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Two close parallel mirrors attract due to a small force (Casimir effect) originating from the quantum
vacuum fluctuations of the electromagnetic field. These vacuum fluctuations can also induce motional
forces exerted upon one mirror when the other one moves. Here, we consider an optomechanical system
consisting of two vibrating mirrors constituting an optical resonator. We find that motional forces can
determine noticeable coupling rates between the two spatially separated vibrating mirrors. We show that,
by tuning the two mechanical oscillators into resonance, energy is exchanged between them at the quantum
level. This coherent motional coupling is enabled by the exchange of virtual photon pairs, originating from
the dynamical Casimir effect. The process proposed here shows that the electromagnetic quantum vacuum
is able to transfer mechanical energy somewhat like an ordinary fluid. We show that this system can also
operate as a mechanical parametric down-converter even at very weak excitations. These results
demonstrate that vacuum-induced motional forces open up new possibilities for the development of
optomechanical quantum technologies.
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Effective interactions able to coherently couple spatially
separated qubits [1] are highly desirable for any quantum
computer architecture. Efficient cavity-QED schemes,
where the effective long-range interaction is mediated by
the vacuum field, have been proposed [2–4] and realized
[1,5,6]. In these schemes, the cavity is only virtually
excited and thus the requirement on its quality factor is
greatly loosened. Based on these interactions mediated by
vacuum fluctuations, a two-qubit gate has been realized [7]
and two-qubit entanglement has been demonstrated [1].
Creation of multiqubit entanglement [8] has also been
demonstrated in circuit-QED systems. Very recently, it has
been shown that the exchange of virtual photons between
artificial atoms can give rise to effective interactions of
multiple spatially separated atoms [9,10], opening the way
to vacuum nonlinear optics. Moreover, it has been shown
that systems where virtual photons can be created and
annihilated can be used to realize many nonlinear optical
processes with qubits [11,12]. Multiparticle entanglement
and quantum logic gates, via virtual vibrational excitations
in an ion trap, have also been implemented [13,14].
A recent proposal [15] suggests that classical driving fields
can transfer quantum fluctuations between two suspended
membranes in an optomechanical cavity system.

Given these results, one may wonder whether it is
possible for spatially separated mesoscopic or macroscopic
bodies to interact at a quantum level by means of the
vacuum fluctuations of the electromagnetic field. It is
known that, owing to quantum fluctuations, the electro-
magnetic vacuum is able, in principle, to affect the motion
of objects through it, like a complex fluid [16]. For
example, it can induce dissipation and decoherence effects
on the motion of moving objects [17–19]. By using linear
dispersion theory, it has also been shown that vacuum
fluctuations can induce motional forces exerted upon one
mirror when the other one moves [20]. Here, we show that
two spatially separated moveable mirrors, constituting
a cavity-optomechanical system, can exchange energy
coherently and reversibly, by exchanging virtual photon
pairs. The effects described here can be experimentally
demonstrated with circuit-optomechanical systems,
using ultra-high-frequency mechanical microresonators
or nanoresonators in the GHz spectral range [21,22].
Coupling such a mechanical oscillator to a superconducting
qubit, quantum control over a macroscopic mechanical
system has been demonstrated [21]. Our results show
that the electromagnetic quantum vacuum is able to transfer
mechanical energy somewhat like an ordinary fluid. It
would be as if the vibration of a string (mechanical
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oscillator 1) could be transferred to the membrane of a
microphone (mechanical oscillator 2) in the absence of air
(or any excited medium filling the gap).
We consider a system constituted by two vibrating

mirrors interacting via radiation pressure [see Fig. 1(a)].
Very recently, entanglement between two mechanical
oscillators has been demonstrated in a similar system,
where, however, the two entangled mechanical oscillators
have much lower resonance frequencies and the system is
optically pumped [23]. This system can be described by a
Hamiltonian that is a direct generalization to two mirrors of
the Law Hamiltonian, describing the coupled mirror-field
system [24–28]. It provides a unified description of cavity-
optomechanics experiments [29] and of the dynamical
Casimir effect (DCE) [30–34] in a cavity with a vibrating
mirror [26]. It has been shown [32–38] that the photon pairs

