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I. MAGNETIC FIELD SIMULATIONS

For the case of Dy, we have considered a satura-
tion magnetization of µ0Ms=3.7 T [1], exchange stiff-
ness A = 1.5×10−12 Jm−1 [2], and a magnetic damp-
ing α = 0.036 [3]; for Co, we take µ0Ms=1.79 T [4],
A = 3.1×10−11 Jm−1 [5] and α = 0.005 [6]; and for FeCo,
µ0Ms=2.4 T [6], A = 1.7×10−11 Jm−1 [7] and α = 10−4 [6].
Note that, regarding the fabrication of these nanopillars,
outstanding control on the size and shape can be achieved
by using a variety of techniques, such as molecular beam
epitaxy [8] or focused electron-beam-induced deposition
(FEBID) [9]. We calculated the magnetic field generated by
the cylinders using MuMax3 [10], a finite differences, open-
source solver of the Landau-Lifshitz-Gilbert equation [11].

II. MASTER EQUATION AND QUANTUM TRAJECTORY
SIMULATIONS

Simulation of the system dynamics in a dissipative environ-
ment has been performed following two different techniques:
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FIG. S1. Procedure to obtain an effective TLS. (a) Bare energy levels
defined in the basis of bright and dark states and in the frame rotating
with ωx, see Eq. (S4). |b〉 is coupled to |0〉 through the microwave
magnetic field in the x axis, and to |d〉 through the magnetic field
in the z axis. (b) The microwave field dresses the states |b〉 and |0〉.
In the basis of dressed energy levels, the states |e〉 and |d〉 define an
effective TLS, driven by the field in z axis. If ∆�Ωx, sin(θ)≈ 1.

∗ Present address: Clarendon Laboratory, University of Oxford, Oxford OX1
3PU, UK

master equation simulations and the method of quantum tra-
jectories.

For the master equation simulations, we solved numerically
the differential equations that govern the evolution of the den-
sity matrix:

ρ̇ =−i[H,ρ]+ (γmnth/2)La[ρ]+ (γz/2)L
σ†σ

[ρ], (S1)

where LO[ρ] ≡ 2OρO†−O†Oρ −ρO†O. This was done by
truncating the Hilbert space setting a maximum number N of
phonons in the oscillator. For the calculations done in this
manuscript, N = 100 was enough to guarantee convergence
for the highest values of driving considered.

The method of quantum trajectories yields a stochastic evo-
lution of a pure wavefunction, which averaged over many dif-
ferent realizations provides the same predictions as the mas-
ter equation for the density matrix. At every finite time step
dt, for each element of the type (γi/2)L0i [ρ] in the master
equation, the wavefunction |ψ(t)〉 can randomly undergo a
quantum jump with probability pi = γi〈ψ(t)|Oi|ψ(t)〉dt that
transforms the system as

|ψ(t +dt)〉 ∝ Oi|ψ(t)〉 (S2)

(under proper normalization). The occurrence of a jump is
determined by generating a random number ri ∈ [0,1] at each
time step, so that the jump occurs whenever r < pi (dt must
be chosen small enough so that, at every time step, pi � 1).
When no jump occurs, the wavefunction evolves as

|ψ(t +dt)〉 ∝ e−iHeffdt |ψ(t)〉, (S3)

where Heff is a non-Hermitian Hamiltonian, Heff ≡ H −
i∑i(γi/2)O†

i Oi.

III. DERIVATION OF THE TWO-PHONON, DRIVEN
JAYNES-CUMMINGS HAMILTONIAN

Here we define an effective TLS in a way very similar to
the one outlined in Refs. [12, 13]. Our starting point is the
Hamiltonian:

H = DS2
z +Ωx cos(ωxt)Sx +Ωz cos(ωzt)Sz

+ωma†a+g2(a† +a)2Sz . (S4)
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By working in the basis of bright and dark states

|b〉= 1√
2
(|−1〉+ |1〉), (S5)

|d〉= 1√
2
(|−1〉− |1〉), (S6)

and assuming, Ωx � ωx ∼ D, we can perform a rotat-
ing wave approximation and apply a unitary transformation
U = exp[iωxt(|b〉〈b|+ |d〉〈d|)] to Eq. (S4) in order to move to
a rotating frame where the time dependence with ωx is elimi-
nated:

H = ∆(|b〉〈b|+ |d〉〈d|)+ωma†a+
[
Ωx |0〉〈b|

+Ωz cos(ωzt) |b〉〈d|+g2(a† +a)2 |b〉〈d|+h.c.
]
, (S7)

with ∆ ≡ D−ωx. The driving term with Ωx can be removed
by working in the dressed basis of states |g〉 and |e〉:

|g〉= sin(θ) |0〉− cos(θ) |b〉 , (S8)
|e〉= cos(θ) |0〉+ sin(θ) |b〉 , (S9)

with cos(θ) = 1/
√

1+ξ−2, sin(θ) = 1/
√

1+ξ 2, and ξ =

Ωx/(∆/2+R), where R =
√

Ω2
x +(∆/2)2. In the limit ∆≈ 0,

we have ωgd =ωde =Ωx. This makes it evident that we should
take the opposite limit ∆� Ωx, since this will increase the
difference between ωgd and ωde, allowing us to spectrally iso-
late one of these transitions as an effective TLS. In that case,
ωgd ≈ ∆+Ω2

x/∆, and ωde ≈ Ω2
x/∆, so that ωgd � ωde, and

sin(θ) ≈ 1. By defining an effective TLS with lowering op-
erator σ ≡ |d〉〈e| and transition energy ωσ = ωde, and assum-
ing Ωz � ωσ , we can make a rotating wave approximation
to eliminate fast-rotating terms and perform a final unitary
transformation U = exp

