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I. DOUBLE QUANTUM DOT: COULOMB DIAMOND AND CURRENT

Most of the features of the open Coulomb diamond structure shown in Fig. 1(c) in the main article can be well
reproduced by a simple calculation based on the constant charging-energy model. If Ni (i = 1, 2) is the number of
holes on dot i, then the energy of dot 1 is E1(N1, N2) = EC1N1 +EC12N2 − C1VG −D1VS +Eoff , and the energy of
dot 2 is E2(N1, N2) = EC12N1 + EC2N2 − C2VG −D2VS . Here, ECi (i = 1, 2) and EC12 denote an on-site and an
inter-dot charging energy respectively. Also, Ci and Di are the lever arms of VG and VS , while Eoff is the energy offset
between the dots. The Coulomb blockade is lifted for eVS > E1(N1+1, N2) > E1(N1, N2+1) > 0(= eVD). Figure S1
shows a typical Coulomb diamond structure for a double quantum dot when one of the dots has large charging energy,
and the other dot has small charging energy.
In Fig. 1(c) in the main article, a region where spin blockade occurs was identified. The transport cycle in the

spin blockade regime is shown schematically in Fig. S2. As explained in the main article the spin-orbit interaction
and the microwave field can lift the spin blockade by inducing singlet-triplet transitions. As a result a measurable
leakage current flows through the double quantum dot. Figure S3 shows the intensity plot of the leakage current ID
for the same scale of magnetic field B and MW frequency f as that in Fig. 1(e) in the main article (where dID/dB
was presented). The high-current curves are due to microwave-induced transitions between the mixed singlet-triplet
states. The series of resonances at constant MW frequency are due to photon-assisted tunneling enhanced by cavity
modes.

II. SPIN RESONANCE FOR LARGE MAGNETIC FIELD

In the main article we presented EDSR spectra near the T+–S anti-crossing point [Fig. 1(e)]. Here we show
additional spectra for a microwave frequency up to 40 GHz and magnetic field up to 1.7 T. In Fig. S4 three nearly-
straight lines are visible. As explained in the main article, two of these lines map-out the transitions between the
states T± and S. The lower line corresponds to the 2-photon T+–S transition. For a double quantum dot with large
difference in the g-factors, the lines T±–S are not parallel at high magnetic fields. Investigation of the data shown
in Fig. S4 demonstrates that in our system these lines are parallel within at least 2% accuracy, indicating that the
g-factor difference in the two dots is small enough compared with the zero-field singlet-triplet splitting of about 5
GHz.

III. MICROWAVE ATTENUATION AND NONLINEARITY

In this section we present some details about the microwave field. If we assume a 50 Ohm impedance for our
transmission line, then the MW power (in dBm) used in the experiment [Fig. 2(a) and Fig. 3(a, c, e)], and the
corresponding MW amplitude (in mV) are:
-40 dBm 2.2 mV,
-30 dBm 7.1 mV,
-22 dBm 17.8 mV,
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-20 dBm 22.4 mV.
For the calculations [Fig. 2(b) and Fig. 3(b, d, f)] we have the following correspondence:
-87 dBm 0.01 mV,
-67 dBm 0.1 mV,
-61 dBm 0.2 mV,
-55 dBm 0.4 mV.

The experimental and theoretical numbers are quite different, suggesting a very large attenuation and nonlinearity.
An estimated attenuation of our rigid coaxial cable with a 2 m length is only 3 dB at 5 GHz. This very large
attenuation and nonlinearity may be due to the bare wiring of about 1 cm length between the end of the coax and our
device, as well as the nonlinearity of the capacitance. Our MOSFET device is set around the subthreshold regime,
thus the capacitance will be affected by the voltages VS , VG as well as the MW power, if a strong power starts to
cause photon-assisted tunneling or charge pumping current.
Moreover, from the geometry of our device we expect that the microwave field which is applied to the top gate

modulates to some degree the energies of both quantum dots. However, to obtain the EDSR signal we have to
consider a time-dependent energy detuning, i.e., a time-dependent energy difference between the dot energies. In
contrast to our MOSFET device, in standard gate-defined quantum dots the microwave field is typically applied to an
independent local gate defining one of the two dots, so a time-dependent energy detuning can be produced without
significant attenuation. This fact seems to support the relatively strong MW power considered in our experiment.
In Fig. 1(e) in the main article we presented EDSR spectra for the voltages VS = 25 mV and VG = 0.597 V. In