generated by the DCE can be used to produce entangle-
ment. However, in the present case, the interaction and the
entanglement between two mechanical oscillators is deter-
mined by virtual photon pairs. Both the cavity field and the
position of the mirror are treated as dynamical variables and
a canonical quantization procedure is adopted [24]. By
considering only one mechanical mode for each mirror,
with resonance frequency ωi (i ¼ 1, 2) and bosonic
operators b̂i and b̂†i , the displacement operators can be

expressed as x̂i ¼ XðiÞ
zpfðb̂†i þ b̂iÞ, where XðiÞ

zpf is the zero-
point-fluctuation amplitude of the ith mirror. The mirrors
form a single-mode optical resonator with frequency ωc

and bosonic photon operators â and â†. The system
Hamiltonian can be written as Ĥs ¼ Ĥ0 þ ĤI, where
(ℏ ¼ 1) Ĥ0 ¼ ωcâ†âþP

i ωib̂
†
i b̂i is the unperturbed

Hamiltonian. The mirror-field interaction Hamiltonian
can be written as ĤI ¼ V̂om þ V̂DCE, where V̂om ¼
â†â

P
i giðb̂i þ b̂†i Þ is the standard optomechanical inter-

action conserving the number of photons, V̂DCE ¼
ð1=2Þðâ2 þ â†2ÞPi giðb̂i þ b̂†i Þ describes the creation
and annihilation of photon pairs, and gi is the optomechan-
ical coupling rate for mirror i. The linear dependence of the
interaction Hamiltonian on the mirror operators is a
consequence of the usual small-displacement assumption
[24]. This Hamiltonian can be directly generalized to
include additional cavity modes. However, in most cir-
cuit-optomechanics experiments, the electromagnetic res-
onator is provided by a superconducting LC circuit, which
only supports a single mode.
When describing most of the optomechanics experi-

ments to date [29], V̂DCE is neglected. This is a very
good approximation when ωi ≪ ωc (which is the most
common experimental situation). However, when ωi are of
the order of ωc, V̂DCE cannot be neglected. We are
interested in studying this regime, which can be achieved
using microwave resonators and ultra-high-frequency
mechanical microresonators or nanoresonators [21,22].
The Hamiltonian Ĥs describes the interaction between
two vibrating mirrors and the radiation pressure of a cavity
field. However, the same radiation-pressure-type coupling
is obtained for microwave optomechanical circuits (see,
e.g., Ref. [39]).
In order to properly describe the system dynamics,

including external driving and dissipation, the coupling
to external degrees of freedom needs to be considered.
A coherent external drive of the vibrating mirror i can be
described by including the time-dependent Hamiltonian

V̂iðtÞ ¼ F iðtÞðb̂i þ b̂†i Þ; ð1Þ

where F iðtÞ is equal to the external force applied to the
mirror times the mechanical zero-point-fluctuation ampli-
tude. Dissipation and decoherence effects are taken into
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FIG. 1. (a) Schematic of an optomechanical system constituted
by two vibrating mirrors. If one of the two vibrating mirrors is
excited by an external drive F 1ðtÞ, its excitation can be trans-
ferred coherently and reversibly to the other mirror. The inter-
action is mediated by the exchange of virtual photon pairs.
(b) Relevant energy levels of the system Hamiltonian Ĥs as a
function of the ratio between the mechanical frequency of mirror
2 and that of mirror 1. An optomechanical coupling g=ω1 ¼ 0.03
has been used; the cavity-mode resonance frequency is
ωc ¼ 0.495ω1. The lowest-energy anticrossing corresponds to
the resonance condition for the DCE [26]. The higher energy one
is the signature of the mirror-mirror interaction mediated by the
virtual DCE photons.
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account by adopting a master-equation approach. For
strongly coupled hybrid quantum systems, the description
offered by the standard quantum-optical master equation
breaks down [40,41]. Following Refs. [41–43], we express
the system-bath interaction Hamiltonian in the basis formed
by the energy eigenstates of Ĥs [26].
We begin our analysis by numerically diagonalizing the

Hamiltonian Ĥs in a truncated finite-dimensional Hilbert
space. The truncation is realized by only including eight
Fock states for each of the three harmonic oscillators. The
blue solid curves in Fig. 1(b) describe the eigenvalue
differences Ej − E0 (E0 is the ground-state energy) of
the total Hamiltonian Ĥs (including V̂DCE) as a function
of ω2=ω1. For the optomechanical couplings, we use
g1 ¼ g2 ¼ g ¼ 0.03ω1. Such a coupling strength is quite
high, but nevertheless below the onset of the so-called
ultrastrong optomechanical coupling regime [41,44–46].
The cavity-mode resonance frequency is fixed at
ωc ¼ 0.495ω1. This value is chosen close to the resonance
condition for the DCE [26] in order to increase the effective
coupling between the mirrors. For comparison, we also
show in Fig. 1(b) (dashed gray lines) the lowest-
energy levels En;k1;k2 ¼ωcn−