[
iωzt(σ†σ +a†a/2)

]
to remove the

remaining time dependence, yielding the driven, two-phonon
Jaynes-Cummings Hamiltonian of Eq. (2) in the main text.
Here and in the main text, we define Ω ≡ Ωz to lighten the
notation. The scheme presented here is sketched in Fig. S1.
The derivation will be valid for Ωx�{∆,ωx}, Ω�Ωx, and
g2� ωm, with ∆≡D−ωx. Since D = 2π× 2.88 GHz, a sen-
sible choice of parameters is ωx = 2π× 1 GHz, giving ∆ =
2π× 1.88 GHz. Since we want ωσ = 2ωm ≈ 2π× 3.6 MHz,
this implies a value Ωx ≈ 2π× 82 MHz, which fulfills the con-
ditions above and sets the maximum limit for the driving Ω.

IV. FIRST ORDER MAGNETIC GRADIENT EFFECTS
DUE TO IMPERFECT ALIGNMENT

In the main text, we considered a geometry in which the
equilibrium point of the oscillator lies exactly at the center of
the gap between two nanomagnets, yielding a null first-order
gradient of the magnetic field and therefore a pure quadratic
coupling. However, it is important to address to which ex-
tent unavoidable deviations from a perfectly aligned situation
might render noticeable effects due to the induced coupling
through first-order gradients. In the simulation depicted in
Fig. S2, we observe that a misalignment of 0.1 nm is able

Equilibrium position (nm)

FIG. S2. First and second-order coupling rates as a function of the
equilibrium position of the oscillator with respect to the center of the
gap between the magnets.

to induce first-order couplings in the range of kHz. Tak-
ing into account that we are considering mechanical modes
with frequencies ωm ∼ MHz and fixing the two-phonon res-
onant condition ωσ ≈ 2ωm, we see that first-order gradi-
ent terms of the kind g1(a + a†)(σ + σ†) will rotate as ∼
exp[±iωmt] and can therefore be neglected beside unimpor-
tant frequency shifts (e.g., even for g1 as high as 100 kHz,
one can still achieve full two-phonon Rabi oscillations gov-
erned by g2/(2π) =5 Hz by tuning the TLS frequency to
ωσ = ωm−λ , with λ ≈3.54 kHz).

By tuning the TLS in resonance with the mechanical mode,
ωσ = ωm, the first-order coupling can be used as well to sta-
bilize the resonator close to the middle point. The variation in
g1 as the oscillator is moved would yield different responses
of the TLS, which could be used in a feedback loop to correct
the position of the resonator. It has been demonstrated that pi-
cometer stability can be achieved by adding feedback control
to piezo-actuators via spectroscopy arrangements, which can
be readily obtained by monitoring the NV center light emis-
sion [14, 15].

V. DETECTION OF MECHANICAL NON-CLASSICAL
STATES

In the main text, we have focused on the generation of non-
classical states of motion. In an experimental implementation,
it is vital do to have a scheme to detect and reconstruct such
states. There is a great body of work regarding the reconstruc-
tion of mechanical states [16]; here, we comment on the route
consisting of a displacement and a phonon number measure-
ment. One possible way to see that this technique allows to
reconstruct the quantum state is to note that the Wigner func-
tion can be written as

W (α,α∗) = 2π Tr
{

D̂†(α)ρ̂D̂(α)P̂
}
, (S10)

with D̂ the displacement operator and P̂ the parity operator.
Through phonon number measurements, we can obtain the
expected value of the parity operator for different displaced
states and reconstruct the Wigner function.
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FIG. S3. Simulation of a state-reconstruction measurement. A given mechanical state is displaced by a fixed amplitude |α|= 15 and a variable
angle θ , and the phonon number distribution p(n) is measured. The states used here are: (a) a non-classical mechanical state generated by our
system (the same as in the inset of Fig. 5 in the main text); (b) a cat state with the same phonon population as in (a); (c) a coherent state with
the same phonon population as in (a). This data can be used to retrieve the quantum state of the system via reconstruction algorithms.

