical
proposals suggesting that photon-electron interactions could be used to control Majorana fermions. However, the
photon-electron interactions are not easy to control, compared to light-atom interactions. Especially, in some artificial
atoms, e.g., superconducting quantum circuits, one can optically manipulate quantum states of atoms with high
accuracy.

The 1D atom array studied here has a complex energy spectrum. In its topological phase, as shown in Fig. S4(b),
bulk states exhibit a smooth spectrum with very small gaps among the bulk states. This makes it difficult to address
specific quantum many-body states. However, there are large gaps between the two E = 0 edge states and bulk states.
This provides a strong nonlinearity to control the edge states. In quantum systems, the nonlinearity of energy levels
is critical for qubits or qutrits, where quantum information can be encoded. Due to the large gaps between edge
states and bulk states, the topological superatom with a ground state and two edge states can be used to characterize
the atom array. We can exploit the properties of edge states, i.e., topology-protected spin polarization and boundary
localization, to implement the interaction between light and the topological superatom. Benefiting from the atom-light
couplings, which are studied in many quantum optical systems, the topological superatom could be easily addressed.

A. Edge states in the single-excitation subspace

The atom array mediated by couplers is shown to have topological structure in crystal momentum space. From
the edge-bulk correspondence, edge states can be generated in the topological phase with open boundary conditions.
Different from normal many-body states, edge states have peculiar properties that can be employed for topological
quantum state engineering. Therefore, we better analyze the wavefunctions of edge states. In the single-excitation
subspace, the Hamiltonian can be written as [S7, S8],

H̄ =

N∑
i=1

MΨ†iΨi + T †Ψ†i+1Ψi + T Ψ†iΨi+1, (S29)

with

M = δσz, T = tpσz + itcσy.

We now make an ansatz for the edge state ψ =
∑
n λ

nφ, where φ is a 2 component spinor. Therefore,

H̄ψ = Eψ. (S30)

From the above equation, we can have

(M+ λT † + λ−1T )φ = Eφ. (S31)
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This can be written as

[δσz + λ(tpσz − itcσy) + λ−1(tpσz + itcσy)]φ = Eφ. (S32)

The edge states are solutions with E = 0, i.e.,

[δσz + λ(tpσz − itcσy) + λ−1(tpσz + itcσy)]φ = 0. (S33)

Multiplying σz from the left-hand side, one obtains

[δ + λ(tp − tcσx) + λ−1(tp + tcσx)]φ = 0. (S34)

We can obtain the eigenstates φ± via

σxφ± = ±φ±. (S35)

From Eq. (S34), we can have δ+ λ(tp − tc)− λ−1(−tp − tc) = 0, which is a quadratic equation for λ. It can be solved
with solutions,

λ+,1 =
δ +

√
δ2 + 4(t2c − t2p)

2(tc − tp)
, λ+,2 =

δ −
√
δ2 + 4(t2c − t2p)

2(tc − tp)
, (S36)

for φ+, and

λ−,1 =
δ +

√
δ2 + 4(t2c − t2p)

2(−tc − tp)
, λ−,2 =

δ −
√
δ2 + 4(t2c − t2p)

2(−tc − tp)
. (S37)

for φ−. The values of λ±,1/2 determine the wavefunctions of the edges states. From Eq. (S36) and Eq. (S37), we can
find that 1/λ+,1 = λ−,2 and 1/λ+,2 = λ−,1. So, there are two cases that lead to different edge states in the system.

Case (1): If |λ+,1| < 1 and |λ+,2| < 1, the edge state of the left boundary is polarized along φ+. The component of
the wavefunction in the ith unit cell is

ψL(i) =
[
c1(λ+,1)i + c2(λ+,2)i

]
φ

(i)
+ . (S38)

The open boundary condition requires the amplitude of ψL(0) to be zero, which gives c1 = −c2. Therefore, the left
edge state is

ψL =
1√
N+
L

∑
i

[
(λ+,1)i − (λ+,2)i

]
φ

(i)
+ , (S39)

where N+
L is the normalization factor. Similarly, the right edge state with open boundary condition is

ψR =
1√
N−R

[
(λ+,1)N+1−i − (λ+,2)N+1−i]φ(i)

− . (S40)