Fig. S5(a) we present results for fixed VS = 25 mV and three different values of VG. As can be seen, tuning VG
leads to different EDSR peak positions, which can be attributed to a different singlet-triplet energy splitting due to
a change in the energy detuning. Here, the (average) g-factor of the double dot does not show any noticeable change
with VG. Figure S5(b) shows the VG dependence of the EDSR peak position at fixed B = 100 mT. The slope near
VG = −560 mV is about 0.2 GHz/mV, but the observed nonlinearity is important and has to be considered especially
for large MW amplitudes, such as 20 mV. This observation could be one of the sources of the discrepancy between
the theoretical and experimental numbers given above for the MW powers and amplitudes.

IV. SYSTEM HAMILTONIAN

In this section we describe the Hamiltonian of the physical system. We consider a double quantum dot (DQD)
coupled to metallic leads. The total Hamiltonian of the system is

H = HDQD +HL +HT, (1)

where HDQD is the DQD Hamiltonian, HL is the Hamiltonian of the leads, and HT is the interaction Hamiltonian
between the DQD and the leads. Specifically, the DQD Hamiltonian is

HDQD =
2∑

i=1

(
εini + Uini↑ni↓ −

1

2
giµBB(ni↑ − ni↓)

)
+Hc +Hso, (2)

where ni is the number operator ni =
∑

σ niσ = c†i↑ci↑ + c†i↓ci↓, and the operator c†iσ (ciσ) creates (destroys) a hole

on dot i = 1, 2, with spin σ = {↑, ↓} and orbital energy εi. We assume a single-band description and consider the
holes to have spin 1/2. In this case the two-hole Hilbert space is spanned by the singlet and triplet states |T±⟩,
|T0⟩, |S11⟩, |S20⟩, |S02⟩, where |Skm⟩ is a singlet state with k (m) holes on dot 1 (dot 2). A similar approach was
employed by Zarassi et al in Ref. [1] to explore the magnetic field evolution of the spin blockade in Ge/Si nanowires.
In our study we do not identify the heavy- and light-hole compositions. Generally, in an acceptor and/or a quantum
dot the electronic states are mixtures of spin as well as heavy- and light-hole bands, and are split by the quantum
confinement. The observed EDSR spectra should contain contributions from both heavy- and light-hole components.
Here, we simply take advantage of the fact that without any strict selection rule, the EDSR transitions between the
lowest Kramers pair of states in the acceptor/dot are allowed. The theoretical results suggest that considering only
spin-1/2 holes in the dynamics is sufficient to reproduce the basic experimental observations.
The orbital energies of the two dots are

ε1 =
δ

2
, ε2 = −U2 −

δ

2
+A cos(ωt), (3)
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where δ denotes the energy detuning. The external electric field has amplitude A and cyclic frequency ω = 2πf , and
when A ̸= 0 the DQD Hamiltonian is time dependent HDQD = HDQD(t). This configuration of the orbital energies
results in a localised spin in dot 2 during the transport cycle in the spin blockade regime.
Each dot has a charging energy Ui, and g-factor gi which leads to a Zeeman splitting giµBB due to the external

magnetic field B. The inter-dot tunnel coupling with strength tc is modelled by the Hamiltonian

Hc = −tc
∑
σ

c†1σc2σ +H.c., (4)

and the non spin-conserving inter-dot tunnel coupling due to the spin-orbit interaction (SOI) is modelled by the
Hamiltonian [2, 3]

Hso = −tso
∑
σσ′

c†1σ(iσ
y)σσ′c2σ′ +H.c.. (5)

