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We propose and analyze a new approach based on parity-time (PT ) symmetric microcavities with
balanced gain and loss to enhance the performance of cavity-assisted metrology. We identify the conditions
under which PT -symmetric microcavities allow us to improve sensitivity beyond what is achievable in
loss-only systems. We discuss the application of PT -symmetric microcavities to the detection of
mechanical motion, and show that the sensitivity is significantly enhanced near the transition point from
unbroken- to broken-PT regimes. Our results open a new direction for PT -symmetric physical systems
and it may find use in ultrahigh precision metrology and sensing.
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Introduction.—The measurement of physical quantities
with high precision is the subject of metrology. This
has attracted much attention due to increasing interest in,
e.g., gravitational wave detection [1], sensing of nano-
structures [2,3], global positioning, and navigation [4,5].
Developments in metrology over the past two decades have
provided necessary tools to determine the fundamental
limits of measuring physical quantities and the resources
required to achieve them [6,7]. Techniques that will help to
reach the fundamental detection limit and measure very
weak signals are being actively sought.
Among many different approaches, cavity-assisted

metrology (CAM), where a cavity or a resonator with a
high-quality (Q) factor is coupled to a device under test
(DUT), has emerged as a versatile and efficient approach
for high-precision measurements. The coupling between
the resonator and the DUT manifests itself as a backaction-
induced frequency shift, mode splitting, or a sideband
in the output transmission spectrum [8]. CAM has been
applied for reading out the state of a qubit [9], measuring
tiny mechanical motions [10–16] and detecting nanopar-
ticles [17,18].
The readout signal (i.e., the transmission spectrum) of

CAM is determined by the sum of the background
spectrum of the cavity and the backaction spectrum of
the DUT. The background spectrum is determined by theQ
of the cavity, whereas the backaction spectrum is deter-
mined by the strength of the cavity-DUT coupling (also

dependent on Q) and the quantity to be measured. A broad
background spectrum masks the backaction spectrum and
decreases the signal-to-noise ratio [Fig. 1(a)]. A higher
cavity-DUT coupling strength and a higherQ help to detect
very weak signals, and enable us to resolve fine structures
in the output spectra [Fig. 1(b)]. CAM will benefit
significantly from a narrower background spectrum which
is limited by the cavity losses.
In this Letter, we show that the performance of CAM

is significantly enhanced if the passive cavity (i.e., lossy
cavity without optical gain) of the CAM is coupled to an
auxiliary cavity with optical gain (i.e., active cavity)
that balances the loss of the passive cavity. Such coupled
structures with balanced gain and loss form parity-time
(PT ) symmetric systems [19], which have been widely
studied theoretically [20–29] and experimentally [30–38].
As a specific application of PT CAM, we show the

enhancement in the detection of the motion of a nano-
mechanical resonator placed in the proximity of the passive
microcavity of PT CAM. The enhancement is significant
near the PT -phase transition point through which the
system transits from broken- to unbroken-PT symmetry.
The mechanism for the enhancement of the measurement
sensitivity in our system is attributed to two features. First,
due to gain-loss balance the supermodes are almost lossless
(extremely high Q), and the background spectrum is much
narrower. Thus, it is easier to resolve the sideband induced
by the DUT. Second, the effective interaction strength
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between the optical modes and the DUT is significantly
enhanced. Therefore, even very weak perturbations lead to
significant changes in the spectrum and hence become
detectable.
Cavity-assisted metrology (CAM) with PT -symmetric

microcavities.—The traditional CAM is composed of a
lossy optical cavity coupled to a DUT [Fig. 1(a)]. The
interaction Hamiltonian is given by Hint ¼ ga†az, where a
is the cavity’s annihilation operator; z is the DUT’s
observable being measured; and g is the strength of the
DUT-cavity coupling. In order to realize the PT CAM, an
active cavity is directly coupled to a lossy cavity [Fig. 1(b)],
similar to the configuration discussed in Ref. [38], and the
DUT is directly coupled to the lossy cavity. Here, the
intercavity coupling strength is controlled by the distance
between the cavities, and the gain-to-loss ratio of the
cavities is adjusted by an electrical or optical pump exciting
the optical gain in the active cavity. The Hamiltonian
describing this PT -CAM system is given by