-0.1 0.1 0.2-0.2

1.0

0.5

-0.5

-1.0

0.0

δ0.0

FIG. S5. The eigenvalue λ of φ− (see Eq. (S37)) versus δ, with tp = −0.1. The red-solid and red-dashed curves represent
λ−,1 with different values of tc: −0.1 and −0.12, respectively. Similarly, the blue-solid and blue-dashed curves show λ−,2 for
tc = −0.1 and tc = −0.12, respectively. The effective energy difference between the two excited states |Ai〉 and |Bi〉 of the ith
atom is 2δ.
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Case (2): If |λ+,1| > 1 and |λ+,2| > 1, the edge state of the left boundary is polarized along φ−, because of
1/λ+,1 = λ−,2 and 1/λ+,2 = λ−,1. The wavefunctions for the left and right edge states are

ψL =
1√
N−L

∑
i

[
(λ−,1)i − (λ−,2)i

]
φ

(i)
− , (S41)

and

ψR =
1√
N+
R

∑
i

[
(λ−,1)N+1−i − (λ−,2)N+1−i]φ(i)

+ . (S42)

The values of λ±,1/2, which are determined by the system parameters, affect the form of the edge states. In Fig. S5,
we show λ−,1/2 for two cases, i.e., |tc| = |tp| and |tc| 6= |tp| in the topological phase (−2|tp| < δ < 2|tp|). As |tc| = |tp|,
only one parameter, λ−,1 or λ−,2 is nonzero. However, in the case of |tc| 6= |tp|, both λ−,1 and λ−,2 are nonzero. This
two different forms of edge states have distinctive features in the finite-size effects of the edge states, as we show in
the main text.

The edge states shown above, i.e., Eqs. (S39)-(S42), describe long lattices, as shown in Fig. S6(a). For short lattices,
the edge states are not separated, but hybridize with each other, as shown in Fig. S6(b). The hybridized edge states
may have interesting observable effects. The hybridization leads to splitting between edge states (see Fig. S6(c)). As
shown in Fig. S6(d), the hybridized edge states can be written as ψ± = 1√

2
(ψL ± ψR), where ψL and ψR are the left

and right localized edge states, respectively. We consider left edge state to be the initial state, i.e., ψ0 = 1√
2
(ψ+ +ψ−).

The evolution of the system is

ψ(t) =
1√
2
e−iH̃t/~(ψ+ + ψ−)

=
1√
2
e−iω̃0t(e−i∆stψ+ + ei∆stψ−)

= e−iω̃0t
[ 1√

2
cos(∆st)(ψ+ + ψ−)− i 1√

2
sin(∆st)(ψ+ − ψ−)

]
= e−iω̃0t[cos(∆st)ψL − i sin(∆st)ψR], (S43)

where ω̃0 is the middle frequency of two edge states, and ∆s represents the splitting between them. When ∆s ≈ 0,
the excitation localizes to the left edge of the atom array. Otherwise, the excitation oscillates between the left-edge

(a) (b)

left edge state right edge state

0.5 1 1.50-5

5

0

41 8 12-0.5

0.5

0ψ

(c) (d)

n

FIG. S6. (a) The left and right edge states are well separated in large arrays. (b) Edge states are hybridized due to finite size
of the atom array. (c) Energy spectrum of the atom array with N = 6 unit cells. (d) Wavefunction of hybridized edge states
for δ/δc = 0.25. Here n labels the positions of atoms in the array, i.e., odd (even) number of n corresponds to |An+1

2
〉 (|Bn

2
〉).
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and right-edge atoms. This oscillatory behavior shows the interaction between edge states. Since the atoms at left
and right edges are respectively subradiant and superradiant, the excitation mainly relaxes from the right edge. And
from the revival of the excitation, we can estimate the decay rate of the superradiant (right) edge state. For the case
δ/δc = 0.25, the value of ∆s becomes 4.6×10−5κ. Because of ∆s � γ, the edge states are localized during the lifetime
of single atoms. However, when ∆s becomes large (∆s ≈ γ), the population dynamics of the subradiant edge state
can be used to measure the coupling strength of the edge states.

B. Driving a topological superatom in a cavity

In our one-dimensional topological array with V-shaped effective three-level atoms, the edge states are produced
in the excited state. Moreover, thanks to symmetry protection, there are many features unique to edge states, i.e.,
spin polarization, boundary localization, and large energy gaps to bulk states. These properties make it feasible to
optically manipulate edge states. The coupling between ground and excited edge states can be realized by choosing
appropriate cavity-atom coupling parameters, such that the edge states are efficiently populated. For example, in
superconducting quantum circuits, the couplings between artificial atoms and cavity can be controlled. Therefore, the
topological superatom can be controlled. Here, we consider the low-excitation limit, i.e., 〈σ+

iασ
−
iα〉 ≈ 0, with α = A,B.

