
Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems

Daniel Leykam,1 Konstantin Y. Bliokh,2,3 Chunli Huang,1,4 Y. D. Chong,1,5 and Franco Nori2,6
1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore 637371, Singapore
2CEMS, RIKEN, Wako-shi, Saitama 351-0198, Japan

3Nonlinear Physics Centre, RSPE, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
4Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

5Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
6Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 17 October 2016; published 23 January 2017)

We analyze chiral topological edge modes in a non-Hermitian variant of the 2D Dirac equation. Such
modes appear at interfaces between media with different “masses” and/or signs of the “non-Hermitian
charge.” The existence of these edge modes is intimately related to exceptional points of the bulk
Hamiltonians, i.e., degeneracies in the bulk spectra of the media. We find that the topological edge modes
can be divided into three families (“Hermitian-like,” “non-Hermitian,” and “mixed”); these are
characterized by two winding numbers, describing two distinct kinds of half-integer charges carried by
the exceptional points. We show that all the above types of topological edge modes can be realized in
honeycomb lattices of ring resonators with asymmetric or gain-loss couplings.
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Introduction.—There is presently enormous interest in
two groups of fundamental physical phenomena: (i) topo-
logical edge modes in quantum Hall fluids and topological
insulators [1–3], which are Hermitian, and (ii) novel effects
in non-Hermitian wave systems (including PT -symmetric
systems) [4–6]. Both types of phenomena have been
studied in the context of quantum as well as classical
waves, and both are deeply tied to the geometrical features
of spectral degeneracies. In the Hermitian case, the
common degeneracies are Dirac points: linear band cross-
ings (generically, in a 3D parameter space), which separate
distinct topological phases and mark the birth or destruction
of topological edge modes [7,8]. Non-Hermitian systems,
however, exhibit a distinct class of spectral degeneracies
known as exceptional points (EPs), which are branch points
in a 2D parameter space where the Hamiltonian becomes
nondiagonalizable [4,9,10].
In Hermitian systems, the bulk-edge correspondence

relations that give rise to topological edge modes are
typically based upon the Berry connection and rely on
the eigenvector orthogonality granted by Hermiticity [1–3].
Is there a generalization of the bulk-edge correspondence to
non-Hermitian systems [11]? When sufficiently weak non-
Hermiticity (e.g., loss) is introduced to topological insu-
lator models, the edge modes can retain some of their
original characteristics [12,13]. On the other hand, certain
non-Hermitian models with chiral symmetry can support
anomalous edge modes that have no clear relationship to
Hermitian topological edge modes [14–16]. These modes
are embedded within a complex gapless band structure and
appear in the vicinity of EPs; however, it is not known
whether they can be related to model-independent bulk

topological invariants similar to those in Hermitian
systems.
This Letter aims to shed light on the nature of topological

edge modes in non-Hermitian quantum systems. In contrast
to previous studies based on lattice models [11–22], we
focus on a non-Hermitian continuum model. This is
motivated by the fact that, in the Hermitian case, many
model-independent features of topological edge modes can
be understood in terms of the generic properties of
continuum models, such as the Dirac equation in various
dimensions [7,23–25]. For example, zero-energy Jackiw-
Rebbi end modes of the 1D Dirac equation [23,24]
underpin end modes of the Su-Schrieffer-Heeger lattice
model [26,27].
Our continuum model consists of a 2D non-Hermitian

Hamiltonian that is linear in both kx and ky and possesses a
tunable mass parameter m, similar to the 2D Dirac
equation. The bulk band structure is complex and possesses
a pair of EPs (branch points). Along interfaces between
media with different “masses” and/or signs of the non-
Hermiticity, we find that there exist zero-energy chiral edge
modes. Remarkably, the appearance of these edge modes
and their regions of existence are fully determined by the
EPs in the bulk spectra of the media. We show that these
modes can be classified as “Hermitian-like,” “non-
Hermitian,” and “mixed,” using two topological numbers.
The first number is related to the chirality of the eigenstates
(i.e., the sign of the Berry curvature), while the second one
characterizes the chirality of the EP [9,10,28–30]. The non-
Hermitian and mixed edge modes resemble the “anoma-
lous” edge modes found in Ref. [16]. Moreover, we are able
to enumerate the zero-energy edge modes by using an index
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theorem, a variant of the Aharonov-Casher theorem for the
2D Dirac equation in a vector potential [31]. Finally, we
show that a lattice counterpart of this continuum model,
including the anomalous edge modes, can be realized using
honeycomblike arrays of ring resonators with non-
Hermitian couplings [32,33,37].
Non-Hermitian Hamiltonian.—Our model is based on

the following non-Hermitian Hamiltonian, defined on a 2D
momentum space k ¼ ðkx; kyÞ:

