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I. MAPPING TO THE EXTENDED ISING MODEL AND
EXACT SOLUTIONS

We start from the extended quantum Ising model with
longer-range interactions in a transverse field, with the Hamil-
tonian

H =

Nf∑
n=1

L∑
j=1

(
Jx
n

2
σx
j σ

x
j+n+

Jy
n

2
σy
j σ

y
j+n

)j+n−1∏
l=j+1

σz
l +

L∑
j=1

µ

2
σz
j ,

(S1)
where σx,y,z

j are Pauli matrices for the spin at site j, and L
(assumed even) is the total number of sites. By the Jordan-
Wigner transformation

c1 = −σ+
1 = −(σx

1 + iσy
1 )/2, cj = −σ+

j

j−1∏
i=1

σz
i , (S2)

we can obtain a spinless fermion Hamiltonian with longer-
range pairing and hopping terms with fermion parity (−1)Np

of the number of fermions

Np =

L∑
j=1

c†jcj , (S3)

as H = Ho +Hb, where the open chain part is

Ho =

Nf∑
n=1

L−n∑
j=1

(
J+
n

2
c†jcj+n +

J−
n

2
c†jc

†
j+n + h.c.

)

−
L∑

j=1

µ

(
c†jcj −

1

2

)
, (S4)

and the boundary part reads

Hb =
(−1)Np

2

Nf∑
n=1

L∑
j=L−n+1

(J+
n c

†
jcj+n + J−

n c
†
jc

†
j+n + h.c.),

(S5)
with J±

n ≡ Jx
n ± Jy

n . Thus, given a definite even fermion
parity (−1)Np = 1, this extended Kitaev fermion chain [1]
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has an antiperiodic boundary condition cj+L = −cj . Here we
choose all the hopping and pairing parameters as real, which
make the Hamiltonian preserve time-reversal symmetry and
belong to the BDI class (Z type) characterized by the winding
numbers [2, 3].

For the thermodynamic limit L ≫ Nf ≥ 1, we use the
Fourier transformation,

cj =
1√
L

∑
q

exp(−iqj) cq, (S6)

to express the Bogoliubov-de Gennes Hamiltonian as

H =
∑
q

(c†q, c−q)Hq

(
cq
c†−q

)
, (S7)

where the complete set of wavevectors is q = 2πm/L with

m = −L− 1

2
,−L− 3

2
, · · · , L− 3

2
,
L− 1

2
. (S8)

Here, we can write

Hq =
1

2
r(q) · σ, (S9)

with the vector r(q) = (0, y(q), z(q)) in the auxiliary two-
dimensional y-z space,

y(q) =

Nf∑
n=1

J−
n sin(nq), (S10)

z(q) =

Nf∑
n=1

J+
n cos(nq)− µ, (S11)

and σ = (σx, σy, σz). Using the Bogoliubov transformation

cq = cos
Θ

2
ηq + i sin

Θ

2
η†−q, (S12)

with tanΘ = y(q)/z(q), we can diagonalize the Hamiltonian
as

H =
∑
q

ϵq

(
η†qηq −

1

2

)
, (S13)

and obtain the ground state

|G⟩ =
∏
q

[cos
Θ

2
+ i sin

Θ

2
η†qη

†
−q]|0⟩, (S14)
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where the energy spectra are

ϵq = ±1

2

√
y(q)2 + z(q)2. (S15)

In Fig. S1, we plot the energy spectra for L = 200 and trajec-
tories of winding vectors for four different extended Kitaev
fermion chain models [1] considered in the main text.

II. WINDING NUMBERS

For the BDI symmetry class Kitaev chain fermion systems,
the winding number in the auxiliary space of momentum be-
haves as a Z topological invariant [2, 4], which is a funda-
mental concept in geometric topology. The winding number
of the closed loop in auxiliary y-z plane around the origin can
be written as

ν =
1

2π

∮
ydz − zdy

|r|2
. (S16)

Via the substitution ζ(q) ≡ exp(iq), we can rewrite in com-
plex space that

y(q) =

Nf∑
n=1

J−
n (ζn − ζ−n)

2i
≡ Y (ζ), (S17)

and

z(q) =

Nf∑
n=1

J+
n (ζn + ζ−n)

2
− µ ≡ Z(ζ). (S18)

By defining a complex characteristic function

g(ζ) ≡ Z(ζ) + iY (ζ) (S19)

=

Nf∑
n=1

(Jx
nζ

n + Jy
nζ

−n)− µ, (S20)

we obtain the winding number by calculating the logarithmic
residue of g(ζ) in accordance with the Cauchy’s argument
principle [5]

ν =
1

2πi

∮
|ζ|=1

dζ
g′(ζ)

g(ζ)
= N −P, (S21)

where in the complex region |ζ| < 1, N is the number of zeros
for g(ζ) = 0, and P is the number of poles for g(ζ) = ∞. For
two special cases: Jy

n = 0 ∀n, we have

g(ζ) =

Nf∑
n=1

Jx
nζ

n + µ, (S22)

and only zeros exist; while Jx
n = 0 there only poles exist.

III. MAJORANA ZERO MODES

We can write the open-chain Hamiltonian (S4) in terms of
Majorana fermion operators:

aj = c†j + cj , bj = i(c†j − cj), (S23)

with relations {ai, aj} = {bi, bj} = 2δij , {ai, bj} = 0 as

Ho = − i

2

Nf∑
n=1

L−n∑
j=1

(Jx
nbjaj+n + Jy

nbj+naj) +
iµ

2

L∑
j=1

ajbj .