P
i g

2
i n

2=ωiþ
P

iωiki of
the standard optomechanics Hamiltonian Ĥ0 þ V̂om.
This Hamiltonian has the eigenstates jk1; k2; ni≡
D1ðnβ1Þjki1 ⊗ D2ðnβ2Þjki2 ⊗ jnic, where jnic are the
cavity Fock states and jkii are the bare mechanical states
for the ith mirror.
The bare mechanical states jkii are displaced by the

optomechanical interaction, D̂iðnβiÞ ¼ exp½nβiðb̂†i − b̂iÞ�,
with βi ¼ gi=ωi (see Sec. I of Supplemental Material [47]).
The main differences between the blue solid and the gray
dashed curves are the appearance of small energy shifts,
and of level anticrossings in the region ω2=ω1 ∼ 1. We
indicate by jψni (n ¼ 0; 1; 2…) the eigenvectors of Ĥs and
by En the corresponding eigenvalues, choosing the labeling
of the states such that Ej > Ek for j > k. The lowest-energy
anticrossing corresponds to the resonance condition for the
DCE [26]. The higher-energy splitting in Fig. 1(b) orig-
inates from the coherent coupling of the zero-photon states
j1; 0; 0i and j0; 1; 0i. At the minimum energy splitting
2λ0110 ≃ 2.11 × 10−2ω1, the resulting states are well approxi-
mated by jψ3;4i ≃ ð1= ffiffiffi

2
p Þðj1; 0; 0i � j0; 1; 0iÞ. As we will

show explicitly below by using perturbation theory, this
mirror-mirror interaction is a result of virtual exchange of
cavity photon pairs. When the mirrors have the same
resonance frequency, an excitation in one mirror can be
transferred to the other by virtually becoming a photon pair
in the cavity, thanks to the DCE. The resulting minimum
energy splitting provides a measure of the effective
coupling strength between the two mirrors. At higher
energy for ω2 ≃ ω1 a ladder of increasing level splittings,
involving higher number phonon states, is present (see
Sec. III in [47]).

The origin of the higher-energy avoided-level crossing
shown in Fig. 1(b) can be understood by deriving an
effective Hamiltonian, using second-order perturbation
theory or, equivalently, the James’ method [52,53] (see
Sec. II in [47]). The resulting effective Hamiltonian,
describing the coherent coupling of states j1; 0; 0i and
j0; 1; 0i, is

Ĥeff ¼ Ω1j1; 0; 0ih1; 0; 0j þΩ2j0; 1; 0ih0; 1; 0j
þ ðλ0110j1; 0; 0ih0; 1; 0j þ H:c:Þ; ð2Þ

where Ω1 ¼ ω1 þ Δ10 and Ω2 ¼ ω2 þ Δ01 denote the
Lamb-shifted levels [47]. The effective coupling strength is

λ0110 ¼
X

k;q

h0; 1; 0jV̂DCEjk; q; 2ihk; q; 2jV̂DCEj1; 0; 0i
E0;1;0 − Ek;q;2

: ð3Þ

Equations (2) and (3) clearly show that the one-phonon
state of mirror 1 can be transferred to mirror 2 through a
virtual transition via the two-photon intermediate states
jk; q; 2i. We notice that the largest contribution is provided
by the zero-phonon intermediate state (k ¼ q ¼ 0). This
perturbative calculation gives rise to an effective coupling
strength λ and energy shifts Δ in good agreement with the
numerical calculation shown in Fig. 1(b) (see Sec. II of
[47]). Analogous effective Hamiltonians can be derived for
the avoided-level crossings at higher energy (see Sec. II
of [47]).
If the optomechanical couplings gi are strong enough to

ensure that the DCE-induced effective coupling (3)
becomes larger than the relevant decoherence rates in
the system, the transfer of one-phonon excitations between
the two mirrors can be deterministic and reversible.
Neglecting decoherence (calculations including losses
can be found in Secs. V and VI of [47]), if the system is
initially prepared in the state j1; 0; 0i, it will evolve as