Ĥ ¼
�
kx − isky m

m −kx þ isky

�

≡ ðkx − iskyÞσ̂z þmσ̂x ≡B · σ̂: ð1Þ
Here, σ̂ ¼ ðσ̂z; σ̂x; σ̂yÞ denotes the vector of Pauli matrices
(permuted cyclically for later convenience), and B ¼
ðBx; By; 0Þ is an effective complex “magnetic field,” which
will be used in the subsequent Berry-phase analysis. The
Hamiltonian Ĥ contains three continuously tunable real
parameters: the momenta kx and ky, and m (assumed real),
which mixes the two spinor components, and which we call
“mass” for convenience. The parameter s ¼ �1, which we
will regard as a “non-Hermitian charge,” determines the
sign of the imaginary part, such that ½HðsÞ�† ¼ Hð−sÞ.
The Hamiltonian (1) involves only two Pauli matrices

and has the chiral symmetry fĤ; σ̂yg ¼ 0. It is also PT
symmetric (where T involves complex conjugation and
momenta reversal, while P is the reflection x → −x) and
can hence have real eigenvalues [5,6]. The eigenvalues of Ĥ
are

λ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
B ·B

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðkx − iskyÞ2

q
; ð2Þ

and its (non-normalized) eigenvectors are

ψ� ¼
�

1

By=ðBx þ λ�Þ
�
: ð3Þ

The complex spectrum (2) is shown in Fig. 1. Along the ky
axis, the real part of the spectrum ReðλÞ is gapped for
−jmj < ky < jmj and ungapped for jkyj > jmj. There are

two EPs at kEP ¼ ð0;�jmjÞ, separating the “gapped” and
“ungapped” ky domains.
Unlike Hermitian degeneracies, EPs involve the coales-

cence of eigenvectors, not just the eigenvalues
λ�ðkEPÞ ¼ 0. ĤðkEPÞ is defective and has a single chiral
eigenmode (an eigenvector of σ̂y):

ψðkEPÞ ¼
�

1

iχEP

�
; ð4Þ

where χEP ¼ �sgnðsmÞ is the chirality of the EP
[9,10,28–30].
Chiral edge modes.—We translate Eq. (1) to a

Schrödinger wave equation by taking k̂ ¼ −i∇ and
allowing the mass m and/or non-Hermitian charge s to
vary with position (though we still assume that s only takes
the values �1):

Ĥ ¼ ½−i∂x − sðx; yÞ∂y�σ̂z þmðx; yÞσ̂x: ð5Þ
Consider an interface between two uniform media with

different m and/or s. For now, let the interface be along the
line x ¼ 0, such that m ¼ m1; s ¼ s1 for x < 0 (medium 1)
and m ¼ m2; s ¼ s2 for x > 0 (medium 2). We seek edge
modes that propagate along y and are normalizable along x:

ψ edge ¼
�
α

β

��
eikyþκ1x; Reðκ1Þ < 0; x > 0

eikyþκ2x; Reðκ2Þ > 0; x < 0:
ð6Þ

Substituting Eq. (6) into Eq. (5), we find the zero-energy
edge modes λedge ¼ 0 which exist when the following real
equations are satisfied:

−κ1 ¼ s1k�m1; −κ2 ¼ s2k�m2: ð7Þ
For κ1 < 0 and κ2 > 0, there can be zero, one, or two
solutions to Eq. (7) for each k. The number of solutions also
depends onm1;2 and s1;2. Like the eigenmodes at the EPs of
the bulk system, these edge modes are chiral, satisfying
β=α ¼ �i. Similar to Eq. (4), we define the mode chirality
as χedge ¼ Imðβ=αÞ.
We first examine the two simplest cases.
(A) The media have equal charges s1 ¼ s2 ¼ s and

opposite masses m1 ¼ −m2 ¼ m. In this case, there is one
zero-energy edge mode for each k ∈ ð−jmj; jmjÞ and no
edge modes for all other k. This k range corresponds to the
ky domain with the gapped bulk spectra Reðλ�Þ between
the two EPs (Fig. 1). This domain includes k ¼ 0, which is
the Hermitian limit where Eq. (5) reduces to the Jackiw-
Rebbi model for 1D Dirac modes [23,24]. Thus, this is a
family of non-Hermitian edge modes that are continuable
from the Hermitian Jackiw-Rebbi edge modes. The mode
chirality is χedge ¼ sgnðmÞ, independent of s.
(B) The media have equal “masses” m1 ¼ m2 ¼ m but

opposite “charges” s1 ¼ −s2 ≡ s. In this case, there are two
edge modes in the domain k ∈ sgnðsÞðjmj;∞Þ. This

(a) (b)

ky kx

Re Im

kx

kyEP EP
EP

EP

FIG. 1. Real and imaginary parts of the complex spectrum (2)
of the Hamiltonian (1) with exceptional points at
k�
EP ¼ ð0;�jmjÞ.
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corresponds to one of the ky domains with the ungapped
Reðλ�Þ bulk spectra. The two edge modes have opposite
chiralities χedge ¼ �1. Unlike case (A), these modes are
essentially non-Hermitian. First, they are asymmetric in k
and do not exist in the Hermitian limit k ¼ 0. Second, the
modes are defective: the corresponding left eigenvectors
[right eigenvectors of Ĥð−kÞ ¼ Ĥ†ðkÞ] do not exist.
When jm1j ≠ jm2j, the situation is more complicated.

Figure 2 shows the edge modes for varying m2, with s1 ¼
s2 ¼ 1 and m1 > 0. For m2 > m1, there is one edge mode
for each k ∈ ðm1; m2Þ, as shown in Fig. 2(a). For m2 < m1,
there is one edge mode for each k ∈ ð−m1;−m2Þ, as shown
in Figs. 2(b)–2(d); this includes the special case
(A) discussed above. For certain values of k, Reðλ�Þ is
gapped in one medium and ungapped in the other medium.
We call such zones and the corresponding edge modes
mixed. When m2 > 0, there are only positive or only
negative values of k, as shown in Figs. 2(a) and 2(b). In
Fig. 2, we also indicate the chiralities of the EPs in the two
media χEP and the chiralities of the edge modes χedge.
Notably, the edge modes always connect a pair of EPs with
the same chirality, while the modes themselves have the
opposite chirality.
We summarize the conditions under which zero-energy

edge modes exist using the phase diagrams in Fig. 3. Here,
we fixm1 > 0 and s1 ¼ 1, and use k=m1 andm2=m1 as plot
axes. The red (blue) regions show where there is a single
edge mode with χedge ¼ þ1 (χedge ¼ −1). Figure 3(a)
shows the case where the two media have equal non-
Hermitian charge s, with the special case (A) lying on the
m2=m1 ¼ −1 line and the Jackiw-Rebbi model [23,24]
lying on the k ¼ 0 line. Figure 3(b) shows the opposite-
charge case; it also contains a purple region indicating two
edge modes with χedge ¼ �1, which includes the case
(B) on the line m2=m1 ¼ 1.

We will now show that these phase diagram features—
i.e., the number of zero-energy edge modes and under what
conditions they appear—can be understood from the
topological properties of Eq. (1).
Winding numbers.—Since one family of edge modes can

be continued to Jackiw-Rebbi modes [23,24], and the
termination points of the edge modes are EPs of the bulk
spectrum, we can guess that the edge modes can be
characterized by bulk topological invariants [1–3]. Along
the interface, the conserved ky plays the role of a tunable
parameter for calculating a 1D winding number. However,
it turns out that two winding numbers are needed to fully
describe the edge modes in the non-Hermitian case.
Previous researchers [11,12,16,38] have focused on the

winding numbers of the eigenvectors ψ�. However, we
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FIG. 2. Schematic diagrams indicating the zero-energy chiral
edge modes (6) and (7) at the interface x ¼ 0 between two media
with different masses m1 > 0 and m2 and the same non-
Hermitian charges s1 ¼ s2 ¼ 1. Exceptional points kEP are
indicated for the two media, with chiralities χEP marked by
the black þ and − signs. The edge modes with positive and
negative chiralities χedge are marked by red and blue colors.

