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The ground state of a cavity-electron system in the ultrastrong coupling regime is characterized by the
presence of virtual photons. If an electric current flows through this system, the modulation of the light-
matter coupling induced by this nonequilibrium effect can induce an extracavity photon emission signal,
even when electrons entering the cavity do not have enough energy to populate the excited states. We show
that this ground state electroluminescence, previously identified in a single-qubit system [Phys. Rev. Lett.
116, 113601 (2016)] can arise in a many-electron system. The collective enhancement of the light-matter
coupling makes this effect, described beyond the rotating wave approximation, robust in the thermo-
dynamic limit, allowing its observation in a broad range of physical systems, from a semiconductor
heterostructure with flatband dispersion to various implementations of the Dicke model.
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Introduction.—When the interaction between light and
matter is stronger than the coupling to the environment, a
variety of hybridization effects can be observed. In the
context of cavity quantum electrodynamics, realizing this
“strong-coupling” regime has been achieved in different
ways, for example, by reducing the losses of the system [1],
by enhancing the vacuum electromagnetic field in one-
dimensional cavities [2], by increasing the dipole moment
of the atom [3], or by taking advantage of collective
properties [4]. Building upon these strategies, it has been
possible to engineer light-matter couplings up to a signifi-
cant fraction of the bare energies of the bare light and
matter modes themselves [1,3,5-32].

This new cavity quantum electrodynamics (QED) “ultra-
strong” regime has made possible the observation and study
of a range of unique physical effects [33—46]. Among these
phenomena are the ones originating from the hybridization
of the ground state. This hybridization leads to a ground state
photonic population that is sometimes called “virtual”, as it
is energetically forbidden from leaking into the environ-
ment. However, there are several proposals describing how
these hybridized ground states can be observed, typically by
modulating some system parameter [40-45,47], akin to the
way the dynamical Casimir effect relies on amplifying
vacuum fluctuations [48-53].

In particular, in Ref. [54] it was shown that the passage of
an electronic current through a device where, within the
device, electrons ultrastrongly couple to light in a cavity
can result in extracavity emission, i.e., the conversion of
virtual to real photons. In Ref. [54], such “ground state
electroluminescence” was predicted for systems in which a
single electron at a time interacts ultrastrongly with the
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cavity mode [55-63]. In this Letter, we analyze ground
state electroluminescence in a much more general scenario
in which many electrons at the same time are allowed to
interact with the cavity mode [64-71]. This allows for

FIG. 1. A right lead (R) is connected to a left lead (L) via a
middle region, the two elements kept at chemical potentials pup
and y; , respectively, by applying an electrical bias, which induces
an electron current quantified by a rate I, for the free electrons
(blue spheres) flowing out of the device. Sandwiched between the
leads, a solid-state cavity (dark purple disks), enhances the
electronic coupling to the photonic vacuum field (light purple
disk cross section), at a strength quantified by y for each electron.
The bare frequency difference between the two electronic
flatbands, wy = w, — @y, separates the lower states (blue) and
upper states (red). The presence of virtual photons inside the
cavity induces an extracavity photon emission (green blobs) from
the polaritonic ground state, at a rate I, .
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stronger effective couplings through collective effects in a
solid-state device [5,67,72-74], as sketched in Fig. 1.

As we will show, one could expect the electrolumines-
cence effect to be washed out in a system containing many
electrons because, while the coupling is enhanced by
collective effects, the conversion of virtual to real photons
relies on a process where an electron leaving the system
effectively changes the light-matter coupling. In this many-
electron system, such an effective modulation of the light-
matter coupling is suppressed with the number of electrons,
so one might expect that this negates the enhanced
collective coupling.

However, surprisingly, we find here that the combination
of collective coupling and the multielectron nature of the
current combine to make the ground state electrolumines-
cence macroscopically robust even in the thermodynamic
limit. The transport-induced luminescent effect can be
estimated by an intuitive bosonic theory that goes
beyond the rotating wave approximation (RWA) by includ-
ing counterrotating terms perturbatively. In the Supple-
mentary Material (SM) [75], we test this model against a
full bosonic model that includes non-RWA terms non-
perturbatively, and a second-quantization fermionic theory,
finding excellent agreement.

