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We consider two separate atoms interacting with a single-mode optical or microwave resonator. When
the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a
resonant coupling between one photon and two atoms, via intermediate virtual states connected by
counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly
absorbed by the two atoms in their ground state which will both reach their excited state with a probability
close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that
two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon.
This joint absorption and emission process can also occur with three atoms. The parameters used to
investigate this process correspond to experimentally demonstrated values in circuit quantum electrody-
namics systems.
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Multiphoton excitation and emission processes were
predicted in 1931 by Göppert-Mayer in her doctoral
dissertation on the theory of two-photon quantum transi-
tions [1]. Two-photon absorption consists in the simulta-
neous absorption of two photons of identical or different
frequencies by an atom or a molecule. Two-photon exci-
tation is now a powerful spectroscopic and diagnostic
tool [2,3]. One may wonder if the reverse phenomenon,
i.e., joint multiatom emission of one photon or multiatom
excitation with a single photon, is ever possible. We show
that these processes not only can be enabled by the strong
correlation between the states of the atoms and those of the
field occurring in cavity quantum electrodynamics (QED)
[4], but they can even take place with probability approach-
ing one.
Cavity QED investigates the interaction of confined

electromagnetic field modes with natural or artificial atoms
under conditions where the quantum nature of light affects
the system dynamics [5,6]. A high degree of manipulation
and control of quantum systems can be reached in the
strong-coupling regime, where the atom-field coupling rate
is dominant with respect to the loss and decoherence rates.
This paves the way for many interesting physical applica-
tions [6–9]. Cavity QED is also very promising for the
realization of quantum gates [10–12] and quantum net-
works for quantum computational tasks [13–15]. Many of
the proposed concepts, pioneered with flying atoms, have
been adapted and further developed using superconducting
artificial atoms in the electromagnetic field of microwave
resonators, giving rise to the rapidly growing field of circuit
QED, which is very promising for future quantum tech-
nologies [8,9,12,16–19]. In these systems, coupling rates

between an individual qubit and a single electromagnetic
mode of the order of 10% of the unperturbed frequency of
the bare subsystems have been experimentally reached
[20–23]. Such a coupling rate is significantly higher than
that obtained using natural atoms. Such an ultrastrong
coupling (USC) opens the door to the study of the physics
of virtual processes which do not conserve the number of
excitations governed by the counterrotating terms in the
interaction Hamiltonian [24–33]. Recently, it has been
shown that these excitation-number-nonconserving proc-
esses enable higher-order atom-field resonant transitions,
making possible coherent and reversible multiphoton
exchanges between the qubit and the resonator [34–36].
Here we examine a quantum system constituted by two

two-level atoms coupled to a single-mode resonator in the
regime where the field-atom detuningΔ ¼ ωc − ωq is large
as compared to their coupling rate λ (ωc and ωq are the
resonance frequency of the cavity mode and the qubit
transition frequency). We investigate the situation where
the two qubits are initially in their ground state and one
photon is present in the resonator, corresponding to the
initial state jg; g; 1i. We find that, if ωc ≈ 2ωq, a single
cavity photon is able to excite simultaneously two inde-
pendent atoms. During this process no parametric down-
conversion, splitting the initial photon into observable pairs
of photons at frequency ωc=2, occurs. The cavity photon is
directly and jointly absorbed by the two atoms. As shown
in Fig. 1, the initial state jg; g; 1i goes to virtual inter-
mediate states that do not conserve the energy, but comes
back to the real final state je; e; 0i that does conserve
energy (the additional virtual transitions contributing to the
process are shown in Fig. S1 of the Supplemental Material
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[37]). If ωc ≈ 3ωq, the simultaneous excitation of three
atoms, jg; g; g; 1i → je; e; e; 0i, is also possible (see Fig. S3
of the Supplemental Material [37]). If the coupling is
sufficiently strong, even a higher number of atoms can be
excited with a single photon. Owing to optical selection
rules, the two-atom process requires parity-symmetry
breaking of the atomic potentials, which can be easily
achieved in superconducting artificial atoms [34,38,39].
On the contrary, the three-atom process does not need
broken symmetry.
The Hamiltonian describing the system consisting of a

single cavity mode interacting with two or more identical
qubits with possible symmetry-broken potentials is given
by [20,31]