jψðtÞi ¼ cosðλ0110tÞj1; 0; 0i − i sinðλ0110tÞj0; 1; 0i: ð4Þ

After a time t ¼ π=ð2λ0110Þ, the excitation will be completely
transferred to mirror 1. After a time t ¼ π=ð4λ0110Þ, the two
mirrors will be in a maximally entangled motional state.
We now investigate the system dynamics starting from a

low-temperature thermal state and introducing the excitation
of mirror 1 by a single-tone continuous-wave mechanical
driveF 1ðtÞ ¼ A cos ðωdtÞ. We numerically solve the master
equation for hybrid quantum systems in a truncated Hilbert
space [54]. Figure 2 shows the time evolution of the mean
phononnumbersof the twomirrors hB̂†

i B̂ii and the intracavity
mean photon number hÂ†Âi. Here, Â, B̂i are the physical
photon and phonon operators. Such operators Ô ¼ Â, B̂i can
be defined in terms of their bare counterparts ô ¼ â, b̂i
as [55–58] Ô ¼ P

En>Em
hψmjðôþ ô†Þjψnijψmihψnj. We
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consider the system initially in a thermal state with a
normalized thermal energy kBT=ω1 ¼ 0.208, corresponding
to a temperatureT ¼ 60 mK forω1=2π ¼ 6 GHz.During its
time evolution, the system interactswith thermal reservoirs all
with the same temperatureT.We use γ1 ¼ γ2 ¼ γ ¼ ω1=260
and κ ¼ γ for the mechanical and photonic loss rates. We
consider aweak (A=γ ¼ 0.95) resonant excitation ofmirror 1
(ωd ¼ ω1). We present results for two normalized coupling
strengths (g=ω1 ¼ 0.01, 0.03), and set ω2 ¼ ω1. The results
shown in Fig. 2(a) demonstrate that the excitation transfer
mechanism via virtual DCE photon pairs, proposed here,
works very well for g=ω1 ¼ 0.03. In steady state, mirror 2
reaches almost the same excitation intensity as the driven
mirror 1. The photon population differs only slightly from the
thermal one at t ¼ 0, showing that a negligible amount of
DCE photon pairs are generated. We also observe that the
influence of temperature on the mechanical expectation
values is almost negligible (see Supplemental Material
[47]). On the contrary, the cavity mode at lower frequency
ismuchmore affected by the temperature.We observe that for
g=ω1 ¼ 0.01, although the transfer is reduced, the effect is
still measurable. Themean photon number obtained at T ¼ 0
is also shown for comparison (dash-dotted curves) in both the
panels. The mirror-mirror excitation transfer at g=ω1 ¼ 0.01
can be significantly improved [47] by taking advantage of the
DCE resonance conditionωc ¼ 2ω1. However, in this case, a
significant amount of real photon pairs are generated. This
configuration can be used to probe the DCE effect in the
presence of thermal photons.

In order to put forward the potentialities and the
flexibility of this vacuum-field-mediated interaction
between mechanical oscillators, we now show that this
system also can operate as a mechanical parametric down-
converter. For mechanical frequencies such that ω1 ≃ 2ω2,
a ladder of avoided-level crossings manifests. Two of them
are shown in Fig. 3(a). Also in this case, the avoided-level
crossings originate from the exchange of virtual photon
pairs, as can be understood by using second-order pertur-
bation theory. For example, the dominant path for the
lowest-energy level anticrossing goes through the inter-
mediate state j0; 0; 2i: j1; 0; 0i ↔ j0; 0; 2i ↔ j0; 2; 0i [47].
We note that these avoided-level crossings, in contrast to
those shown in Fig. 1(b), do not conserve the excitation
number. Analogous coherent coupling effects can be
observed in the ultrastrong-coupling regime of cavity
QED [9,11,43,59,60]. Using ωc¼1.2ω1 and g=ω1¼0.12,
we obtain a minimum energy splitting λ0210=ω1 ≃ 4 × 10−3.
We fix the resonance frequency of mirror 2 at the value
providing the minimum level splitting, and calculate the
system dynamics considering a weak resonant excitation of
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FIG. 2. System dynamics forωc ≃ 1.5ω1 under continuous-wave
drive of mirror 1. The blue solid and red dashed curves describe the
mean phonon numbers hB̂†