Light-matter system.—We consider a prototypical many-
body fermionic system interacting with light in a solid-state
quantum device. The model system can be generalized
further due to the approximations that we will make, but,
for definiteness, we begin by considering two electronic
bands containing a maximum of 2Ny electrons which
interact with a single electromagnetic mode confined in a
cavity. We further neglect electron-electron interactions,
band dispersion, and higher excitations. We thus consider a
two flatband electronic model such that it can be described
by the Hamiltonian (% = 1 hereafter)

H=w.a'a+ Z(a)lc?ncl,n + a)zc;ncz,n) +D(a+a")?
n

+x(a+a")> (e crn+ el o), (1)

n

where ¢y, (¢,,) represents the annihilation operator for the
nth (n =1, ..., Ny) fermion in the first (second) state with
energy ; (w,). Note that in Eq. (1) we are counting each
fermion over the index #; in several solid-state systems, this
can be shown to be equivalent to a model for flatbands, as
in intersubband transitions with finite real in-plane momen-
tum [7,10,13], in the limit of small photon momentum or
strong magnetic confinement. In more general contexts, it
may be required to include the photonic momentum, which
can induce diagonal transitions [35,76—80]. The annihila-
tion operator a is associated with a cavity mode of
frequency w,. The light-matter interaction has strength y,
and the potential energy of the electromagnetic field is

proportional to the frequency D = Ny?/w,, relative to the
diamagnetic term [25,26,46], where @y = 0, — @;.

To begin our analysis, we divide the Hilbert space in
sectors closed under the Hamiltonian evolution. They are
characterized by the set of sites occupied by a single
electron {N}, the set of sites occupied by two electrons
{N,}, and the number of photons in the cavity.

Within each of these sectors, the coherent dynamics can
be described by

H=wada+0yS +y(a+a")(S"+57), (2

which takes the standard form of the Dicke Hamiltonian.
The interaction of a cavity mode of frequency w, with a
matter excitation of frequency @y, where wy = @, — w, is
described beyond the RWA. Here we defined o;, = c;n Cons
Sy = o7, and S} = 65/2, where ¢ is the a-direction Pauli
matrix operator. In Eq. (2), we performed a fermion-to-spin
transformation that, with respect to Eq. (1), involves no
approximations. The parameters have been renormalized
following the Bogoliubov transformation needed to reab-
sorb the diamagnetic term proportional to D in Eq. (1) (see
Sec. IT of the SM [75]). For the sake of generality in Eq. (1),
we neglect the Coulomb interaction, which would depend
on microscopic details. In the case of parallel subbands, a
theoretical description of electron-electron interactions in
the bosonic approximation, directly applicable to our
approach [81,82], can be completely captured by a renorm-
alization of the system transition frequency, the so-called
depolarization shift [83], and by a more complex functional
dependency between the electronic operators ¢ and the
collective excitation operators S*. While such more com-
plex relations remain quadratic, and could thus be incorpo-
rated into our treatment, their deviations from Eq. (1) scale
with the ratio between the plasma frequency, w,, and the
bare excitation frequency, @,. Equation (1) thus remains
quantitatively accurate while wy > w,,.

Environment.—We are interested in studying the effects
of three environments on this model: a left (L) and right (R)
electronic reservoir, which give rise to the electronic
current, and the extracavity electromagnetic modes, into
which the photons are emitted. The total environment-
system interaction Hamiltonian is H' = H! + H!,, =
H! + HL + HL,,. Our aim is to compute the transition
rates among eigenstates of the system induced by the
interaction Hamiltonian, H, representing the physical
interaction with the environmental degrees of freedom.
We can model the interaction with the electronic reservoirs
as Hj = 23, ¢[(c1, + cz_n)czm’é + H.c.], and identically
for H% (change L — R), thus assuming that the energy
scale, 4, is equal for the two fermionic reservoirs. The
operators ¢y (g).,¢ label the annihilation operators for a
fermion associated with a degree of freedom » and { in the
left (right) reservoir.
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Since we are interested in strong-coupling effects
between light and matter only within the system, we treat
all three environments perturbatively. They induce transi-
tions only between eigenstates of the system, as given by
Fermi’s “golden rule.” The total electron-transport rates
can be calculated by summing over single electron scatter-