(S24)
We can assume an ansatz wave function as a linear combina-
tion of Majorana operators aj [6]:

ϕ =

L∑
j=1

αjaj , (S25)

and calculate the commutation to satisfy the condition
[H,ϕ] = 0 for the existence of Majorana zero modes [7, 8].
Then, the coefficients are given by the recursion relations

Nf∑
n=1

(Jx
nαj+n + Jy

nαj−n)− µαj = 0, (S26)

for j = n + 1, n + 2 · · · , L − n. These recursion equations
can be solved with the solutions of characteristic equations
g(ζ) = 0 [9] given g(ζ) in Eq. (S20). If N ≥ P , we should
require Majorana zero modes at the left end satisfying |αL| →
0, for the thermodynamic limit L ≫ 1, and only in the range
|ζ| < 1 should the zeros {ζl} be considered. Thus, we have
N independent solutions

αj =

N∑
l=1

ωl(ζl)
j , (S27)

with {ωl} undetermined coefficients, and for j ≤ P , we have
P constraint conditions

Nf∑
n=1

Jx
nαj+n + µαj +

j−1∑
n=1

Jy
nαj−n = 0. (S28)

Thus, we have (N − P) independent normalized left zero
modes ϕ1L, ..., ϕ

(N−P)
L with coefficients {α1

j}, ..., {α
(N−P)
j },

where the orthogonal Majorana zero modes can be ob-
tained by using the Schmidt orthogonalization with conditions
{ϕi, ϕj†} = 2δij . These considerations also hold for linear
combinations of Majorana operators {bj} with the form

ψi =

L∑
j=1

βi
jbj , (S29)

and

βi
j = αi

L−j+1, (S30)
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FIG. S1. (color online) (a-d) Energy spectra for L = 200 and (e-h) trajectories of winding vectors for an extended Kitaev fermion chain with
parameters: (a,e) J+

1 = J−
1 = 1, J+

2 = J−
2 = 2, J+

3 = J−
3 = 2 (Nf = 3); (b,f) J+

1 = J−
1 = 0.1, J+

2 = J−
2 = 0.21, J+

3 = J−
3 = 0.44,

J+
4 = J−

4 = 0.9, J+
5 = J−

5 = 2 (Nf = 5); (c,g) J+
1 = J−

1 = 0.1, J+
2 = J−

2 = 0.21, J+
3 = J−

3 = −0.74, J+
4 = J−

4 = 0.9 (Nf = 4); and
(d,h) J+

2 = J−
2 = 2.4, J+

3 = 2, J−
3 = −2 (Nf = 3).

because Majorana zero modes appear in pairs [10]. For the
other case N < P , we should consider right Majorana zero
modes that require |α1| → 0 for L≫ 1 and the characteristic
equation ḡ(ζ) = g(1/ζ) = 0, with N̄ zeros and P̄ poles in
|ζ| < 1, where we can obtain that

N + N̄ = P̄ + P, (S31)

and have (P − N ) right Majorana zero modes
ϕ1R, ϕ

2
R, · · · , ϕ

(P−N )
R . Therefore, we derive that in the

thermodynamic limit L ≫ Nf ≥ 1, the number of Majorana

zero modes at each end of the extended Kitaev open chain,
defined as M0, equals the absolute value of the winding
number:

M0 = |N − P| = |ν|. (S32)

Here, we should note that there exist special cases when de-
generate solutions of Majorana zero modes might occur for
some choices of parameters and could be averted as we con-
sider the perturbation of characteristic functions.

Moreover, while the coefficients {αj} are not real, the zero



4

modes ϕ and ψ, with conditions {ϕi, ϕj†} = {ψi, ψj†} =

2δij and {ϕi, ψj†} = {ϕi, ψj} = 0, are not Majorana op-
erators [11]. Fortunately, for N ≥ P , left and right Majo-
rana zero modes can be combined as (N −P) fermion modes
d1, d2, · · · , d(N−P) with

di = (ϕiL + iψi
R)/2, (S33)

that commute with the Hamiltonian in the thermodynamic
limit. Conversely, for P ≥ N , there exist (P − N ) fermion
zero modes with operators d̄1, d̄2, · · · , d̄(P−N ), where

d̄i = (ϕiR + iψi
L)/2. (S34)

Our discussions also provide an effective method for find-
ing the distribution of Majorana zero modes by finding the
zeros and poles of the characteristic functions g(ζ) in mo-
mentum space. Moreover, the topological phase transitions
occur when the parameters satisfy the existence of zeros of
the characteristic functions on the critical contour |ζ| = 1, see
Sec. VII for details.

IV. QUANTUM FISHER INFORMATION OF
TOPOLOGICAL STATES

Given a generator O with respect to the parameter t, the
quantum Fisher information of the pure ground state |G⟩ can
be written as [12–15]

FQ[O, |G⟩] = 4(∆O)2 = 4(⟨O2⟩G − ⟨O⟩2G). (S35)

For critical systems with L sites, we consider the quantum
Fisher information density with the form

fQ[O, |G⟩] =
FQ[O, |G⟩]

L
, (S36)

and the violation of the inequality fQ ≤ κ signals (κ + 1)-
partite entanglement (1 ≤ κ ≤ L− 1).

For instance, we consider a Kitaev chain which is a tight-
binding model with strengths of tunneling J and supercon-
ducting pairing ∆ [10]:

H =

L−1∑
j=1

(
∆

2
cjcj+1 −

J

2
c†jcj+1 + h.c.

)
−µ

L∑
j=1

(
nj −

1

2

)
,

(S37)
with the fermion number operator nj ≡ c†jcj . For J = ∆
and zero chemical potentials µ = 0, we have one Majorana
zero mode at each end, and the Hamiltonian may be written in
terms of Majorana operators and Dirac fermion operators

dj,1 = (bj + iaj+1)/2 (S38)

as a diagonal form

H = i
J

2

L−1∑
j=1

bjaj+1 =

L−1∑
j=1

J

(
d†j,1dj,1 −

1

2

)
, (S39)

where we have a winding number ν = 1. Here, to detect mul-
tipartite entanglement, it requires to choose a pair of nonlocal
generators [16]

Oν=1 =

L∑
j=1

σx
j /2, O(st)

ν=1 =

L∑
j=1

(−)jσx
j /2. (S40)

Using the Jordan-Wigner transformation as

− σx
j = c†j exp

(
iπ

j−l∑
l=1

c†l cl

)
+ exp

(
−iπ

j−l∑
l=1

c†l cl

)
cj ,

(S41)
the quantum Fisher information density of the ground state of
the Kitaev chain can be written in terms of longitudinal spin-
spin correlation functions:

fQ[Oν=1, |G⟩] = 1 +

L−1∑
r=1

Cν=1(r), (S42)

fQ[O(st)
ν=1, |G⟩] = 1 +

L−1∑
r=1

(−)rCν=1(r), (S43)

with respect to the generators Oν=1 and O(st)
ν=1, respectively.