This simplified Hamiltonian couples |S02⟩ (|S20⟩) to |T±⟩ states, thus for example the lowest singlet-triplet levels
anti-cross and the induced gap is proportional to the SOI tunnel coupling tso. For a fixed tso the anti-crossing gap
is sensitive to the detuning δ because this controls the amplitude of the |S02⟩ component in the quantum states. A
rigorous derivation of a microscopic SOI Hamiltonian [4] should consider the detailed geometry of the quantum dot
system which in the present device is unknown. Furthermore, to simplify the analysis we assume that the microwave
field affects only the energy of dot 2, while all the other DQD parameters remain fixed. This basic assumption gives
a very good qualitatively agreement with the experiment.
The DQD is tunnel-coupled to left and right leads, which consist of non-interacting holes. These holes are described

by the Hamiltonian

HL =
∑
ℓkσ

ϵℓkd
†
ℓkσdℓkσ, (6)

where the operator d†ℓkσ (dℓkσ) creates (destroys) a hole in lead ℓ = {L,R} with momentum k, spin σ, and energy ϵℓk.
The interaction Hamiltonian between the DQD and the two leads is

HT =
∑
kσ

(tLc
†
1σdLkσ + tRc

†
2σdRkσ) + H.c., (7)

with tL (tR) being the tunnel coupling between dot 1 (2) and the left (right) lead, which is assumed to be energy
independent, and we also consider tL = tR.

V. TWO-LEVEL MODEL

A. Two-level Hamiltonian

In the main article an effective two-level Hamiltonian was used to explore the microwave-induced peaks. Here we
give some details about the derivation of this Hamiltonian. First we diagonalize the time-independent part of the
DQD Hamiltonian HDQD. The derived eigenenergies are denoted by Ei and the corresponding eigenstates are written
in the general form

|ui⟩ = ai|S11⟩+ bi|T+⟩+ ci|S02⟩+ di|T−⟩+ ei|T0⟩. (8)

For only one state the coefficient ei ̸= 0 and specifically ei = 1, and for simplicity we neglect the component |S20⟩,
but this is taken into account in the numerical computations. Then we write the total DQD Hamiltonian HDQD in
the energy basis |ui⟩. To look for an analytical treatment, we assume that the two eigenstates |u1⟩, |u2⟩, which form
the anti-crossing point, can approximate well the dynamics of the system and thus we ignore all the other eigenstates.
These arguments lead to the following approximate DQD Hamiltonian

h
′

DQD =

(
E1 0
0 E2

)
+A cos(ωt)

(
1 + c21 c1c2
c1c2 1 + c22

)
, (9)

where E1, E2 are the two energy levels which anti-cross. Then to remove the time dependence from the diagonal
elements of h

′

DQD, we perform a transformation to derive the transformed Hamiltonian [5]

hDQD = U†(t)h
′

DQDU(t)− iℏU†(t)
dU(t)

dt
, (10)
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with the operator

U(t) =

(
eiϕ1(t) 0

0 eiϕ2(t)

)
, (11)

and the phases

ϕ1,2(t) = −
(1 + c21,2)A

ℏω
sin(ωt)± nωt

2
. (12)

The transformed Hamiltonian is

hDQD =

(
E1 + nℏω/2 q

q∗ E2 − nℏω/2

)
, (13)

with the off-diagonal coupling element being

q =
c1c2A

2
[exp(+iωt) + exp(−iωt)] exp(−inωt) exp

(
i
Λ

ℏω
sin(ωt)

)
, (14)

and the parameter Λ = A(c21 − c22). To simplify this expression we use the formula

exp[ix sin(ωt)] =
∑
m

exp(imωt)Jm (x) , (15)

where Jm is the mth order Bessel function of the first kind. Then the coupling term is

q =
c1c2A

2

∑
m

exp[i(m− n+ 1)ωt]Jm

(
Λ

ℏω

)
+
c1c2A

2

∑
m

exp[i(m− n− 1)ωt]Jm

(
Λ

ℏω

)
. (16)