ing processes, [ = 37, T%7 (see Sec. I of the SM [75]
for details), where

e o TalMis2 = Tl (Bl(crn+ can)a)? (3)

el.n

where @ and f are the initial and final states for the system, I
is the electron tunneling rate, and My, provides the electron-

current transition matrix element for the nth electron site.
To calculate the ground state electroluminescence rate,
we consider that, when N electrons are in the device and the
device is in the hybridized light-matter ground state,
|o) = |Gy), an electron within the device can leave,
reducing the electron number to (N — 1). When an electron
leaves, it can, due to the ground state light-matter hybridi-
zation, result in a transition to an excited state of the
hybridized system with (N — 1) electrons, |f) = |Ey_),
which contains a nonzero photonic population. We assume
that the cavity loss rate I',, is much faster than the
electronic rates I, such that this excited state immediately
decays and emits an extracavity photon, decaying to the
(N — 1) ground state, |Gy_;); this emission, arising only
because the ground state itself contains photons, is the
electroluminescence we want to produce. In addition, by
imposing a chemical potential across the system which
forbids electrons from entering directly into excited states
of the coupled system, y; < up < @,, one can suppress
“regular” electroluminescence and ensure that the observed
photon emission arises only from the ground state.
Under the above assumptions (I'.,, > I';; and energeti-
cally forbidden regular electroluminescence), the overall
rate of ground state—sourced photonic emission depends
upon the electron-current transition matrix elements, Mg,

of Eq. (3). This reduces to the problem of calculating the
properties of the ground state, |Gy), and the various
possible excited states, |Ey_;), that contribute to these
transitions, and the overlap with the operators which
destroy electrons. In the SM [75], we present a fully
fermionic calculation of such rates, but it is much more
instructive to first consider a simpler bosonic approxima-
tion which captures the essential physics.

Bosonic approximation.—To proceed further, we assume
that thermalization effects are such that we can neglect
double-occupied electron sites, N, ~ 0, and consider the
following approximate Holstein-Primakoff transformation
S, = +/Nb' 4+ O(|b*b/\/N|), and S, = b'b — jy in terms
of an effective bosonic mode b. In a dilute regime in which
the number of electronic excitations is much smaller than
the total number of electrons, we can neglect terms of order

|b'h/+/N| and rewrite Eq. (2) as

H=~w.a'a+ o'+ gy(ab’ + a'b) + gy(ab + a'b")
:HJC—FQN(db—FaTbT) = HJC+ V, (4)

up to C numbers and terms of order 1/ VN, and where
gy = V/Ny is the bosonic light-matter coupling. While the
full bosonic Hamiltonian of Eq. (4) can be diagonalized
analytically (see Secs. II and IIT of the SM [75]) to most
clearly highlight the main idea behind the processes studied
here, we will consider the counterrotating term V as a
perturbation of the Jaynes-Cummings (JC) term, Hjc, and
rewrite Eq. (4) as H~w pip_+w*plp, +V, where
pl = afa’ + af bt are the polaritonic excitations of the JC
part of the original Hamiltonian, and where the explicit
expression for the polariton energies w® and the dimen-
sionless coefficients f and a; are given in Sec. III of the
SM [75]. First-order perturbation theory in V gives the
following expression for the ground state and single-
polariton states for the non-RWA system,

Gy) = 1GY) =B |+ +3) =B | =) =B | = =),
£n) = [EP) + -, (5)

where we introduced the perturbative coefficients ., =
—\/EgN(ajfa;,F)/(Zwi) and f,_ = gy(aia; +azay)/
(o' + ™), which are explicitly derived in Sec. III of
the SM [75]. For the sake of clarity, we omitted higher-
order terms in the expansion, which will not contribute to
our results [indicated by the suspended dots in Eq. (5)].
Note that the ground state is a superposition of the Fermi
sea for the system with N electrons in the first band and no
cavity photons, |G}’) = ®,enc} 4061} [0p0), Where [04)
and |0,,) represent the electronic and photonic vacuum
states, respectively, and N is the set of occupied sites of
cardinality N. The double-polariton states of the unper-
turbed basis, similar to all of the other excited states, can be
defined by multiple applications of the JC polaritons,

e.g., |:|:§\(,))>: p1|G1(\(,))) for the single-polariton states, and
) = (p1)?GY))/ V2 and [+-1) = plpL|GY) for
the double-polariton states.