Here, we have used the fact that ⟨σx
j ⟩G = 0 and considered a

closed chain for L ≫ 1. Moreover, the x-directional longitu-
dinal correlation function can be written as

Cν=1(r) =

⟨
j−1∏
l=i

(−iblal+1)

⟩
G

=

⟨
j−1∏
l=i

(1− 2d†l,1dl,1)

⟩
G

,

(S44)
which represents the average of the Majorana parity from site
i to j (j − i = r) and does not include the edge modes. For
J > 0, we have

⟨d†l,1dl,1⟩G = 0, (S45)

so the Majorana zero modes give

fQ[Oν=1, |G⟩] = L, (S46)

which signals the maximal L-partite entanglement with the
generator Oν=1. On the contrary, for J < 0, we have

⟨d†l,1dl,1⟩G = 1, (S47)

such that the edge Majorana zero modes lead to the fact that

fQ[O(st)
ν=1, |G⟩] = L, (S48)

with respect to the generator O(st)
ν=1. Therefore, the choice of

generators between the operator Oν=1 and the staggered op-
erator O(st)

ν=1 depends on the sign of the direct interaction be-
tween the chain ends as discussed in Ref. [10]. These results
also hold for the open chain, because the correlation function
does not include the fermion edge modes. For the other case,
we choose J = −∆ and µ = 0, where the winding number is
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ν = −1. Then, the quantum Fisher information density fQ of
the ground state |G⟩ with respect to the generators:

Oν=−1 =

L∑
j=1

σy
j /2, O(st)

ν=−1 =

L∑
j=1

(−)jσy
j /2. (S49)

can detect symmetry-protected topological order and Majo-
rana zero modes with ν = −1.

The interchange between the quantum phases with positive
and negative winding numbers ν = ±1

O(st)
ν=1 ↔ O(st)

ν=−1, Oν=1 ↔ Oν=−1 (S50)

fQ[O(st)
ν=1] ↔ fQ[O(st)

ν=−1], fQ[Oν=1] ↔ fQ[Oν=−1]

(S51)

can be realized by a phase redefinition cj → ±icj . Another
interchange between the staggered operator O(st)

ν=1 and the op-
erator Oν=1, for the positive and negative signs of the inter-
action between Dirac fermions localized at the chain ends, re-
spectively,

O(st)
ν=1 ↔ Oν=1, O(st)

ν=−1 ↔ Oν=−1 (S52)

fQ[O(st)
ν=1] ↔ fQ[Oν=1], fQ[O(st)

ν=−1] ↔ fQ[Oν=−1]

(S53)

can be realized by a Hermitian conjugate transformation cj →
c†j .

Generally for µ ̸= 0, we can calculate the longitudinal cor-
relation function by defining

Al = c†l + cl = al, Bl = c†l − cl = −ibl. (S54)

The correlation functions in the x and y directions can be writ-
ten as

Cν=1(r) = ⟨G|BiAi+1...Aj−1Bj−1Aj |G⟩, (S55)
Cν=−1(r) = −⟨G|AiBi+1...Bj−1Aj−1Bj |G⟩, (S56)

where j − i = r. Using Wick’s theorem, we can write the x-
directional spin correlation function into a determinant of size
r [17]

Cν=1(r) =

∣∣∣∣∣∣∣∣∣∣

G−1 G−2 · · · G−r

G0 G−1 · · · G−r+1

G1 G0 · · · G−r+2

...
...

...
...

Gr−2 Gr−3 · · · G−1

∣∣∣∣∣∣∣∣∣∣
, (S57)

and similarly, we have the y-directional spin correlation func-
tion as

Cν=−1(r) =

∣∣∣∣∣∣∣∣∣∣

G1 G0 · · · G−r+2

G2 G1 · · · G−r+3

G3 G2 · · · G−r+4

...
...

...
...

Gr Gr−1 · · · G1

∣∣∣∣∣∣∣∣∣∣
, (S58)

where we have

G−r ≡ ⟨G|BiAi+r|G⟩ (S59)

and ⟨G|AiAj |G⟩ = ⟨G|BiBj |G⟩ = δij .

V. DUALITY TRANSFORMATION

The duality transformation connects different but equiva-
lent mathematical descriptions of a system or a state of mat-
ter through a mapping by the change of variables in quantum
physics [18–21]. For example, an Ising chain with an exter-
nal field h has a self-duality symmetry, mapping between the
ordered and disordered phases, expressed as

HIsing =
∑
j

(σx
j σ

x
j+1 + hσz

j ) = h
∑
j

(sxj s
x
j+1 + h−1szj )

(S60)

with the duality transformation

sxj =
∏
k≤j

σz
k, szj = σx

j σ
x
j+1, syj = −iszjsxj , (S61)

where both σ and s satisfy the same algebra. By this du-
ality transformation, the cluster Ising model [19, 22] can be
mapped to an anisotropic XY model

Hcluster =
∑
j

(σx
j−1σ

z
jσ

x
j+1 + hσz

j ) (S62)

=
∑
j

(−syj s
y
j+1 + hsxj s

x
j+1), (S63)

of which the ordered phase can help to characterize the
symmetry-protected topological phase by a Z2 × Z2 symme-
try of the cluster Ising model. Therefore, as shown in [19, 22],
this symmetry-protected topological phase can be character-
ized by the unlocal string correlation function [23] equal to a
local correlator in the dual lattice of the Ising model with the
form

(−)rCν=2(r) = (−)r⟨syj s
y
j+r⟩G (S64)

=(−)r

⟨
σx
j σ

y
j+1

(
r−1∏
k=2

σz
j+k

)
σy
j+rσ

x
j+r+1

⟩
G

,

(S65)

from site j to (j + r) in the dual lattice. It is shown in
Ref. [24] that the Jordan-Wigner transformation mapping be-
tween a one-dimensional spin- 12 model and free fermion chain
can also be regarded as a dual transformation with a bond-
algebraic approach. Through the Jordan-Wigner transforma-
tion, the cluster Ising model corresponds to an extended Ki-
taev chain with a Z4 symmetry. Thus, the self-duality prop-
erties of the Ising model (S63) can help to study topolog-
ical phases and multipartite entanglement in the symmetry-
protected phase with a winding number ν = 2 in the extended
Kitaev chain. Generally, we find that for the extended Kitaev
chain, the string correlation function can be written as a spin
correlation function with respect to the spin operators from
the self-duality symmetry of the extended Ising model.