FIG. 3. Phase diagrams for the chiral edge modes (6) and (7) at
the interface between two media with (a) equal non-Hermitian
charges s1 ¼ s2 ¼ 1 and (b) opposite charges s1 ¼ −s2 ¼ 1. The
mass in medium 1 is fixed as m1 > 0. The arrows above
(a) indicate the cases shown in Fig. 2. The numbers in parentheses
indicate the differences of winding numbers (9) and (11) between
the two media: ðΔw1;Δw2Þ. Striped, empty, and dotted zones
indicate gapped, ungapped, and mixed cases of the bulk spectra
Reðλ�Þ in the two media.
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emphasize that encircling an EP (branch point) swaps the
bands, so that two loops in parameter space are required to
return to the original state (with a π geometric phase
gained) [4,9,10,16,38–40]. Hence, there is no globally
smooth way to define two distinct bands for Eq. (3).
One way to resolve this band-labeling ambiguity is to

consider winding numbers associated with the complex
magnetic field B defined in Eq. (1), which has no
discontinuities. We take a spherical-like representation
B ¼ Bðsin θ cosϕ; sin θ sinϕ; cos θÞ, where both the “mag-
nitude” B ¼ λþ and the “angles” ðθ;ϕÞ are complex [41].
The chiral symmetry of Ĥ constrains B to the plane
θ ¼ π=2, so only B and ϕ vary with k.
We now introduce the winding number

w1 ¼
1

2π

Z
kx¼þ∞

kx¼−∞
∇kϕ · dk; ð8Þ

where the integral is taken along a kx line with fixed ky.
This winding number originates from a non-Hermitian
generalization of the Berry phase, describing the effects of
varying direction of B [41]. It is equivalent to the winding
numbers used in Refs. [11,12,38]. Applying Eq. (8) to
Eq. (1), we find [33]

w1 ¼
�− 1

2
sgnðmÞ for jkyj < jmj

0 for jkyj > jmj: ð9Þ

This explains the edge modes in case (A), corresponding to
the m2=m1 ¼ −1 line in Fig. 3(a). The difference in the
topological numbers of the two media is Δw1 ¼ w1ðm2Þ−
w1ðm1Þ ¼ sgnðm1Þ; accordingly, we observe a single edge
mode of chirality χedge ¼ sgnðm1Þ for jkyj < jm1j .
For other parameter choices, Δw1 can be fractional. For

edge modes shown in Fig. 2(a), we find Δw1 ¼ −1=2, and
for Fig. 2(b), Δw1 ¼ 1=2. Edge modes in these cases
resemble the anomalous edge modes found in Ref. [16].
Clearly, w1 alone is insufficient to characterize these
modes, which are asymmetric in k.
To classify the anomalous edge modes, we introduce a

second winding number using the complex magnitude
of B: B ¼ λþ. Near each EP, the eigenvalues form “half-
vortices”: λ� ∝ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk − kEPj

p
exp ½isArgðk − kEPÞ=2�,

where s=2 is the vortex topological charge. We define

w2 ¼
1

2π

Z
kx¼þ∞

kx¼−∞
∇kArgðλþÞ · dk; ð10Þ

where the integral is again taken similarly to Eq. (8). For the
spectrum (2), we find [33]

w2 ¼
�
0 jskyj < jmj
1
2
sgnðskyÞ jskyj > jmj: ð11Þ

This winding number has the required asymmetry in ky.
Whenever w2 ≠ 0, there are branch cuts in λ�, and Ĥ
cannot be continuously deformed into a gapped Hermitian
system. Unlike w1, which is a generalization of the Berry
phase, the w2 winding number is specific to non-Hermitian
systems and has no direct Hermitian counterpart.
Using Δw1 and Δw2, we can completely characterize the