The master equation of the cavity-driving atom array is

ρ̇ = i[ρ,Htot] + La[ρ] + Lc[ρ], (S44)

with total Hamiltonian Htot = H̃ + Hc + HI . Here, H̃ represents the coupler-mediated atom array, Hc is the
Hamiltonian of the cavity, and HI is the cavity-atom interaction. The dissipation terms for the atom array and cavity
are

La[ρ] =
∑
i,µ,ν

γµν(2σ−iµρσ
+
iν − σ

+
iµσ
−
iνρ− ρσ

+
iµσ
−
iν), (S45)

and

Lc[ρ] = κ(2f̂ρf̂† − f̂†f̂ρ− ρf̂†f̂), (S46)

respectively. From the master equation, we obtain the equations〈 d
dt
f̂
〉

= −(κ+ i∆c)〈f̂〉 − iΞT〈σ〉+ η, (S47)〈 d
dt
σ
〉

= −i(∆ +D − iΓ)〈σ〉 − iΞ〈f̂〉, (S48)

with Ξ = (ξ1A, ξ1B , ξ2A, ξ2B , · · · ), 〈σ〉 = (〈σ−1A〉, 〈σ
−
1B〉, 〈σ

−
2A〉, 〈σ

−
2B〉, · · · )T, ∆ = Diag(δ,−δ, δ,−δ, · · · ),

Γ =


γ1A γ1AB 0 0 0
γ1AB γ1B 0 0 0

0 0 γ2A γ2AB 0
0 0 γ2AB γ2B 0

0 0 0 0
. . .

 , (S49)

and

D =


0 R 0 0
RT 0 R 0

0 RT 0
. . .

0 0
. . .

. . .

 , (S50)

where

R =

(
tp −tc
tc −tp

)
.
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Here, ξiα are the coupling coefficients between the atoms and cavity. The steady cavity field can be solved by assuming

〈 ddt f̂〉 = 0 and 〈 ddtσ〉 = 0. Then, we can obtain the transmission

T = |t|2 =
∣∣∣ κ

κ+ i∆c − iχ

∣∣∣2, (S51)

with

t = κ〈f̂〉/η (S52)

and susceptibility

χ = Ξᵀ(∆ +D − iΓ)−1Ξ. (S53)

When a quantum many-body state is driven by the cavity field, one can probe its optical response via its photon
transmission. The susceptibility captures the central property of the cavity-driving many-body system. From the
susceptibility, we can obtain the effective decay rate of the superatom,

γeff = −Im
[ΞᵀΞ

χ

]
. (S54)

In particular, the edge states in the single-excitation subspace have zero energy, which makes Re[χ] vanishing. When
the edge state is resonantly driven, the transmission can be expressed by the effective decay

Tres =
κ2

(κ+ Im[χ])2
. (S55)

The invariance of Im[χ] for edge states indicates the topologically protected quantum coherence. As shown in
Fig. 3(b), the bulk states in the non-topological phase also have constant Im[χ] when δ is large. This represents that
the decay rates of bulk states have an upper bound γ. In the main text, we consider that the cavity has low decay
rate κ, i.e., κ = 0.1γ. The cavity decay κ plays important role in the transmission of edge states. In Fig. S7(a), we
consider a large cavity decay. The left edge state has clear signal as γAB increases. However, the transmission for
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FIG. S7. (a) Transmission spectra of the left and right (the inset) edge states. Here, ∆c = ωcavity − ωdrive and δ/δc = 0.6.
Dotted, dashed, and solid lines correspond to γAB/γ = 0, 0.9, 1, respectively. (b) Transmission spectra of the two edge states
and one bulk state. The red-dashed(-solid), green-dotted(-solid), and blue-dot-dashed(-solid) curves are the transmissions for
edge states and bulk state, with γAB/γ = 0.9 (γAB/γ = 0), δ/δc = 0.65. (c,d) Effective decays of bulk states for γAB = 0.1γ
and γAB = 0.9γ, respectively, with δ/δc = 0.6. The horizontal axis j represents bulk states from lowest energy to highest energy
states (edge states with j = 100 and j = 101 are not shown). Other parameters for these figures are N = 100, tc = tp, κ = 10γ.
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right edge state is not changed so much. In Fig. S7(b), the transmission spectra for two edge states and one bulk state
are compared. When γAB is zero, the transmissions for edge and bulk states are the same. When γAB is nonzero, the
spectrum is found to be asymmetric for bulk state, but symmetric for edge states.