H ¼ ðΔ − iκÞa†aþ ðΔþ iγÞc†c
þ ga†azþ g1ða†cþ c†aÞ; ð1Þ

where c is the annihilation operator of the active cavity; κ
and γ, respectively, denote the loss and gain rates of the
passive and active cavities; g1 is the intercavity coupling

strength; and Δ corresponds to the effective frequencies of
the cavities.
Without the interaction term ga†az, Eq. (1) accounts for

the coupling between the optical modes of the micro-
cavities, and leads to two supermodes a� that are described
with the complex eigenfrequencies ω� ¼ Ω� − iΓ� ¼
Δ − iχ � β, where β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 − Γ2

p
, χ ¼ ðκ − γÞ=2, Γ ¼

ðγ þ κÞ=2; Ω� and Γ� denote, respectively, the frequencies
and the decay rates of the supermodes. Clearly, β experi-
ences a transition from a real to an imaginary value and vice
versa at Γ ¼ g1, where β ¼ 0. At the transition point, the
eigenfrequencies coalesce, that is ω� ¼ Δ − iχ.
For Γ < g1, β is real (denoted as β ¼ βr), and the

complex eigenfrequencies become ω� ¼ Δ� βr − iχ,
implying that two supermodes have different resonance
frequencies [Ω− ≠ Ωþ], but the same damping rates
and linewidths [Γ� ¼ χ]. The separation of resonance
frequencies (i.e., amount of mode splitting) is given by
2βr. For Γ > g1, on the other hand, β is imaginary,
(β ¼ iβr), and the complex eigenfrequencies become
ω� ¼ Δ − iðχ ∓ βrÞ, implying two frequency-degenerate
supermodes [Ω� ¼ Δ] with different damping rates and
linewidths [Γ� ¼ χ ∓ βr].
When the gain γ of the active cavity balances the loss κ of

the passive cavity, β ¼ 0 corresponds to a PT -phase
transition point, where the supermodes coalesce, and χ
becomes zero, implying lossless supermodes. The regime
defined by Γ < g1 corresponds to thePT -symmetric phase,
where the lossless supermodes are split by 2βr. The regime
defined by Γ > g1 denotes the broken PT phase where the
two supermodes have the same frequency, while one of
them is dissipating and the other is amplifying.
Rewriting the Hamiltonian (1) in the supermode picture,

we find the effective coupling strength between the
supermodes and the DUT as [39]

geff ¼
gðΓþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − g21

p
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − g21

p : ð2Þ

Clearly, near the transition point g1 ¼ Γ, the effective
coupling strength geff is significantly larger than g, imply-
ing a drastic enhancement in sensitivity. One can intuitively
explain the sensitivity enhancement as follows. The active
cavity of the PT system amplifies the backaction spectrum
of the DUT. The gain-loss balance in the PT -symmetric
system, on the other hand, makes the background spectrum
narrower. The combined effect of these two increases the
measurement sensitivity.
In the regime of weak coupling between the cavity and

the DUT, we can omit the backaction of the cavity on the
DUT. Then the normalized spectrum can be written as [39]

SðωÞ ≈GðωÞ½SaðωÞ þ Aðg1; gÞSzðωÞ�: ð3Þ
Here, SaðωÞ is the single-cavity background spectrum
calculated by setting g1 ¼ 0; SzðωÞ ¼ F ½fðtÞF−1SzoðωÞ�

(a)

(b)

(c) (d)