We can also picture the number measurement on a dis-
placed state as an homodyne measurement; by considering the
displaced annihilation operator ã= a+α , with α = |α|eiθ , the
resulting number operator is

ã†ã = a†a+a†
α +α

∗a+ |α|2. (S11)

For |α|2� 〈a†a〉, we obtain that the number measurement of
the displaced state minus an offset |α|2 measures the quadra-
ture amplitude Qθ :

(ã†ã−|α|2)/(
√

2|α|)≈ (ae−iθ +a†eiθ )/
√

2 = Qθ . (S12)

Measured over one complete cycle in θ , the quadrature am-
plitudes Qθ provide tomographically complete information
about the quantum system [17, 18]. Figure S3 shows a simu-
lation of the proposed measurement; a given state is displaced
by a fixed amplitude α and a variable phase θ , and the phonon
number distribution is measured. The difference between the
resulting data for the distinct states considered is apparent
even to the naked eye; this information can be used to infer
the quantum state through multiple reconstruction algorithms,
like maximum likelihood or entropy maximization [16].

The qubit-resonator coupling can also be used in order to
perform state tomography of the mechanical oscillator. First
order effects allow us to go from a resonant two-phonon cou-
pling regime to a resonant or dispersive one-phonon coupling
regime by tuning the TLS energy out of the two-phonon res-
onance. This would allow, for instance, to measure the state
of the oscillator generated by the two-phonon interaction by
suddenly switching the TLS energy to a regime of disper-
sive interaction governed by g1, which can be used to em-
ploy techniques of state reconstruction via displacement and
number measurement through Ramsey interferometry of the
qubit [16, 19, 20].

VI. CONFINED DYNAMICS IN PHASE SPACE

The role of nonlinearity brought by the TLS is to limit the
dynamics to a region of the phase space of the oscillator. This
is clearer if we represent Eq. (2) in the basis that diagonalizes
the driven-TLS Hamiltonian [21], considering, for simplicity,
the resonant case ωσ = ωz:

H = Ωσ̃z +(ωm−2ωz)a†a+
g2

2
[a†2

(σ̃ − σ̃
† + σ̃z)+h.c.]

(S13)
At high driving, Ω� g2, the terms proportional to a†2

(σ̃ −
σ̃†)+h.c. are counter-rotating and do not contribute to the dy-
namics provided that nag2�Ω, where na is the phonon pop-
ulation in the oscillator. In this case, the evolution under the
terms a†2

σ̃z +h.c. is decoupled for the two eigenstates of σ̃z,
|±〉, and takes the form of a squeezing operation along the an-
gle ±π/4. Due to this squeezing operation, the phonon pop-
ulation of the oscillator grows. Once the population reaches a
value such that nag2 ≈Ω, the counter-rotating terms enter into
action and distort the evolution. They act as a barrier in phase
space, preventing a small initial population from growing past
a given threshold, in close similarity the physics of confined
quantum Zeno dynamics [22–24]. This is shown in Fig. 4
in the main text, where we depict the evolution, from the mo-
ment the driving is turned on, of a system initially in its ground
state. In order to gain insight in the driven-dissipative nature
of the dynamics, we show the phonon population and Wigner
functions of the reduced cavity system, computed both from
the density matrix and from the wavefunction of a single quan-
tum trajectory [25]. Initially, the TLS is in its ground state,
which is described in the dressed basis as a linear superposi-
tion |g〉∝ |+〉+ |−〉. Therefore, the mechanical mode evolves
in a superposition of being squeezed along the π/4 and −π/4
axes, yielding a cross-like pattern in phase space, as shown in
the first column of Fig. 4(b). After that, the counter-rotating
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terms enter into action and the squeezing is distorted, yield-
ing a ribbon-like pattern in a confined region of phase space.
Finally, the interplay between the coherent evolution and dis-
sipation in the resonator yields a steady Wigner function with
two lobes associated to the coherent states |± i

√
Ω/g2〉.

VII. LONG-LIVED CATS IN A QUANTUM TRAJECTORY

When considering a single quantum trajectory, any cat state
in which the system is found to be remains stable for very
long times, even in the absence of any feedback protocol. The
reason is that they are only affected by the random quantum
jumps that flip their phase. At any time, the probability to un-
dergo a jump during a small time interval dt is p = γmnthnadt.
Therefore, if the system is initialized in one of the two cat
states that compose the mixed steady state, this state remains
stable with a fidelity:

F(t)≈ 1− 1
2

γmnthnat, (S14)

where we considered time intervals shorter than the phonon
lifetime, i.e., t < 1/(γmnthna). Since phonon lifetimes can
reach hundreds of seconds in oscillators with high quality fac-
tors [26], a cat state in this system can in fact be extremely
long lived. This is shown in Fig. S4, where we selected a
pure state of the quantum trajectory at a random time (once

the evolution is stationary) that is very close to a cat state,
let it evolve as a mixed state under the master equation, and
computed the fidelity to a cat state with the same population
as the initial state. This shows that the cat state can be main-
tained stable in this system with a fidelity F > 0.99 for times
∼ 1 ms, during which it can be used as a resource for quantum
applications [27–31].
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FIG. S4. Fidelity F to a cat state versus time for an initial state
chosen from a random time (t = 0) in the quantum trajectory, once
the steady-state limit is reached. The initial state resembles a cat
with fidelity F > 0.999. The blue, dashed line corresponds to the
expression for F ≈ 1− 1

2 γmnthnat, which is valid for short times. For
long times, the fidelity tends to F = 1/

√
2. Simulation parameter,

those of Figs. 3-4.
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