In the context of a ‘rotating wave approximation’, we assume that in the long-time limit, when the system has reached
the steady state, the non-oscillatory terms can approximate well the dynamics. Thus, the off-diagonal element becomes
time-independent

q ≈ c1c2A

2
Jn−1

(
Λ

ℏω

)
+
c1c2A

2
Jn+1

(
Λ

ℏω

)
. (17)

Using the property xJn−1(x) + xJn+1(x) = 2nJn(x) and substituting Λ = A(c21 − c22), we arrive at the off-diagonal
coupling element

q = nℏω
c1c2
c21 − c22

Jn

(
A(c21 − c22)

ℏω

)
, n = 1, 2, ... (18)

We use the effective DQD Hamiltonian hDQD to study the n-photon resonance that satisfies the condition nℏω =
E2 − E1. For n = 1, the Hamiltonian hDQD coincides with the Hamiltonian in Eq. (1) given in the main article.
Because the Hamiltonian hDQD that describes the n-photon transition depends on n, in Figs. 3(b, d, f) in the main
article we consider 1 ≤ n ≤ 4, and for each frequency of the driving field we plot the corresponding maximum increase
in the background current that comes from a specific n. This way produces the correct behaviour near the n-photon
peak.
When there is no driving, A = 0, the coupling is q = 0; thus the two levels are uncoupled and there are no

microwave-induced peaks. Moreover, when tso = 0 one of the coefficients ci is zero; thus q = 0 and the driving field
cannot couple the two levels. Finally, the parameters in this work satisfy the regime J1(x) > Jn(x) with n > 1,
consequently at a given magnetic field the single-photon peak is stronger than the n-photon peak. This observation
is consistent with the experimental data.

B. Rate equations

In the spin blockade regime the electrical transport takes place through the charge-cycle (0, 1) → (1, 1) → (0, 2) →
(0, 1), where (k, m) refers to a state with k (m) holes on dot 1 (dot 2). We consider the single-spin states c†2↑|0⟩,
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c†2↓|0⟩, as well as the two-hole states that form the anti-crossing |u1⟩, |u2⟩, and determine the density matrix ρ(t) of

the DQD in the transformed frame (‘rotating’ frame). Following a standard open-system approach [6] the equation
of motion of ρ(t) can be written in the form

dρ(t)

dt
= − i

ℏ
[hDQD, ρ(t)] + Lρ(t), (19)

where the incoherent term Lρ(t) accounts for the interaction of the DQD with the two leads which is treated to second
order in the dot-lead tunnel coupling (sequential tunneling). In this approximation the transition rates between
the DQD eigenstates due to the coupling of the DQD with the leads acquire a simple form [3]. The effect of the
transformation U(t) on the DQD-lead interaction is ignored and Eq. (19) can be solved analytically in the steady
state, e.g., when dρ(t)/dt = 0. In this effective model the electrical current through the DQD is proportional to the
population of the |S02⟩ state, which is extracted directly from the populations of |u1⟩ and |u2⟩.

VI. FLOQUET MODEL

The effective two-level model described in the preceding section takes into account only the states which form
the anti-crossing point and neglects the time-dependent oscillating terms in the Hamiltonian. In the charge-cycle in
the spin blockade regime all triplet states are relevant [3], and in the limit B → 0 the triplet states become quasi
degenerate, thus the effective model is questionable. Therefore, to test the overall accuracy of the effective model,
we describe in this section another model that takes into account all the states which are involved in the transport
through the DQD [7], and treats the time dependence of the DQD Hamiltonian HDQD(t) exactly within the Floquet
formalism [8–10].