Ground state electroluminescence.—We assume that the
system is initially in its ground state and, by emission of an
electron, can transition to an excited state, which then
decays by emitting photons, the process which constitutes
ground state electroluminescence.

Setting p; < pr < w,, we obtain that IG5 = T'yd6 3,
where G labels the ground state and B labels any state
(see Sec. I of the SM [75] for details). This condition
ensures that the regular direct electroluminescence is
energetically forbidden and allows for the undiluted ground
state process to occur. The ground state polariton creation
leading to photon emission can be estimated as ['gsg =

Z FG—>E
E={£+,t++F,...}"el
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FIG. 2. (a),(c) Polariton emission rates Fe and fluxes w Ffm,

in units of the total electron-transport rate I, for the upper
polariton (B = +, blue curves) and lower polariton (B’ = —
green curves), and sum of the two signals (black curves) versus
the normalized detuning for gy/wy, = 0.05. (b),(d) Total photon
emission rates, from Eq. (6), and fluxes. Solid curves correspond
to the bosonic RWA quantities, dashed curves to the full bosonic
model developed in the SM [75].

We begin by calculating the transition from the ground
state, |Gy), to the single-polariton states, |+y_;). From
Eq. (3), we have Mf, — (yi|(c1 + c2,)|Gn)s where
the state |[+y_;) is the state with (N — 1) electrons due to
the tunneling of the nth electron. Here we use the
perturbative expressions to expand the non-RWA contri-
bution in these states, given in Eq. (5). To proceed further,
one needs to calculate expectation values of fermionic
operators onto light-matter many-body states intrinsically
expressed in terms of polariton operators. This task can
be crucially simplified by using Eqs. (1) and (2) and the
Holstein-Primakoff mapping to rewrite /Nb=S_ =
ch?ncz.n, which, using the definition of the polariton
modes, immediately gives [Pl Cin+ Cop) = af[bT,
Cin+ €20 = —(1//N)afc,,, which holds up to order
1/V/N and holds linearly in any of the perturbative
parameters (see Sec. III of the SM [75] for details). We
then obtain an explicit expression for the matrix elements
contained in Bq. (3), M}, = (vV2Bira; + f_a))/V/N,
which, together with the initial working condition
I,y > I, allows us to estimate the photon emission rate
from the ground state to the single-polariton states, I'Z, as
| R FG_)i & Zn'M ¢|2 |fﬁiia2: +ﬁ+—0‘b |2 that
is, [Z, = O(n*) = O(Ny?/w}), where 1 = gy/wy.

The contributions to I'gsg from the higher-excited states
(which are double-polariton states, |Gy) — | & +5_;) and
|Gy) = | + —n_1)), are of O(n?/N), as detailed in Sec. IIT
of the SM [75]. Thus the dominant contribution to the
ground state electroluminescence (GSE) involves the single-
polariton transitions, giving the total GSE rate ['ggg =~
Tl +Tan = O(7).

Remarkably, this emission is of the same order of
magnitude of the one predicted in systems containing a
single electron [54] (but following the enhanced collective
coupling rate, 7* = Ny*/wj). In the single electron case
[54], the light-matter coupling was strongly modulated, as

the single electron coupling was assumed to be ultrastrong,
and the effective modulation of the coupling due to the
emission of the electron was large. Here instead, the
tunneling of a single electron (among N total) only
minimally modulates the light-matter coupling, yet a
collective enhancement occurs, to ensure the same #>
scaling. This can be interpreted as a superradiant enhance-
ment with respect to the single-particle light-matter cou-
pling of the fermionic system, y, and the overall large
electron current.