Ĥ0 ¼ Ĥq þ Ĥc þ λX̂
X

i

ðcos θσ̂ðiÞx þ sin θσ̂ðiÞz Þ; ð1Þ

where Ĥq ¼ ðωq=2Þ
P

iσ̂
ðiÞ
z and Ĥc ¼ ωcâ†â describe the

qubit and cavity Hamiltonians in the absence of interaction,

X̂ ¼ âþ â†, σ̂ðiÞx and σ̂ðiÞz are Pauli operators for the ith
qubit, and λ is the coupling rate of each qubit to the cavity
mode. For θ ¼ 0, parity is conserved. For flux qubits,
this angle, as well as the transition frequency ωq, can be
continuously tuned by changing the external flux bias
[20,38]. For the sake of simplicity, Eq. (1) describes
identical qubits, but this is not an essential point.
In contrast to the Jaynes-Cummings model, the
Hamiltonian in Eq. (1) explicitly contains counterrotating

terms of the form σ̂ðiÞþ â†, σ̂ðiÞ− â, σ̂ðiÞz â†, and σ̂ðiÞz â. The first
(second) term creates (destroys) two excitations while
the third (fourth) term creates (destroys) one excitation.
The presence of counterrotating terms in the interaction
Hamiltonian enables four different paths which, starting
from the initial state jg; g; 1i, reach the final state je; e; 0i
(see Supplemental Material [37]). Each path includes three
virtual transitions involving out-of-resonance intermediate
states. Figure 1 displays only the process that gives the
main contribution to the effective coupling between the
bare states jg; g; 1i and je; e; 0i. Higher-order processes,
depending on the atom-field interaction strength, can also

contribute. By applying standard third-order perturbation
theory, we obtain the following effective coupling rate:
Ωeff=ωq ≡ ð8=3Þðλ=ωqÞ3 sin θ cos2 θ. The analytical deri-
vation of the effective coupling rate as a function of λ=ωq is
presented in Sec. I of Supplemental Material [37]. Already
at a coupling rate λ=ωq ¼ 0.1, an effective (two qubits)-
(one photon) coupling rateΩeff=ωq ∼ 10−3 can be obtained,
corresponding, e.g., to an effective Rabi splitting
2Ωeff ≃ 12 MHz, for a flux qubit with transition frequency
ωq ¼ 6 GHz. We observe that Ωeff strongly depends on the
mixing angle θ, and it is maximum for θ ¼ arccos

ffiffiffiffiffiffiffiffi
2=3

p
.

We diagonalize numerically the Hamiltonian in
Eq. (1) for the case of two qubits and indicate the resulting
energy eigenvalues and eigenstates as ℏωi and jii, with
i ¼ 0; 1;…, choosing the labeling of the states such that
ωk > ωj for k > j. We use a normalized coupling rate
λ=ωq ¼ 0.1 and an angle θ ¼ π=6. Figure 2(a) shows the
frequency differences ωi;0 ¼ ωi − ω0 for the lowest energy
states as a function of the resonator frequency. Starting
from the lowest excited states of the spectrum, a large
splitting anticrossing around ωc=ωq ¼ 1 can be observed
[see arrows in Fig. 2(a)]. It corresponds to the standard

FIG. 1. Sketch of the process giving the main contribution
to the effective coupling between the bare states jg; g; 1i and
je; e; 0i, via intermediate virtual transitions. Here, the excitation-
number-nonconserving processes are represented by arrowed
dashed line. The transition matrix elements are also shown.

