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SUPPLEMENTAL MATERIAL:  

Comparison with the Weyl representation of Maxwell equations 

To highlight the similarities and differences between the topological Klein-Gordon (KG) 
approach to acoustics and its electromagnetic counterpart [41], here we describe the Weyl 
representation and topological features of Maxwell equations in forms similar to the acoustic 
equations of the main text. 

We start with Maxwell equations in a homogeneous isotropic lossless medium [1]: 

 
  
ε ∂E
∂t

= ∇× H ,      
  
−µ ∂H

∂t
= ∇×E ,        ∇⋅E = ∇⋅H = 0 . (S1) 

Introducing the “wavefunction” consisting of real physical fields,    Ψ = E,H( )T
, the first two 

Eqs. (S1) can be written as [41] 

 
   
iσ̂ (m) ∂Ψ

∂t
= Ŝ ⋅ p̂( )Ψ , (S2) 

where    p̂ = −i∇  is the canonical momentum operator,   Ŝ  are the spin-1 matrices, which act on the 
three-vector degrees of freedom such that   Ŝ ⋅ p̂ = ∇× , the speed of light in vacuum is assumed to 
be   c0 = 1, and 

 
  
σ̂ (m) = 0 iµ

−iε 0

⎛

⎝
⎜

⎞

⎠
⎟ . (S3) 

is the matrix with the medium parameters which acts on the “electric-magnetic” degrees of 
freedom, i.e., intermixes the electric and magnetic fields. 

Akin to Eqs. (5) in the main text, we introduce the scalar and “cross” products for this 6-
component wavefunction Ψ  producing scalars and three-vectors, respectively: 

    Ψ1 iΨ2 ≡ εE1 ⋅E2 + µH1 ⋅H2 ,  

   Ψ1 ⊗Ψ2 ≡E1 × H2 − H1 ×E2 . (S4) 

Using these definitions, the electromagnetic energy density and energy flux density (the 
Poynting vector) take the forms of Eqs. (9): 

 
   
W = 1

2
Ψ iΨ ,      

 
Π = 1

2
Ψ⊗Ψ . (S5) 

The approach of Ref. [41] is based on the helicity operator, which for monochromatic 
fields (  ∂/ ∂t →−iω ) and using Eq. (S2) can be written as 

 
    
Ŝ = Ŝ ⋅ p̂

p
= 1

n
σ̂ (m) . (S6) 

Here, the dispersion relation   p = nω  was used, whereas  n = εµ  is the refractive index of the 
medium. To distinguish the four different types of media, corresponding to the four quadrants of 
the parameter  ε ,µ( )  space, we adopt the natural convention that the phase of the εµ  grows 
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uniformly with the number of the quadrant, i.e.,  n = n  for  ε > 0,µ > 0( ) ,  n = i n  for 

 ε < 0,µ > 0( ) ,  n = − n  for  ε < 0,µ < 0( ) , and  n = −i n , for  ε > 0,µ < 0( )  [41]. The helicity 
operator (S6) is non-Hermitian and has the following paired eigenvalues: 

 
  
S = ± n

n
. (S7) 

These eigenvalues rotate in the complex plane at the transitions between the above four different 
types of media, which provides the   !4  Möbius-strip-like topology described by a single   !4  

topological number 
  
w = 2

π
Arg n( )  or, equivalently, a pair of   !2  topological numbers [41]: 

 
  
w = 1

2
1− sgn ε( ),1− sgn µ( )⎡⎣ ⎤⎦ . (S8) 

The bulk-boundary correspondence, similar to Eq. (11) yields the phase diagram Fig. 1(a) for 
electromagnetic surface modes in Maxwell equations. 