A. Floquet Hamiltonian

The Hamiltonian of the DQD is periodic HDQD(t) = HDQD(t+T ), with T = 2π/ω being the period of the external
electric field. For this reason it is convenient to apply the Floquet formalism which is a powerful tool for time-
dependent periodic systems [8–10]. According to the Floquet theorem, a solution of the time-dependent Schrödinger
equation with a periodic Hamiltonian can be written in the form

|ψj(t)⟩ = exp

(
−i ϵjt

ℏ

)
|ϕj(t)⟩, (20)

where |ϕj(t)⟩ are the Floquet modes which have the periodicity of the Hamiltonian, i.e., |ϕj(t)⟩ = |ϕj(t + T )⟩,
and ϵj are the Floquet energies. These are time independent and can be defined, for instance, within the interval
−ℏω/2 < ϵj < +ℏω/2. The Floquet modes and energies satisfy the following eigenvalue problem [11](

HDQD(t)− iℏ
∂

∂t

)
|ϕj(t)⟩ = ϵj |ϕj(t)⟩, (21)

that is solved by expanding the time periodic HDQD(t) and |ϕj(t)⟩ in a Fourier series:

[HDQD(t)]nm =
∑
k

eikωt[Hk
DQD]nm, |ϕj(t)⟩ =

∑
k

eikωt|ϕkj ⟩. (22)

If we denote by |yi⟩ the basis vectors spanning the DQD Hilbert space, and expand |ϕkj ⟩ in that basis

|ϕkj ⟩ =
N∑
i=1

W k
i,j |yi⟩, (23)

the eigenvalue problem Eq. (21) becomes

N∑
l=1

∑
k

(
[Hn−k

DQD]il + nℏωδnkδil
)
W k

l,j = ϵjW
n
i,j . (24)

Here the indexes n, k refer to the Fourier series, and the indexes i, l refer to the basis vectors. For the numerical
computations, this infinite system of coupled equations is truncated to a finite but sufficiently large value to ensure
good convergence of the results.
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B. Master equation

In the Floquet formalism, the density matrix ρ(t) of the DQD is expressed in the time-dependent Floquet basis
|ϕj(t)⟩, simplifying drastically the calculation of the steady state [8–10]. Within the Born and Markov approximations,
the matrix elements ρij(t) satisfy the master equation

−
(
∂

∂t
+
i

ℏ
ϵij

)
ρij(t) =

∑
kl

ρlj(t)Xik;lk(t) + ρik(t)Glj;lk(t)− ρkl(t)[Gik;jl(t) +Xlj;ki(t)]. (25)

with ϵij = ϵi− ϵj , and the transition rates X(t) and G(t) quantify the interaction of the DQD with the two leads. For
simplicity, here we focus only on X(t) and consider only the interaction of dot 1 with the left lead. The coupling of
the DQD to the right lead can be treated in a similar manner. The rate Xij;kl(t) is defined by the Fourier expansion

Xij;kl(t) =
∑
K

eiKωtXij;kl(K), (26)

Xij;kl(K) =Γ
∑
Mσ

[c1σ(K +M)]ij [c1σ(M)]∗klfL(ϵlk −Mℏω)

+Γ
∑
Mσ

[c1σ(−K −M)]∗ji[c1σ(−M)]lkf
−
L (ϵkl +Mℏω),

(27)

where fL is the Fermi distribution at the chemical potential of the left lead and f−L = 1− fL. The subband index is
defined by the index M . The DQD-lead coupling constant Γ is proportional to t2L, and the matrix element is defined
through its Fourier transform as follows

[c1σ(M)]ij =
1

T

∫ T

0

e−iMωt⟨ϕi(t)|c1σ|ϕj(t)⟩dt. (28)

For any two system operators sp and sw, with s†p = sw, the corresponding matrix elements satisfy [sp(−M)]∗ji =
[sw(M)]ij . To solve Eq. (25) we assume that in the long-time limit the density matrix, which describes the steady
state, has the same periodicity as the DQD Hamiltonian, thus it can be expressed in the form

ρij(t) =
∑
N

eiNωtρij(N). (29)