FIG. 2. (a) Frequency differences ωi;0 ¼ ωi − ω0 for the lowest
energy eigenstates of Hamiltonian Eq. (1) as a function of ωc=ωq.
Here, we consider a normalized coupling rate λ=ωq ¼ 0.1 between
the resonator and each of the qubits. We used θ ¼ π=6. The black
arrows indicate the ordinary vacuum splitting arising from
the coupling between the states jg; g; 1i and ð1= ffiffiffi

2
p Þðjg; e; 0iþ

je; g; 0iÞ. (b) Enlarged view of the spectral region delimited by a
square in (a). This shows an avoided-level crossing, demonstrating
the coupling between the states jg; g; 1i and je; e; 0i due to the
presence of counterrotating terms in the system Hamiltonian.
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vacuum Rabi splitting, which appears also when neglecting
the counterrotating terms. The straight line at E=ωq ¼ 1
corresponds to the dark antisymmetric state ðjg; e; 0i−
je; g; 0iÞ= ffiffiffi

2
p

. Even larger splitting anticrossings around
ωc=ωq ¼ 1 can be observed at higher E values. These
correspond to the second and third rung of the Jaynes-
Cummings ladder. We are interested in the region around
ωc=ωq ¼ 2, where the levels three and four display an
apparent crossing at E=ωq ≈ 2. Actually, what appears as a
crossing on this scale turns out to be a splitting anticrossing
on an enlarged view as in Fig. 2(b). Observing that just
outside this avoided-crossing region one level remains flat
as a function of ωc with energy ω ≈ 2ωq, while the other
grows as ωc, this splitting clearly originates from the
hybridization of the states je; e; 0i and jg; g; 1i. The
resulting states are well approximated by the states
ðje; e; 0i � jg; g; 1iÞ= ffiffiffi

2
p

. This splitting is not present in
the rotating-wave approximation (RWA), where the coher-
ent coupling between states with a different number of
excitations is not allowed, nor does it occur in the absence
of symmetry breaking (θ ¼ 0). The normalized splitting
has a value 2Ωeff=ωq ¼ 1.97 × 10−3, which is in good
agreement with 2 × 10−3, obtained within perturbation
theory. This observed hybridization opens the way to the
observation of weird effects such as the simultaneous
excitations of two qubits with only one cavity photon.
Such a coupling between the states je; e; 0i and jg; g; 1i can
be analytically described by the effective interaction
Hamiltonian Heff ¼ −Ωeffðje; e; 0ihg; g; 1j þ H:c:Þ.
A key theoretical issue of the USC regime is the

distinction between bare (unobservable) excitations and
physical particles that can be detected [28,40]. For exam-
ple, when the counterrotating terms are taken into account,
the mean photon number in the system ground state
becomes different from zero: h0jâ†âj0i ≠ 0. However,
these photons are actually virtual [40] because they do
not correspond to real particles that can be detected in a
photon-counting experiment. The same problem holds for
the excited states. According to these analyses, the presence
of an n-photon contribution in a specific eigenstate of the
system does not imply that the system can emit n photons
when prepared in this state.
In order to fully understand and characterize this

anomalous avoided crossing not present in the RWA, a
more quantitative analysis is required. In the following, we
therefore calculate the output signals and correlations
which can be measured in a photodetection experiment.
We fix the cavity frequency at the value where the splitting
between level 3 and 4 is minimum. Instead of starting from
the ideal initial state ðj3i − j4iÞ= ffiffiffi

2
p

≈ jg; g; 1i, more real-
istically, we consider the system initially in its ground state
j0i ≈ jg; g; 0i and study the direct excitation of the cavity
by an electromagnetic Gaussian pulse with central fre-
quency ωd ¼ ðω4;0 þ ω3;0Þ=2. In this strongly dispersive
regime, the resonator displays very low anharmonicity, so