As shown in the main text, the effective decay rates for bulk states and edge states are equal to γ for γAB = 0.
However, nonzero correlated decay γAB makes the bulk states to be subradiant. In Figs. S7(c) and S7(d), we show
the effective decays for bulk states with different values of γAB . The x axis denotes the index of the bulk states, from
lowest energy to the largest (the edge states for n = N,N + 1 in the middle are not shown). It can be seen that the
effective decays for bulk states are symmetric. Moreover, the bulk states closer to edge states are more subradiant. For
large correlated decay γAB , the bulk states have very different coherence properties compared with edge states; the
symmetric edge state is superradiant, and the anti-symmetric edge state is very subradiant. The coherence differences
between edge states and bulk states lead to distinctive collective behavior of edge atoms and bulk atoms.

III. EFFECTS OF SYMMETRY BREAKING AND DISORDERS

The waveguides mediate the correlated decays between atoms in unit cells. As shown in Eq. (S1) and Fig. S1(c),
when the separation between two atoms along the waveguide coupling them is 2πmc/ω0 (m is an integer number),
the interaction between these two atoms becomes zero. In experiments, there could be imperfections, such that the
separation between two atoms along the waveguide is not exactly 2πmc/ω0. If these interactions are homogeneous,
i.e., the interactions between atoms in the same unit cells are gAB , the Hamiltonian of the system becomes

H̃ ′ =

N∑
i=1

δ(σ+
iAσ
−
iA − σ

+
iBσ
−
iB) + gAB(σ+

iAσ
−
iB + σ+

iBσ
−
iA)

+

N−1∑
i=1

[
tp(σ

+
iAσ
−
i+1A − σ

+
iBσ
−
i+1B)− tc(σ+

iAσ
−
i+1B − σ

+
iBσ
−
i+1A) + H.c.

]
. (S56)

In the crystal momentum space, the Hamiltonian is H̄ ′(k) =
∑
k Ψ†kh

′(k)Ψk, with

h′(k) = gABσx + dy(k)σy + dz(k)σz. (S57)

Apparently, the interactions between atoms in the same unit cells break the chiral symmetry. Accordingly, the energy
degeneracy between left- and right-edge states is shifted, as shown in Fig. S8(a). However, the edge polarizations
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FIG. S8. Effects of interactions between atoms in the same unit cells. (a) The energy degeneracy for edge states is shifted. (b)
The hybridized edge state (see Fig. S6(d)) become separated (with δ = 0.25δc). (c) Quantum coherence of the left edge state.
(d) Quantum coherence of the right edge state. The parameters we considered here are tc = tp, gAB = 0.1γ and N = 6.
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FIG. S9. Disorders of atomic frequencies for (a) subradiant edge state and (b) superradiant edge state. Disorders of atomic
interactions for (c) subradiant edge state and (d) superradiant edge state. The parameters are tc = tp, γ = 10κ, γAB =
0.99γ,N = 50.

are preserved, as shown in Fig. S8(b). Different from Fig. S6(d), the edge states are not hybridized at δ = 0.25δc.
The breaking of energy degeneracy for edge states have a nontrivial influence on the topological phase transition. In
Figs. S8(c) and S8(d), we show the effective decays for left and right edge states and their transitions to bulk states.
Different from the case with chiral symmetry we discussed in the main text, here there is no interaction between edge
states during the topological phase transition. And the topological superradiance-subradiance transition, i.e., γeff = γ
as shown in Fig. S8(d), is produced by the direct edge-bulk transition.

In Figs. S9(a) and S9(b), we study the effect of disorder of atomic frequencies for the subradiant and superradiant
edge states, respectively. The atomic frequencies are ωiα + εiα (α = A,B), where εiα are uniformly distributed
εiα ∈ [−ε, ε]. Here, ε represents the strength of the disorder. The unhybridized subradiant edge state (δ < δm) is
stable to the noise. However, the hybridized subradiant edge states (δm < δ < δc) and subradiant bulk states in the
non-topological phase (δ > δc) are more sensitive to the frequency noise. Similar results are found for the noise of
atomic interactions, as shown in Figs. S9(c) and S9(d), where the disorder of atomic interactions of strength τ for the
subradiant and superradiant edge states are respectively considered. From Figs. S9(a)-S9(d), we find the robustness
of quantum coherence to noises for the unhybridized edge states (δ < δm). And the effect of the noises is enhanced
for hybridized edge states (δm < δ < δc).
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