Substituting Eq. (26) and Eq. (29) into Eq. (25) results in an infinite set of coupled equations that is solved numerically
by truncating N to a finite value. Having determined the steady state, the tunneling current is computed by taking

the average of the current operator I = ei[H,NR]/ℏ, where NR =
∑

kσ d
†
RkσdRkσ is the number of holes in the right

lead. In the presence of the microwave field the time-averaged current is computed.
Figure S6 shows the background current and the microwave-induced peak height near the T+–S anti-crossing point

for a microwave amplitude A = 30 µeV. The basic features are in good overall agreement with the experimental data
[see main article Fig. 2(c) and (d)]. The height of the current peaks is sensitive to the DQD-lead coupling Γ and the
microwave amplitude A. When Γ is strong, A has to be large for the peaks to be visible. However, the computational
time increases quickly with A, because the Fourier expansions need extra terms to converge. For this reason, to keep
the numerical problem tractable we choose Γ in the GHz range.
A more detailed fit to the background current can be achieved by coupling the DQD to a bosonic bath and

introducing spin flips [12, 13]. This approach offers limited additional insight into the present experimental data,
whilst extra parameters have to be introduced to specify the spectral density of the bath. Therefore, this approach
is not pursued in this work. Three-body states which for simplicity are not accounted for in our model can also have
some contribution to the background current [13].
Finally, we mention that the Floquet model can also be used to assess the rotating wave approximation [Eqs. (16),

(17)] in the effective two-level model. In this case the Hamiltonian HDQD(t) in Eq. (21) has to be replaced by h
′

DQD(t)

[Eq. (9)]. The two models are in agreement.

VII. DOUBLE QUANTUM DOT PARAMETERS

The experimental data suggests that the charging energies of the two dots are U1 ≈ 25 meV and U2 ≈ 5 meV and
the g-factor is g ≈ 1.8 (see main article). In the calculations we take for the two dots g1 = g2, though this assumption
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is not important for the theoretical results presented in this work. In the experiment an anti-crossing point is probed
at about 200 mT and the anti-crossing gap is about 1 GHz, but the exact values of the parameters δ, tc, and tso are
unknown. Consequently, for the calculations we choose δ, tc, and tso in order to form an anti-crossing point as in the
experiment, and simultaneously to achieve a good qualitative agreement between the calculated and the measured
background currents (A = 0). The SOI Hamiltonian Hso forms two anti-crossing points, but the observed spectra
indicate that only one point is relevant for the chosen ranges of the magnetic field and the driving frequency. The
choice of the parameters δ, tc, and tso is not unique and we choose different values in the two models in order to
achieve a good fit to the background current. In the two-level model, the parameters are δ = −1.85 meV, tc = 0.135
meV, and tso = 0.15tc; and in the Floquet model the parameters are δ = −1.98 meV, tc = 0.14 meV, and tso = 0.14tc.
Here, we present results for δ < 0, but the models can also produce the general experimental features for δ > 0.
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FIG. 1: Coulomb diamond structure for a double quantum dot calculated by the constant charging model. The white region
corresponds to the Coulomb blockade region. The parameters (a.u.) are: EC1 = 5, EC2 = 25, EC12 = 0.2, Eoff = −0.25,
C1 = 1.1, C2 = 1.0, D1 = 0.33, D2 = 0.66.
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FIG. 2: Schematic representation of the transport cycle in the spin blockade regime. If a state in the bias window has no double
occupation on the left dot the current is blocked. The spin-orbit interaction and the microwave field can lift the spin blockade
by inducing singlet-triplet transitions.
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FIG. 3: Intensity plot of leakage current ID. For B > 0 the high-current EDSR curves due to the transitions T−–S (red solid),
T0–S (blue dotted), T+–S (green dashed) are indicated.
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FIG. 4: Intensity plot of dID/dB at high microwave frequency and magnetic field.
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FIG. 6: Peak height (bright line, left axis) for a microwave amplitude A = 30 µeV, and background current without the
microwave field (dark line, right axis) as a function of the magnetic field near the T+–S anti-crossing point. The results are
derived using the Floquet model described in the supplemental material. See also Figs. 2(c) and (d) in the main article.