FIG. 1. (a) Schematic diagram of a single passive-cavity
transducer. (b) PT -cavity-assisted transducer. (c) Amplification
factor Aðg1; gÞ of the backaction spectrum versus the normalized
coupling strength g1=Γ. Aðg1; gÞ increases very sharply, reaching
values as high as 1000, near g1 ¼ Γ. (d) Normalized background
spectra SaðωÞ of a passive cavity (red dashed curve), an active
cavity (purple dotted curve), and the PT -symmetric cavities in
the broken-PT regime (blue curve) as well as the PT -symmetric
regime (green curve with circular symbols). DUT: Device
under test.
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is the backaction spectrum from the DUT, with SzoðωÞ
representing the spectrum of the DUT, while F and F−1

are the Fourier and inverse-Fourier transforms, respectively.
The time-domain function fðtÞ is a form factor that broadens
the backaction spectrum [39]. Equation (3) implies that the
interaction between the lossy cavity and the DUT in the PT
system leads to an amplification factor Aðg1; gÞ acting on the
backaction spectrum SzðωÞ [Fig. 1(c)]. In the PT -breaking
regime, as g1 increases, Aðg1; gÞ first increases slowly from a
very small value and, near the PT phase transition point,
Aðg1; gÞ increases very sharply, reaching a very high value.
When g1 is further increased and the system enters the PT -
symmetric regime, the amplification factor Aðg1; gÞ drops
sharply, to a small value, and continues decreasing with a
very slow rate as g1 is increased.
In Fig. 1(d) we show the background spectrum SaðωÞ for

a lossy cavity and a PT structure in the PT -symmetric and
the broken-PT -symmetric regimes. Because of the pres-
ence of gain, the susceptibility coefficient GðωÞ reshapes
SaðωÞ, leading to a background spectrum which is signifi-
cantly narrower than that of a single lossy cavity. In the
PT -symmetric regime, the background spectrum is split
into two due to the strong coupling between the cavities,
and the split resonances have linewidths narrower than the
resonance-linewidth of the single lossy-cavity. Combining
the narrower background spectrum SaðωÞ of a PT structure
with the high amplification factor near the PT -phase
transition point leads to a significantly enhanced sensitivity
for the CAM.
Optomechanical transducer by PT breaking.—

Hereafter, we will discuss an optomechanical transducer
operated near the PT -phase transition point. We first
consider that the lossy cavity of the PT structure supports
a mechanical mode. The Hamiltonian of this PT opto-
mechanical system is obtained from Eq. (1) by replacing
the operator z by ðbþ b†Þ, where b is the annihilation
operator of the mechanical mode. We have obtained the
output spectrum [39] of this PT optomechanical system in
a form similar to Eq. (3), and compared it with the single-
cavity case in Fig. 2(b).
Next, let us consider a particular PT -symmetric

optomechanical transducer realized by two coupled reso-
nators used to detect tiny motions of a mechanical
oscillator, e.g., a nanomechanical beam or cantilever,
via the optical evanescent field of the passive resonator
[Fig. 2(a)] [49]. In order to show the differences between
PT and a single-lossy-cavity optomechanics, we carried
out numerical simulations using experimentally accessible
values of system parameters: Δ ¼ 0, ωm ¼ 6 MHz,
κ¼20MHz, γm¼0.2MHz, γ¼16MHz, g1 ¼ 19.8 MHz,
g ¼ 5 MHz, where ωm and γm are the frequency and the
decay rate of the mechanical oscillator. Since we have
deliberately chosen the optomechanical coupling strength g
to be very small, the susceptibility coefficient of the single-
cavity optomechanical system is very small; thus the

backaction spectrum of the mechanical oscillator is masked
by the background spectrum of the cavity [red dashed curve
in Fig. 2(b)]. The output spectrum of the PT -symmetric
transducer [blue curve in Fig. 2(b)] shows two distinct
features originating from the gain-loss balance and the
amplification mechanism. First, the background spectrum
is narrower and the resonance dip located at ω=ωm ¼ 0 is
amplified. Second, the backaction spectrum of the
mechanical motion is clearly seen as a sideband dip sitting
on the background spectrum at ω=ωm ¼ 1. We also see the
second-order mechanical sideband as a smaller dip located
2ωm away from the main dip. These confirm that the PT -
symmetric structure operated near the PT -phase transition
point can detect very weak mechanical motions.
To show the enhancement of the measurement-