The duality transformation for topological phases with a
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FIG. S2. (color online) The staggered string correlation functions (−)rCν(r) versus the normalized distance r/L for the extended Kitaev
fermion chain with a system size L = 600, third neighbor interactions (Nf = 3) and nonzero parameters: J+

1 = J−
1 = 1, J+

2 = J−
2 = 2,

J+
3 = J−

3 = 2.

µ λ
(st)
ν=1 λν=1 λ

(st)
ν=2 λν=2 λ

(st)
ν=3 λν=3 λ

(st)
ν=4 λν=4

1 4.8× 10−7 0.9837 −2.0× 10−6 2.1× 10−6 −8.0× 10−7 4.4× 10−5 1.9× 10−6 5.2× 10−7

0.6 −8.6× 10−8 8.0× 10−8 −1.3× 10−7 3.3× 10−8 −6.9× 10−8 0.9941 7.4× 10−7 −3.5× 10−8

0 5.8× 10−14 −6.7× 10−14 3.1× 10−14 1.5× 10−14 6.1× 10−14 −5.5× 10−14 1.0051 2.5× 10−13

−1 9.5× 10−14 −2.4× 10−13 0.9933 2.1× 10−14 −2.2× 10−14 −1.6× 10−13 3.3× 10−14 3.8× 10−14

TABLE I. Fitting of the scaling coefficients λν and λ
(st)
ν with respect to the dual generators Oν and O(st)

ν , respectively, for the different
topological phases for the extended Kitaev fermion chain with parameters J+

1 = J−
1 = 0.1, J+

2 = J−
2 = 0.21, J+

3 = J−
3 = −0.74,

J+
4 = J−

4 = 0.9 (Nf = 4), and chain length up to L = 2000. The four essentially non-zero scaling coefficients are shown in blue font, and
all four are close to 1.

winding number ν = 2 can be written as

Z(2)
j = σx

j σ
x
j+1, X(2)

j =

j∏
l=1

σz
l , (S66)

Y(2)
j = −iZ(2)

j X(2)
j = −

(
j−1∏
l=1

σz
l

)
σy
j σ

x
j+1 (S67)

which implies that

X(2)
j X(2)

j+1 = σz
j+1. (S68)

Therefore, the duality transformation connects two Ising mod-
els as

L∑
j=1

σx
j σ

x
j+1 + µσz

j =

L∑
j=1

Z(2)
j + µX(2)

j X(2)
j+1. (S69)

The spin correlation function with dual y-directional spin op-
erators between sites i and j= i+ r equals to the string cor-

relation function:

Cν=2(r) =
⟨
Y(2)

i Y(2)
j

⟩
G
=

⟨
j−1∏
l=i

σx
l σ

z
l+1σ

x
l+2

⟩
G

. (S70)

Similarly, the duality transformation for topological phases
with ν = −2 can be written as

Z(−2)
j = σy

j σ
y
j+1, Y(−2)

j =

j∏
l=1

σz
k, (S71)

X(−2)
j = −iY(−2)

j Z(−2)
j = −

(
j−1∏
l=1

σz
l

)
σx
j σ

y
j+1 (S72)

which implies that

X(−2)
j X(−2)

j+1 = σz
j+1, (S73)

and
L∑

j=1

σy
j σ

y
j+1 + µσz

j =

L∑
j=1

Z(−2)
j + µY(−2)

j Y(−2)
j+1 . (S74)
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FIG. S3. (color online) Dual quantum Fisher information density
fQ of the ground state |G⟩ with respect to the dual generators Oν

and O(st)
ν as a function of L for the extended Kitaev fermion chain

with longer-range interactions and with nonzero parameters: J+
1 =

J−
1 = 0.1, J+

2 = J−
2 = 0.21, J+

3 = J−
3 = −0.74, J+

4 = J−
4 =

0.9 (Nf = 4), in different topological phases. (a) For µ = 1, the
winding number ν = 1, and the fitting nontrivial scaling topological
index λν=1 = 0.9837. (b) For µ = 0.6, ν = 3, and λν=3 = 0.9941.
(c) For µ = 0, ν = 2, and λ

(st)
ν=2 = 1.0051. (d) For µ = 4, ν = 4,

and λ
(st)
ν=4 = 0.9933.

The dual x-directional correlation function between sites i and
j= i+ r equals to the string correlation function

Cν=−2(r) =
⟨
X(−2)

i X(−2)
j

⟩
G
=

⟨
j−1∏
l=i

σy
l σ

z
l+1σ

y
l+2

⟩
G

.

(S75)

We can therefore define the dual spin operators as{
τ
(2)
j = Y(2)

j , for ν = 2,

τ
(−2)
j = X(−2)

j , for ν = −2.
(S76)

The duality transformation for ν = 3 can be written as

Z(3)
j = σx

j σ
z
j+1σ

x
j+2, X(3)

j = σx
j+1, (S77)

Y(3)
j = −iZ(3)

j X(3)
j = σx

j σ
y
j+1σ

x
j+2 (S78)

which implies that

X(3)
j Z(3)

j+1X
(3)
j+2 = σz

j+2. (S79)

The duality transformation for ν = −3 can be written as

Z(−3)
j = σy

j σ
z
j+1σ

y
j+2, Y(−3)

j = σy
j+1, (S80)

X(−3)
j = −iY(−3)

j Z(−3)
j = σy

j σ
x
j+1σ

y
j+2 (S81)

which implies that

Y(−3)
j Z(−3)

j+1 Y(−3)
j+2 = σz

j+2. (S82)

Thus, we can define the dual spin operators as{
τ
(3)
j = Y(3)

j , for ν = 3,

τ
(−3)
j = X(−3)

j , for ν = −3.
(S83)