To reveal the similarity between this approach and the acoustic KG formalism, we 
represent Maxwell equations (S2) in the relativistic Weyl form. This representation is based on 
the Riemann-Silberstein “wavefunction”   ψ = εE+ i µH  [58], for which Eq. (S2) acquires 
the form 

 
   
in ∂ψ

∂t
= Ŝ ⋅ p̂( )ψ ,      

   
−in ∂ψ

*

∂t
= Ŝ ⋅ p̂( )ψ * . (S9) 

Thus, this representation diagonalizes the helicity operator, which becomes, using the 6-

component wavefunction 
  
ψ ,ψ *( )T

 [58], 
   

ˆ ′S = n
n

diag 1,−1( ) . Remarkably, Eqs. (S9) can be 

written in the relativistic covariant form of the Weyl equation [48]:  

 
  

Ŝ µ p̂µ( )ψ = 0 ,    where    
  
p̂µ = in∂t , i∇( )  (S10) 

is the four-momentum operator, and 
   
Ŝ µ = I3,Ŝ( ) . Comparing these equations with Eqs. (6) and 

(7) of the main text, we see that the electromagnetic four-momentum operator contains  n = εµ  
and differs in the four quadrants of the  ε ,µ( )  space, while the acoustic four-momentum depends 

only on ρ  and is independent of β . This explains the main topological difference between the 
acoustic and Maxwell equations. Note that the Weyl four-momentum (S10) is clearly connected 
with the helicity operator (S6) because the coefficient at  ∂t  exactly determines the behavior of 

the helicity   ∝ Ŝ ⋅ p̂ . We finally note that the connection between the real-field and Weyl 
(Riemann-Silberstein) wavefunctions can be written as 

 

  

ψ

ψ *

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= M̂ Ψ ,      

  

M̂ = 1 i
1 −i

⎛

⎝⎜
⎞

⎠⎟
ε 0

0 µ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (S11) 

This connection differs from the acoustic Eq. (7) but still involves the same square roots of the 
two parameters  ε ,µ( ) .  
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To summarize, both electromagnetic and acoustic equations can be expressed via real 
physical fields (entering the boundary conditions):   E,H( )  and    P,v( ) , as well as via “relativistic 
wavefunctions”: the KG and Weyl ones. In this manner, the connections between these 
wavefunctions, as well as the four-momentum operators in the corresponding relativistic wave 
equations, involve square roots of the medium parameters:  ε ,µ( )  and ρ . These determine the 
separation of the electromagnetic and acoustic parameter spaces into topologically-different 
sectors, labeled by the bulk topological indices (10) and (S8), and the appearance of surface 
modes at interfaces between topologically-different media, as shown in Fig. 1. The comparison 
of the main electromagnetic and acoustic quantities used in this work is shown in the Table  SI. 
 
 

 Acoustics Electromagnetism 

Real fields 
   Ψ

µ = P,v( )    Ψ = E,H( )   

 
Energy density  
and flux     

W = 1
2
Ψµ iΨµ = 1

2
βP2 + ρv2( )  

   
Π = 1

2
Ψµ ⊗Ψµ = Pv  

    
W = 1

2
Ψ iΨ = 1

2
εE2 + µH2( )  

  
Π = 1

2
Ψ⊗Ψ = E× H  

Connection  
with “relativistic  
wavefunctions” 

  

Ψµ = ip̂µψ

= − ρ ∂tψ , ∇ψ
ρ

⎛

⎝
⎜

⎞

⎠
⎟

 
 
Ψ = Reψ

ε
, Imψ

µ

⎛

⎝
⎜

⎞

⎠
⎟  

Relativistic wave 
equations    

p̂µ i p̂µ( )ψ = 0  
  

Ŝ µ p̂µ( )ψ = 0  

Four-momentum 
operator 

  
p̂µ = i ρ ∂t ,

−i∇
ρ

⎛

⎝
⎜

⎞

⎠
⎟    

p̂µ = i εµ ∂t ,− i∇( )  

Topological 
indices	   

w ρ( ) = 1
2

1− sgn ρ( )⎡⎣ ⎤⎦  
  
w ε ,µ( ) = 1

2
1− sgn ε( ),1− sgn µ( )⎡⎣ ⎤⎦  

Table I. Comparison of acoustic and electromagnetic quantities. 
 