sensitivity by the PT -symmetric structure, we compare
the displacement spectral densities Sxx;PTðωÞ and
Sxx;singleðωÞ of the PT -symmetric transducer and the
single-lossy-cavity transducer. The displacement spectral
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FIG. 2. (a) PT -symmetric optomechanical transducer realized
by two coupled microresonators, e.g., a silica microtoroid (blue;
passive) and a Er3þ-doped silica microtoroid (red; active). The
passive resonator is coupled to a mechanical oscillator via the
optical evanescent field. (b) The normalized output spectra of
optomechanical transducers for ωm=κ ¼ 0.3: single-cavity (red
dashed curve), single-cavity with gain (purple dot dashed curve),
PT system near the PT transition point (blue curve), and two-
lossy-cavity system near an exceptional point (green curve with
star marks). (c) The normalized displacement spectral densities
Sxx;singleðωmÞ, Sxx;gainðωmÞ, Sxx;PTðωmÞ, and Sxx;EPðωmÞ of the
single passive-cavity-optomechanical transducer (red curve), the
single active-cavity-optomechanical transducer (purple dotted
curve), the PT -optomechanical transducer (blue curve), and
the two-lossy-cavity transducer (green curve with star symbols)
when ωm=κ ¼ 0.3. The measurement sensitivity is enhanced
for at least 2 orders of magnitude by the PT optomechanical
transducer near the transition point, i.e., Sxx;PTðωmÞ=
Sxx;singleðωmÞ < 10−2.
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density Sxx;PTðωÞ and the backaction force spectral density
SFF;PTðωÞ of the PT optomechanical transducer are found
as [11,39]:

Sxx;PTðωÞ ¼
Γ2
−ℏΩ−

64g2effPin

�
1þ 4ω

Γ2
−

�
; ð4Þ

SFF;PTðωÞ ¼
16ℏg2effPin

Γ2
−Ω−

�
1þ 4ω

Γ2
−

�
−1
; ð5Þ

where Pin is the input power. It can be shown that Sxx;PTðωÞ
and SFF;PTðωÞ satisfy the Heisenberg inequality [50]:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx;PTðωÞSFF;PTðωÞ

p
≥ ℏ=2, which implies the possibility

of a smaller displacement spectral density if the backaction
force spectral density is increased. As shown in Eq. (4), the
displacement spectral density Sxx;PTðωÞ is proportional to
the decay rate Γ− of the supermode and inversely propor-
tional to the square of the effective optomechanical
coupling strength geff . Since geff can be significantly
increased near the PT -transition point [Eq. (2)] and Γ−
is very small due to gain-loss balance, the Sxx;PTðωÞ of the
PT optomechanical transducer beats the limits for the
single-cavity case (Fig. 2). The Sxx;PTðωÞ of the PT -
symmetric system can be more than 2 orders of magnitude
smaller than the displacement spectral density Sxx;singleðωÞ
of the single cavity.
Finally, to show the effect of the gain in the structure, we

compare the sensitivity of a system formed by two coupled
lossy cavities having loss rates of κ1 and κ ≥ κ1 with that of
the PT -symmetric system formed by coupling a lossy
cavity of loss rate κ with a gain cavity of gain rate γ [39].
Note that the loss rates of the cavities coupled to the
mechanical mode are the same (i.e., κ) for both systems.
For the system of two lossy cavities, there also exists a
degenerate point where the eigenfrequencies and the
corresponding eigenstates of the system coalesce. This
point is generally known as the exceptional point (EP) and
has been studied in detail within the field of non-Hermitian
Hamiltonians [51]. For such a system the EP takes place at
g1 ¼ ðκ − κ1Þ=2. Near an EP, we have geff ≫ g, as can be
deduced from Eq. (2). For g1 > ðκ − κ1Þ=2, the supermodes
are split by 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 − ðκ − κ1Þ2=4

p
but have the same damp-

ing rates ðκ þ κ1Þ=2, whereas for g1 < ðκ − κ1Þ=2, the
supermodes are degenerate at the frequency Δ but have
different damping rates ðκ þ κ1Þ=2 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðκ − κ1Þ2=4 − g21
p