Generally, the formalism of string correlation functions and
dual spin operators depend on the parity of the winding num-
bers [25]. We first consider the odd winding numbers with
p > 1: For positive odd winding numbers ν = 2p − 1, we
have

Z(2p−1)
j = σx

j

(
2p−3∏
l=1

σz
j+l

)
σx
j+2p−2, (S84)

X(2p−1)
j =

(
p−2∏
l=1

σx
j+2l−1σ

y
j+2l

)
σx
j+2p−3, (S85)

Y(2p−1)
j = σx

j

(
p−1∏
l=1

σy
j+2l−1σ

x
j+2l

)
, (S86)

which implies

X(2p−1)
j

(
2p−3∏
l=1

Z(2p−1)
j+l

)
X(2p−1)

j+2p−2 = σz
j+2p−2. (S87)

For negative odd winding numbers ν = 1− 2p, we have

Z(1−2p)
j = σy

j

(
2p−3∏
l=1

σz
j+l

)
σy
j+2p−2, (S88)

Y(1−2p)
j =

(
p−2∏
l=1

σy
j+2l−1σ

x
j+2l

)
σy
j+2p−3, (S89)

X(1−2p)
j = σy

j

(
p−1∏
l=1

σx
j+2l−1σ

y
j+2l

)
, (S90)
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which implies

Y(1−2p)
j

(
2p−3∏
l=1

Z(1−2p)
j+l

)
Y(1−2p)

j+2p−2 = σz
j+2p−2. (S91)

Thus, we can define the dual spin operators as{
τ
(2p−1)
j = Y(2p−1)

j , for ν = 2p− 1,

τ
(1−2p)
j = X(1−2p)

j , for ν = 1− 2p.
(S92)

We then consider the even winding numbers with p > 1:
For positive even winding numbers ν = 2p, we have

Z(2p)
j = σx

j

(
2p−2∏
l=1

σz
j+l

)
σx
j+2p−1, (S93)

X(2p)
j =

(
j∏

k=1

σz
k

)(
p−1∏
l=1

σy
j+2l−1σ

x
j+2l

)
(S94)

Y(2p)
j = −

(
j−1∏
k=1

σz
k

)(
p∏

l=1

σy
j+2l−2σ

x
j+2l−1

)
(S95)

which implies

X(2p)
j

(
2p−2∏
l=1

Z(2p)
j+l

)
X(2p)

j+2p−1 = σz
j+2p−1. (S96)

For negative even winding numbers ν = −2p, we have

Z(−2p)
j = σy

j

(
2p−2∏
l=1

σz
j+l

)
σy
j+2p−1, (S97)

Y(−2p)
j =

(
j∏

k=1

σz
k

)(
p−1∏
l=1

σx
j+2l−1σ

y
j+2l

)
(S98)

X(−2p)
j = −

(
j−1∏
k=1

σz
k

)(
p∏

l=1

σx
j+2l−2σ

y
j+2l−1

)
(S99)

which implies

Y(−2p)
j

(
2p−2∏
l=1

Z(−2p)
j+l

)
Y(−2p)

j+2p−1 = σz
j+2p−1. (S100)

Thus, we can write the dual spin operators as{
τ
(2p)
j = Y(2p)

j , for ν = 2p,

τ
(−2p)
j = X(−2p)

j , for ν = −2p.
(S101)

VI. QUANTUM FISHER INFORMATION DENSITY AND
STRING CORRELATION FUNCTIONS

For higher winding numbers ν = ±2,±3, · · · , the quantum
Fisher information with respect to the dual generators

Oν =

M∑
j=1

τ
(ν)
j , O(st)

ν =

M∑
j=1

(−)jτ
(ν)
j (S102)
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FIG. S4. (color online) Quantum Fisher information density
fQ[O(st)

ν , |G⟩] as a function of L for the extended Kitaev fermion
chain with nonzero parameters J+

1 = J−
1 = 1, J+

2 = J−
2 = 2,

J+
3 = J−

3 = 2 (Nf = 3) on the contour between different topolog-
ical phases for (a) µ = 5, (b) µ =

√
3 − 1, (c) µ = −1, and (d)

µ = −
√
3− 1. The scaling coefficients λ(st)

ν are shown in Tab. II.

can be written as

FQ[Oν , |G⟩] =M +M

M−1∑
r=1

⟨τ (ν)i τ
(ν)
i+r⟩G (S103)

FQ[O(st)
ν , |G⟩] =M +M

M−1∑
r=1

(−)r⟨τ (ν)i τ
(ν)
i+r⟩G (S104)

where (τ
(ν)
j )2 = I, with I the identity, and we let

M ≡ L− |ν|+ 1. (S105)
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FIG. S5. (color online) Quantum Fisher information density fQ of
the ground state |G⟩ with respect to the dual generators Oν and O(st)

ν

as a function of L for the extended Kitaev fermion chain when µ =
1 with nonzero parameters: (a) J+

1 = J−
1 = 1 (Nf = 1); (b)

J+
2 = J−

2 = 1 (Nf = 2); (c) J+
3 = J−

3 = 1 (Nf = 3); and (d)
J+
4 = J−

4 = 1 (Nf = 4). The scaling coefficients λν and λ
(st)
ν are

shown in Tab. III.

For the thermodynamic limit L≫ Nf ≥ 1, we can obtain the
dual quantum Fisher information density as

fQ[Oν , |G⟩] =
FQ[Oν , |G⟩]

L
= 1 +

L−|ν|∑
r=1

Cν(r), (S106)

fQ[O(st)
ν , |G⟩] = FQ[O(st)

ν , |G⟩]
L

= 1 +

L−|ν|∑
r=1

(−)rCν(r),

(S107)

where M ≃ L as |ν| ≤ Nf , and

Cν(r) ≡ ⟨τ (ν)i τ
(ν)
i+r⟩G (S108)

is the so-called string correlation function [22, 23] from site i
to j = i+ r in the dual lattice. The string correlation function
is shown able to reveal hidden symmetry-protected order by
Z symmetry in many topological systems [19, 20, 22, 23]. It
is easier to rewrite the string correlation function in terms of
Majorana operators and fermion operators

dl,ν = (bl + ial+ν)/2, d†l,ν = (bl − ial+ν)/2 (S109)

as

Cν(r) =

⟨
j−1∏
l=i

(−iblal+ν)

⟩
G

=

⟨
j−1∏
l=i

(1− 2d†l,νdl,ν)

⟩
G

.