In Fig. 2(a), we plot the GSE rates for the upper (blue
curves) and lower (green curves) polariton channels versus
the frequency detuning, as well as the total rate (black
curves), calculating them using the JC polaritons (solid
curves) and comparing them to the full bosonic model that
retains the counterrotating terms (see the SM [75]). There is
a clear inversion of the contribution to polariton creation
versus detuning. In Fig. 2(c), we plot the energy flux of
such an emission for gy = 0.05®,, which shows a peak at
zero detuning and shows that for w. < @, the extracted
energy that is associated with the emission is limited, and
that there is little dependency on the detuning, both results
that are in accordance with recent predictions for dissipa-
tive systems [84]. The plots of Figs. 2(a) and 2(c) give
indications for experiments based on electric current
measurement.

In a photodetection spectroscopic experiment, the extrac-
avity photonic emission is the product of two processes:
First, there is the polariton scattering due to the extraction
of an electron, calculated in I'ggg and which we have shown
to be dependent on the |Gy) — |+x_;) channel. Then there
is a second relaxation process that involves the emission of
a photon, |+y_;) = |Gy_1), occurring with probability
|a§§1|2, proportional to the Hopfield coefficients associated
with light (see the SM [75] for details). Thus the multi-
electron GSE scattering first creates real polaritons in the
cavity, which will then escape by emitting photons at their
own eigenfrequencies. The spectrum of the system is thus
made of two Lorentzian peaks at the polariton frequencies
o~ and o'. The effective total photon emission rate,
o = I + Ty, needs to take into account also the
efficiency of this conversion, which is determined by the
cavity characteristic rate, I'.,,, and by the rate of conversion
of the bright polaritons into dark polaritons, Ffark. For a
leaky cavity, I, > i, we have

i
Iﬂem cav

= = ey T (6)
Iﬁdark+rcav o

F#(:)t |Otph|2

In Figs. 2(b) and 2(d), we plot such total photon emission
rates and fluxes, which show that the decrease in photon
collection is very modest, with respect to the electric signal
measurement [Figs. 2(a) and 2(c)], by which they are
normalized. In Fig. 3, we show the polariton emission rate
and flux versus cavity-matter frequency detuning and of the
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FIG. 3. (a) Polariton emission rate [, = Iz, +TZ, and
(b) flux as a function of the frequency detuning and coupling
strength, setting y = 3 x 1073w, fixed and varying N, and thus
gy = V/Ny. The vertical solid black lines correspond to the cut
shown in Fig. 2. The resonance condition is marked by dashed
horizontal lines (and vertical lines in Fig. 2).

coupling, keeping fixed the single-particle coupling con-
stant, y, which characterizes solid-state structures with
flatbands, so that we can span a wide range of effective
light-matter coupling values up to gy = 0.lwy. Since
gy = VNy, moving rightward in the parameter space
can be achieved simply by increasing the number of
emitters in the system without requiring the light-matter
coupling of the microscopic model to be ultrastrong. The
contour plot relative to the emission rate (I'Z,) [Fig. 3(a)]
shows an asymmetry in the detuning, favoring, at fixed gy,
the lower polariton emission. The flux (w*T%,) [Fig. 3(b)]
shows that the small emission frequency of the lower
polariton curbs down the asymmetry, which is consistent
with previous predictions [84].

Realizations.—The interplay of collective photonic
effects in the presence of local dissipation and transport
has recently been studied in several many-body fermionic
systems [73,85-93]. Doped semiconductor quantum
wells offer a many-body platform in which transport and
ground state properties of cavity QED can be investigated
[4,10,13,35,71,76,78,94-99].

Intersubband transitions in the conduction band of these
systems (the first devices to reach the ultrastrong coupling
regime [97]) allow us to dynamically control the electron
density with external fields [4,94-96,98,100-104]. Thus
multielectron GSE would be an effect relatively easy to
explore in experiments compared to other features arising
from vacuum fluctuations, such as the nonadiabatic modu-
lation of the coupling strength.

Other candidate systems are superconducting circuits
[105-114] and hybrid solid-state architectures [14,
55-57,115-126], especially quantum-dot based systems
[55-58,60-63,127-136].

Conclusions.—In conclusion, we have described a novel
mechanism for light emission controlled by an electric
current, occurring from the ground state of a many-body
dissipative light-matter system in the regime of ultrastrong
light-matter coupling.
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