1B̂1i and hB̂†
2B̂2i, respectively, while the

black dotted curve describes the mean intracavity photon number
hÂ†Âi and the gray dash-dotted curve shows the same photon
number hÂ†Âi0, calculated assuming zero temperature.
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FIG. 3. Mechanical parametric down-conversion. (a) Lowest-
energy levels of the system Hamiltonian as a function of the ratio
between the mechanical frequency of mirror 2 and that of mirror
1. An optomechanical coupling g=ω1 ¼ 0.12 has been used and
the cavity-mode resonance frequency is ωc ¼ 1.2ω1. Two
avoided-level crossings are clearly visible. The one at lower
energy corresponds to the resonant coupling of the one-phonon
state of mirror 1 with the two-phonon state of mirror 2, whose
resonance frequency is half that of mirror 1. The higher-energy
anticrossing corresponds to the resonant coupling of the states
j1; 1; 0i and j0; 3; 0i. (b) Time evolution of the mean phonon and
photon numbers. (c) Time evolution of the population of the first
three energy states. (d) Equal-time phonon-phonon normalized

correlation functions gð2Þi ðt; tÞ for the two mirrors.
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mirror 1, F 1ðtÞ¼AcosðωdtÞ, with ωd¼ðE3þE2−2E0Þ=2,
and A=γ ¼ 0.7. We also used γ ¼ 2 × 10−3ω1 and
κ ¼ γ=2. The results shown in Fig. 3(b) demonstrate a
very efficient excitation transfer between the two mechani-
cal oscillators of different frequency. We also observe that
the transfer occurs even in the presence of a very weak
excitation of mirror 1 (peak mean phonon number of mirror
1: hB̂†

1B̂1i ≃ 0.2). It may appear surprising that the steady-
state mean phonon number of mirror 2 is significantly
larger than that of mirror 1, even though it receives all the
energy from the latter. This phenomenon can be partly
understood by observing that a phonon of mirror 1 converts
into two phonons (each at half energy) of mirror 2.
In addition, once the system decays to the state
jψ1i ≃ j0; 1; 0i, the remaining excitation in mirror 2 will
not be exchanged back and forth with mirror 1, since the
corresponding energy level is not resonantly coupled to
other energy levels [see Fig. 3(a)]. Figure 3(c) displays the
populations of the three lowest-energy levels, which are the
levels that are most populated at this input power. This
panel confirms that jψ1i has the higher population in
steady state.
We also calculated the equal-time phonon-phonon nor-

malized correlation functions

gð2Þi ðt; tÞ ¼ hB̂†
i ðtÞB̂†

i ðtÞB̂iðtÞB̂iðtÞi
hB̂†

i ðtÞB̂iðtÞi2
: ð5Þ

The high value at early times obtained for mirror 2
[see Fig. 3(d)] confirms the simultaneous excitation of
phonon pairs.
In conclusion, we demonstrated that mechanical

quantum excitations can be coherently transferred among
spatially separated mechanical oscillators, through a dis-
sipationless quantum bus, due to the exchange of virtual
photon pairs. The experimental demonstration of these
processes would show that the electromagnetic quantum
vacuum is able to transfer mechanical energy somewhat
like an ordinary fluid [16]. The results presented here open
up exciting possibilities of applying ideas from fluid
dynamics in the study of the electromagnetic quantum
vacuum. Furthermore, these results show that the DCE in
high-frequency optomechanical systems can be a versatile
and powerful new resource for the development of quan-
tum-optomechanical technologies. If, in the future, it will
be possible to control the interaction time (as currently
realized in superconducting artificial atoms), e.g., changing
rapidly the resonance frequencies of mechanical oscillators
(see Sec. VI of [47]), the interaction scheme proposed here
would represent an attractive architecture for quantum
information processing with optomechanical systems
[61]. The best platform to experimentally demonstrate
these results is circuit optomechanics using ultra-high-
frequency (ω1 at 5–6 GHz) mechanical oscillators.
Their quantum interaction with superconducting artificial

atoms has been experimentally demonstrated [21,22].
Considering instead their interaction with a superconduct-
ing microwave resonator should allow the observation of
the effects predicted here. Specifically, combining circuit-
optomechanics schemes able to increase the coupling
[39,62] with already demonstrated ultra-high-frequency
mechanical resonators [21,22] represents a very promising
setup for entangling spatially separated vibrations via
virtual photon pairs (see Sec. VII of [47]).
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