(S110)
Usually, the string correlation function is written in terms of
Pauli matrices as

Cν(r) =

⟨
j−1∏
l=i

(
σα
l σ

α
l+|ν|

l+|ν|−1∏
k=l+1

σz
k

)⟩
G

, (S111)

where α = x for positive ν, and α = y for negative ν.
The interchange between the quantum phases with positive

and negative winding numbers ν = ±n (n is a positive inte-
ger)

O(st)
ν=n ↔ O(st)

ν=−n, Oν=n ↔ Oν=−n (S112)

fQ[O(st)
ν=n] ↔ fQ[O(st)

ν=−n], fQ[Oν=n] ↔ fQ[Oν=−n]
(S113)

can be realized by a phase redefinition cj → ±icj .
Another interchange between the staggered operator O(st)

ν=1

and the operator Oν=1, for the positive and negative signs of
the interaction between Dirac fermions localized at the chain
ends, respectively,

O(st)
ν=n ↔ Oν=n, O(st)

ν=−n ↔ Oν=−n (S114)

fQ[O(st)
ν=n] ↔ fQ[Oν=n], fQ[O(st)

ν=−n] ↔ fQ[Oν=−n]
(S115)

can be realized by a Hermitian conjugate transformation cj →
c†j .

Following the calculations in previous sections, we can
write the string correlation function into a determinant of size
(r − |ν|+ 1) as

Cν(r) =

∣∣∣∣∣∣∣∣∣∣
G−ν G−ν−1 · · · G−r

G1−ν G−ν · · · G1−r

...
...

...
...

Gr−2ν Gr−2ν+1 · · · G−ν

∣∣∣∣∣∣∣∣∣∣
(S116)

for positive ν and

Cν(r) =

∣∣∣∣∣∣∣∣∣∣
G−ν G−ν−1 · · · G−r−2ν

G1−ν G−ν · · · G1−r−2ν

...
...

...
...

Gr Gr−1 · · · G−ν

∣∣∣∣∣∣∣∣∣∣
(S117)
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for negative ν.
Because the string correlation function decays exponen-

tially versus the distance r when breaking the hidden Z sym-
metry (see, for example, Fig. S2), the quantum Fisher infor-
mation density as a function of L has a scaling form in the
thermodynamic limit,

fQ[Oν , |G⟩] ≃ 1 + γνL
λν , (S118)

fQ[O(st)
ν , |G⟩] ≃ 1 + γ(st)

ν Lλ(st)
ν (S119)

and becomes linear:

λν or λ(st)
ν ≃ 1 (S120)

in the topological quantum phase with a winding number ν
and constant:

λν and λ(st)
ν ≃ 0, (S121)

in the other phases, see Fig. S3 for example. Thus, the scaling
coefficient λν or λ(st)

ν obtained by numerical calculations can
identify the topological phases with higher winding numbers,
see numerical results in Tab. I.

VII. TOPOLOGICAL PHASE TRANSITIONS AND
HALF-INTEGER WINDING NUMBERS WITH ZEROS ON

THE CRITICAL CONTOUR

For completeness, we discuss the case when zeros of the
characteristic equation appear on the contour |ζ| = 1, and in-
terpret the physical implications of half-integer winding num-
bers therein. We can find that the topological phase transitions
occur at the critical points satisfying

g(ζ) =

Nf∑
n=1

(Jx
nζ

n + Jy
nζ

−n)− µ = 0 (S122)

µ λ
(st)
ν=1 λ

(st)
ν=2 λ

(st)
ν=3

6a 2.8× 10−5 −4.3× 10−7 −1.6× 10−6

3 0.9965 9.4× 10−14 2.5× 10−13

0 −4.2× 10−14 1.4× 10−13 1.0047
−2 −5.6× 10−7 0.9957 2.9× 10−7

5b 0.7492 4.1× 10−7 −1.9× 10−6

√
3− 1 0.5054 −2.8× 10−3 0.5165

−1 6.8× 10−5 0.7518 0.7547
−
√
3− 1 1.0× 10−3 0.5088 −5.6× 10−4

a Inside topological phases.
b On the critical contour between phases.

TABLE II. Fitting of the scaling coefficients λ(st)
ν of the dual quantum

Fisher information density fQ[O(st)
ν , |G⟩] inside different topological

phases and on the critical contour between phases for the extended
Kitaev fermion chain with nonzero parameters J+

1 = J−
1 = 1, J+

2 =
J−
2 = 2, J+

3 = J−
3 = 2 (Nf = 3), and chain length up to L =

2000. The nine essentially non-zero scaling coefficients are show in
blue font.

for |ζ| = 1.
For example, we choose the parameters of the extended Ki-

taev fermion chain as J+
1 = J−

1 = 1, J+
2 = J−

2 = 2,
J+
3 = J−

3 = 2 (Nf = 3), and calculate the real solutions
of the chemical potential µ: for ζ = 1, µ = 5; for ζ = −1,
µ = −1; for

ζ = exp{±i arccos[(−
√
3− 1)/4]}, (S123)

µ =
√
3− 1; and for

ζ = exp{±i arccos[(
√
3− 1)/4]}, (S124)

µ = −
√
3 − 1, where the topological phase transitions oc-

cur. For another example, we consider the parameters of the
extended Kitaev fermion chain as J+

2 = J−
2 = λ, J+

1 = 1,
J−
1 = −1, µ = 1, and change the value of λ. We can obtain

the critical points of topological phase transitions by solving
the characteristic equation:

g(ζ) = λζ2 + ζ−1 − 1 = 0 (S125)

where we can obtain the transition points: for ζ = 1, λ = 0;
for ζ = −1, λ = 2; for

ζ = exp{±i arccos[(1−
√
5)/4]}, (S126)

λ = (−
√
5− 1)/2; and for

ζ = exp{±i arccos[(1 +
√
5)/4]}, (S127)

λ = (
√
5− 1)/2.