.
We find the ratio of the amplification factor of the PT
system to that of the two-lossy-cavity system to be
4γ2ðκ þ κ1Þ=ðκ − γÞ3, which approaches infinity as the
gain-to-loss ratio in the PT system approaches one. In
Fig. 2(b), we see that the normalized spectrum for the two-
lossy-cavity (curve with green stars) [39] is similar to that
of the single-cavity system when the damping rates of the
cavities are the same, and thus the backaction spectrum of
the mechanical motion cannot be detected by the two-
lossy-cavity system. We observe a similar decrease of the

displacement spectral density for PT and EP systems near
the transition point, but the PT system performs much
better because the effective damping rate of the PT system
is much smaller due to the gain-loss balance [Fig. 2(c)].
The enhancement of sensitivity in the EP (i.e., lossy

system; no optical gain) and PT -symmetric (i.e., with
optical gain balancing the loss) systems stems from the
square-root topology [52,53] of complex energy surfaces in
their parameter space. This leads to significant changes in
their output spectra even for infinitesimally small pertur-
bations. This also provides a significant enhancement in the
optomechanical coupling and the backaction spectrum,
with the effective coupling reaching its maximum exactly
at the EP (or PT -transition point). In order to detect and
resolve very small changes in the spectrum of a system, the
linewidths of the resonances should be sufficiently narrow.
Since the linewidths of the resonances in a PT -symmetric
system are narrower than those in an EP system, because of
the gain-loss balance in the former, PT -symmetric systems
are superior to EP systems for sensing purposes; although
both have the same square-root topology in their respective
parameter spaces. For a single passive-cavity mode, single
active-cavity mode, or a single microlaser mode, which is
described by an isolated single first-order pole, such a
square-root topology is not present and the line shapes are
symmetric and Lorentzian. Thus, such systems cannot
enhance the optomechanical coupling strength, and they
cannot modify the backaction spectrum. However, an active
cavity or a microlaser can modify the background spec-
trum, making it much narrower than that for a passive
cavity. Therefore, a perturbation that cannot be observed or
resolved in the spectrum (due to the large background
spectrum of a passive cavity) can be resolved by an active
cavity having sufficient optical gain (i.e., a linewidth
narrower than that of the passive cavity) or by a microlaser
due to their narrower background spectrum.
We should note that enhanced sensing at the EPs

has been previously discussed, for single-nanoparticle
detection, byWiersig [54], who showed that the sensitivity
of single-nanoparticle detection using the mode-splitting
method [17] in a single whispering-gallery-mode passive
cavity can be improved by threefold if the microcavity is
first brought to an EP by two localized perturbations
[51,55] before the arrival of the nanoparticle. It was also
suggested that a single active microcavity with optical
gain could be used to better resolve the splitting due to
reduced linewidth [54] similar to what was reported
in Refs. [18,56]. Our work goes beyond Ref. [54], bring-
ing together optomechanics and the concepts of EP
and PT symmetry in coupled microcavities to build an
optomechanical transducer for enhanced metrology for
displacement measurement of nanobeams and cantilevers.
Conclusion.—We have proposed PT metrology as an

efficient approach to improve the sensitivity and detection
limit of CAM beyond what is attainable in conventional
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settings, where the system to be measured is coupled to a
lossy cavity. In PT metrology, a second cavity with gain is
coupled to the lossy cavity to compensate its loss, thereby
increasing the quality factor of the effective optical mode
used to detect the weak signal, and enhancing the effective
cavity-DUT coupling strength. The enhancement is remark-
able, especially near the transition point, where the superm-
odes of the system coalesce in their frequencies, and can be
further enhanced as the gain-to-loss ratio approaches unity.
We have showed that it is possible to realize an ultra-
sensitive optomechanical transducer whose sensitivity is at
least 2 orders of magnitude better than single-cavity
optomechanical transducers. Our approach can be used
for improving the performance of nanoparticle sensors [54],
navigation systems, gravity-wave detectors, and other
cavity-assisted detection schemes. Finally, the asymmetric
line shapes near an EP recently were described as genuine
Fano resonances [57–59], suggesting a similarity of the
underlying physics for sensitivity enhancement in Fano- and
EP-based sensors. This issue requires further studies as it is
still unclear whether all resonances that can be fit by the
Fano formula have their origin in an EP.
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