edge modes shown in Fig. 3. First, for w2 ¼ 0, the existence
of Hermitian-like edge modes (and their chirality) is
determined by Δw1. Second, for Δw2 ≠ 0, the number of
anomalous (non-Hermitian and mixed) edge modes is
2jΔw2j, while sgnðΔw2Þ determines whether they are
localized to the left or right edge of medium 1. In
Fig. 3, the anomalous non-Hermitian edge modes only
exist on the right edge when Δw2 < 0. In particular, the
purple region in Fig. 3(b) corresponds to Δw2 ¼ −1, and
accordingly there are two anomalous edge modes with
opposite chiralities (Δw1 ¼ 0), and both are defective.
Thus, the winding numbers w1;2 provide the bulk-edge
correspondence for the non-Hermitian Hamiltonian (5) and
describe topological properties of the edge modes Fig. 3.
Since w1 and w2 only change when ky crosses an EP, we

can identify the “topological charges” of the individual EPs
as ðq1; q2Þ ¼ 1

2
ð�jmj; sÞ. There are four inequivalent non-

Hermitian degeneracies, in contrast to the two inequivalent
Hermitian degeneracies. This is a consequence of the richer
morphologies of complex vector fields that parametrize
non-Hermitian Hamiltonians [42].
Index theorem.—Another way to analyze the zero-

energy modes (zero modes) of the non-Hermitian
Hamiltonian (5) is to consider the Hermitian Hamiltonian

Ĥ ¼ Ĥ†Ĥ: ð12Þ

Zero modes of Ĥ are also zero modes of Ĥ, and vice versa.
When s ¼ �1 is a constant, we find that

Ĥ ¼ j − i∇ − σ̂ysAðx; yÞj2 þ σ̂yBðx; yÞ; ð13Þ

where Bðx; yÞ ¼ ∂xAy − ∂yAx and A ¼ ð0; mÞ. This is a
Pauli-type Hamiltonian for a nonrelativistic particle in a
matrix-valued vector potential [43].
The normalizable zero modes of Ĥ can now be counted

by an “index-theorem” argument [31]. The result is that
there are N ¼ ⌊jΦj=2π⌋ such modes, where Φ is the total
flux of B. This holds for arbitrary complex analytic mass
fields mðx; yÞ. For the previously considered special case
of two media with a straight interface, there is a flux of
ðm2 −m1Þ per unit length along the domain wall, implying
that the zero modes occupy a k range of Δk ¼ m2 −m1, in
precise agreement with Figs. 2 and 3(a) (see details
in Ref. [33]).
Discussion.—We have analyzed a 2D non-Hermitian

continuummodel that exhibits different types of zero-energy
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edge modes, which can be classified using two half-integer-
valued winding numbers calculated from the complex bulk
band structure. These are inherently associated with topo-
logical properties of bulk eigenmodes and non-Hermitian
degeneracies (EPs) in the band structure. One family of edge
modes includes the well known (Hermitian) Jackiw-Rebbi
zero modes [23,24]. However, the classification also con-
tains essentially non-Hermitian edge modes that cannot be
continued into Jackiw-Rebbi-type edge modes; these seem
to be continuum counterparts of the anomalous edge modes
recently encountered in certain 1D non-Hermitian lattice
models [14–16].
The three families of non-Hermitian topological edge

modes can be realized in a non-Hermitian 2D photonic
resonator lattice [6,14,15,44–47], with non-Hermiticity
introduced through either asymmetric scattering between
clockwise and anticlockwise modes [4–6,14,15] or ampli-
fying or lossy inter-resonator coupling [45–47]. In the
Supplemental Material [33], we show that lattice and
interface orientations can be chosen to yield different
values of ðw1; w2Þ and, correspondingly, different families
of zero-energy edge modes [37].
We have focused on the case of two uniform media

separated by the line x ¼ 0. For other orientations of a
straight interface, we obtain similar phase diagrams, taking
k ¼ k · ŷwhere k is the wave vector parallel to the interface.
The index-theorem derivation of the number of normal-
izable zero modes is even more general and applies to
arbitrary analytic mass fields. The above features, and
comparisons with previously known examples, suggest that
the variety of chiral edge modes and topological numbers
found in this work may be generic to a wide class of non-
Hermitian wave systems.
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