We then consider the critical behaviors of quantum states on
the transition points. From the viewpoint of geometric topol-
ogy, we consider the Kitaev closed chain as ∆ = J and as-
sume an anti-periodic boundary conditions cj+L = −cj . If

∆ = −µ = −1, (S128)

the characteristic function becomes

g(ζ) = ζ − 1, (S129)

and the winding number can be calculated by the Cauchy prin-
cipal value:

ν =
1

2πi

∮
|ζ|=1

dζ
1

ζ − 1
(S130)

=
1

2πi
lim
ε→0

[∫ 2π−ε

−ε

dζ
1

ζ − 1

]
=

1

2πi
lim
ε→0

[
iε

∫ 3π
2

π
2

dθ
eiθ

(εeiθ + 1)− 1

]
(S131)

=
1

2
, (S132)

where we can only obtain massive Dirac edge modes [26]
for the open Kitaev chain. Moreover, in consideration of the
boundary parts for the closed chain, we can write the Hamil-
tonian in terms of Majorana fermion operators as

iH =

L∑
j=1

ajbj +

L−1∑
j=1

bjaj+1 + (−1)NpbLa1, (S133)
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g(ζ) λ
(st)
ν=1 λν=1 λ

(st)
ν=2 λν=2 λ

(st)
ν=3 λν=3 λ

(st)
ν=4 λν=4

ζ − 1 0.7506 < 10−5 < 10−5 < 10−3 < 10−5 < 10−4 < 10−4 < 10−4

ζ2 − 1 0.5072 0.5072 0.5040 < 10−4 < 10−3 < 10−16 < 10−4 < 10−16

ζ3 − 1 0.2873 0.0043 < 10−3 0.2441 0.2809 < 10−16 < 10−3 < 10−16

ζ4 − 1 0.1313 0.1313 0.0950 0.0950 0.0745 < 10−16 0.1223 < 10−16

TABLE III. Fitting of the scaling coefficients λν and λ
(st)
ν with respect to the dual generators Oν and O(st)

ν , respectively, on the critical contour
between phases for the extended Kitaev fermion chain with characteristic functions g(ζ) and chain length up to L = 2000. The thirteen
essentially non-zero scaling coefficients are shown in blue font.

where we have that

ϕ =
1√
L

L∑
j=1

aj , ψ =
1√
L

L∑
j=1

bj , (S134)

are a pair of zero modes (obviously not edge modes) for even
Np, but there exists no zero mode for odd parity. There-
fore, the half-integer winding number represents a critical
phenomenon when the Majorana zero mode exists or not for
different fermion parities (−1)Np in consideration of bound-
ary Hamiltonian. Generally, it can be inferred that if we have
even number of zeros on the contour, the winding number is
still an integer for different fermion parities.

In Fig. S4, we plot the quantum Fisher information den-
sity as a function of L in critical cases for the extended Ki-
taev fermion chain with J+

1 = J−
1 = 1, J+

2 = J−
2 = 2,

J+
3 = J−

3 = 2 (Nf = 3), and present the scaling coefficients
λ
(st)
ν in Tab. II. Then, we plot in Fig. S5 the quantum Fisher

information density as a function of L for an extended Kitaev
fermion chain with characteristic functions:

(a) g(ζ) = ζ − 1,

(b) g(ζ) = ζ2 − 1,

(c) g(ζ) = ζ3 − 1,

(d) g(ζ) = ζ4 − 1,

where the zeros are on the contour |ζ| = 1 given µ = 1.
The scaling coefficients λν and λ

(st)
ν are shown in Tab. III.

We should note that our discussions would be inappropriate
to discuss the Dirac sector of the topological phase diagram
for the extended Kitaev chain which would have a half inte-
ger winding number [11, 26–28], because the boundary con-
ditions (anti-periodic and periodic) for finite chain length L
would destroy long-range hopping and pairing terms, and the
thermodynamic limit L≫ Nf ≥ 1 could not be satisfied.

VIII. CHARACTERIZATION OF TOPOLOGICAL PHASES
IN A KITAEV HONEYCOMB MODEL VIA DUAL

MULTIPARTITE ENTANGLEMENT

The Kitaev honeycomb model (i.e., a two-dimensional spin
model on a hexagonal lattice with direction-dependent inter-
actions between adjacent lattice sites) is an analytically solv-
able model with topological quantum phase transitions at zero

temperature [29]. The Hamiltonian is

Hhc = −
∑

κ=x,y,z

Jκ
∑
⟨ij⟩κ

σκ
i σ

κ
j , (S135)

where ⟨ij⟩κ denotes the nearest-neighbor bonds in the κ-
direction. At each site, we define four Majorana operators aα,
with α = 0, x, y, z, satisfying (aα)† = aα, {aα, aβ} = 2δαβ ,
and axayaza0 = 1, and write the Pauli operators as

σκ
j = iaκj aj , (S136)

with κ = x, y, z and a0j ≡ aj . The Hamiltonian is then rewrit-
ten with

û⟨ij⟩κ ≡ iaκi a
κ
j (S137)

as

Hhc =
i

2

∑
⟨ij⟩κ

Jκ⟨ij⟩ û⟨ij⟩κaiaj , (S138)

where the factor 1
2 is due to each lattice being counted twice

in the summation. We have û2⟨ij⟩κ = 1 and [Hhc, û⟨ij⟩κ ] = 0.
Here we take û⟨ij⟩κ = 1 for all bonds (π-flux phase), because
this vortex-free configuration has the lowest energy [29, 30].
The system size is N = 2LM , and at first, we set M = L.

Using the Fourier transformation, the Hamiltonian in the
momentum representation is [31]

Hhc =
∑
q

(a−q,1, a−q,2)Hq

(
aq,1
aq,2

)
, (S139)

where q = (q1, q2) is the momentum vector and the Bloch
matrix of Hq is

Hq = −∆qσ
x − ϵqσ

y =

(
0 iΥq

−iΥ∗
q 0

)
, (S140)

with

Υq = ϵq + i∆q, (S141)
ϵq = Jx cos q1 + Jy cos q2 + Jz, (S142)
∆q = Jx sin q1 + Jy sin q2. (S143)
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FIG. S6. (color online) (a) A graphic representation of the Ki-
taev honeycomb model with two sublattices (empty and full circles).
There are three types of bonds labeled by x, y, z. (b) The equivalent
brick-wall lattice with three rows (m = 1, 2, 3). (c) A single-chain
representation of the two-leg spin ladder.

By choosing the coordinate axes in the n1 and n2 directions
as shown in Fig. S6(a), then the momentum vectors q1 = q·n1

and q2 = q · n2 take the values

q1,2 =
2lπ

L
, l = −L− 1

2
, · · · , L− 1

2
. (S144)

Using the Bogoliubov transformation

Dq,1 = uqaq,1 + vqaq,2, Dq,2 = v∗qaq,1 − u∗qaq,2
(S145)

with uq = 1/
√
2 and vq = iΥq/(

√
2|Υq|), the Hamiltonian

is diagonalized

Hhc =
∑
q

|fq|(1− 2D†
q,2Dq,2), (S146)
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FIG. S7. (color online) (a) The phase diagram of the Kitaev honey-
comb model in the Jx + Jy + Jz = 1 plane. (b) Quantum Fisher
information density in the dual lattice as a function of L for the
two-leg spin ladder. The scaling coefficients are λ

(st)
x ≃ 0.9992 for

Jx,y,z = 0.6, 0.2, 0.2, λ(st)
x ≃ 0.7508 for Jx,y,z = 0.5, 0.25, 0.25,

and λ
(st)
x < 10−12 for Jx,y,z = 0.4, 0.3, 0.3. (c) Scaling topological

index λ
(st)
x with different values of Jx,y,z in the Jx + Jy + Jz = 1

plane versus the system size 2L up to 400.

where we have used {D†
q,µ, D

†
q′,µ′} = δq,q′δµ,µ′ , D2

q,µ = 0,
and D†

q,1Dq,1 = 1−D†
q,2Dq,2. The ground state is

|G⟩ =
∏
q

D†
q,2|0⟩ (S147)

and the energy gap is 2minq{|Υq|}.
Then, we consider positive bonds, Jx,y,z > 0, and focus

on the Jx + Jy + Jz = 1 parametric plane. As presented in
Fig. S7(a), in the region of Jx ≤ Jy + Jz , Jy ≤ Jz + Jx and
Jz ≤ Jx + Jy , there is a gapless phase B with non-Abelian
excitations, and in other regions, there are three gapped phases
with Abelian anyon excitations [29]

Ax : Jx ≥ Jy + Jz, (S148)
Ay : Jy ≥ Jz + Jx, (S149)
Az : Jz ≥ Jx + Jy. (S150)

Following [20], we consider a two-leg spin ladder of the
Kitaev honeycomb model and relabel all the sites along a spe-
cial path [as shown in Fig. S6(c)] and express the Hamiltonian
with the third-nearest-neighbor couplings [20]

H2l = −
L∑

j=1

(Jxσ
x
2j−1σ

x
2j + Jyσ

y
2jσ

y
2j+3 + Jzσ

z
2jσ

z
2j+1).

(S151)
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By considering the duality transformation introduced in [20]

σx
j = šxj−1š

x
j , σz

j =

2L∏
k=j

šzk, (S152)

σy
j = −iσz

jσ
x
j = šxj−1š

y
j

2L∏
k=j+1

šzk, (S153)

we obtain an anisotropicXY spin chain with a transverse field
in the dual space

H2l = −
L∑

j=1

(Jxš
x
2j š

x
2j+2+ JyWj š

y
2j š

y
2j+2+ Jz š

z
2j),

(S154)

where

Wj = šx2j−1š
z
2j+1š

x
2j+3 (S155)

is the plaquette operator in the dual lattice and a good quantum
number [20]. We have Wj = −1 (π-flux phase [30]) for the
ground state. We consider the inverse dual transformation

šxj =

j∏
k=1

σx
k , šzj = σz

jσ
z
j+1 (S156)

šyj = −išzj šxj = σz
j+1σ

y
j

j−1∏
k=1

σx
k (S157)

and consider the spin correlation function in the dual lattice

Cx(r) ≡ ⟨šx2išx2j⟩G =

⟨
2j∏

k=2i+1

σx
k

⟩
G

(S158)

where r = j − i. It is shown in Ref. [20] that the string
correlation order

lim
r→∞

(−)rCx(r) ̸= 0 (S159)

in the phase Ax ( Jx ≥ Jy + Jz) and equals to zero in other
regions. Similarly, with respect to the dual generator

O(st)
x =

L∑
j=1

(−)j šx2j , (S160)

the quantum Fisher information density in the dual lattice is

fQ[O(st)
x , |G⟩] ≡ 1 +

L−1∑
r=1

(−)rCx(r) (S161)

≃ 1 + γ(st)
x Lλ(st)

x . (S162)

In the gapped phase Ax, the dual QFI density is linear

λ(st)
x ≃ 1 (S163)

and constant

λ(st)
x ≃ 0 (S164)

in other regions, see Fig. S7(b,c) for example. Moreover,
the gapped phases Ay and Az as shown in Fig. S7(a) can be
obtained by the substitutions Jx → Jy → Jz → Jx and
Jx → Jz → Jy → Jx, respectively. Therefore, the scaling
coefficient of the dual quantum Fisher information density in
the dual lattice can identify three gapped phases Ax, Ay and
Az with Abelian anyon excitations.

Generally, we consider the equivalent brick-wall lattice of
the Kitaev honeycomb model as shown in Fig. S6(b) and
rewrite the Hamiltonian (S135) as

Hhc = −
L∑

j=1

M∑
m=1

(Jxσ
x
2j−1,mσ

x
2j,m + Jyσ

y
2j,mσ

y
2j+3,m+1

+ Jzσ
z
2j,mσ

z
2j+1,m). (S165)

In the two-dimensional limit M → ∞, the above results for
the two-leg spin ladder using string correlation functions and
dual quantum Fisher information density to detect topologi-
cal phase transitions can also be extended to the general two-
dimensional lattice by transforming the second index m to
momentum space [20].
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