that for a strong system excitation such as that induced by a
π pulse, higher-energy states of the resonator (as the state
j8i≃ jg; g; 2i) can be resonantly populated. This problem
can be avoided by feeding the system with a single-photon
input or by probing the system in the weak-excitation
regime. However, in order to achieve a deterministic
transition jg; g; 1i → je; e; 0i, a useful route involves intro-
ducing a Kerr nonlinearity into the resonator, able to
activate a photon blockade. In circuit QED this can
be realized by introducing some additional Josephson
junction, or coupling the resonator with weakly detuned
artificial atoms [41]. This additional nonlinearity can be
described by the Hamiltonian term ĤK ¼ μâ†2â2. The
driving Hamiltonian, describing the system excitation by
a coherent electromagnetic pulse, is ĤdðtÞ¼EðtÞcosðωtÞX̂,
where EðtÞ ¼ A exp ½−ðt − t0Þ2=ð2τ2Þ�=ðτ

ffiffiffiffiffiffi
2π

p Þ. Here, A
and τ are the amplitude and the standard deviation of
the Gaussian pulse, respectively. A includes the factor

ffiffiffi
κ

p
,

where κ is the loss rate through the cavity port. The
system is thus under the influence of the total
Hamiltonian Ĥ ¼ Ĥ0 þ ĤK þ ĤdðtÞ.
The output photon flux emitted by a resonator can be

expressed as Φout¼ κhX̂−X̂þi, where X̂þ¼P
j;k>jXjkjjihkj

and X̂− ¼ ðX̂þÞ†, with Xjk≡hjjðâ†þâÞjki, are the positive
and negative frequency cavity-photon operators [30,36].
Neglecting the counterrotating terms, or in the limit of
negligible coupling rates, they coincide with â and â†,
respectively. The signal directly emitted from the qubit is
proportional to the qubit mean excitation number hĈ−Ĉþi,
where Ĉ� are the qubit positive and negative frequency ope-
rators, defined as Ĉþ¼P

j;k>jCjkjjihkj and Ĉ−¼ðĈþÞ†,
withCjk ≡ hjjðσ̂− þ σ̂þÞjki [30,36].Neglecting the counter-
rotating terms, or in the limit of negligible coupling rates,
they coincide with σ̂− and σ̂þ, respectively. In circuit QED
systems, this emission can be detected by coupling the qubit
to an additional microwave antenna [8].
Thanks to the photon-blockade effect, induced by the

Kerr interaction ĤK , it is possible to resonantly excite the
split states j3i and j4i with a π pulse, so that after the pulse
arrival the population is completely transferred from the
ground state to only these two energy levels. We use a pulse
width τ ¼ 1=ð4ω43Þ. Figure 3(a) displays the numerically
calculated dynamics of the photon number hX̂−X̂þi, of the
mean excitation number hĈ−

1 Ĉ
þ
1 i for qubit 1 (which, of

course, coincides with that of qubit 2), and of the two-qubit

correlation Gð2Þ
q ≡ hĈ−

1 Ĉ
−
2 Ĉ

þ
2 Ĉ

þ
1 i. Vacuum Rabi oscilla-

tions showing the reversible excitation exchange between
the qubits and the resonator are clearly visible. We observe
that, after a half Rabi period, Ωefft ¼ π=2, the excitation is
fully transferred to the two qubits which reach an excitation
probability approaching one. Hence, not only the multia-
tom absorption of a single photon is possible, but it
can essentially be deterministic. We observe that the
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single-qubit excitation hĈ−
i Ĉ

þ
i i and Gð2Þ

q almost coincide at
any time. This almost-perfect two-qubit correlation is a
clear signature of the joint excitation: if one qubit gets
excited, the probability that the other one is also excited is
very close to one. In summary, an electromagnetic pulse is
able, thanks to the photon-blockade effect, to generate a
single cavity photon, which then gets jointly absorbed by a
couple of qubits. The resonant coupling can be stopped at
this time, e.g., by changing the resonance frequency of the
qubits. If not, the reverse process starts, where two qubits
jointly emit a single photon: je; e; 0i → jg; g; 1i. We
observe that hX̂−X̂þi is not exactly zero at the photon
minima. This occurs because the two-qubit excited state,
owing to the same processes inducing its coupling with the
one-photon state, acquires a dipole transition matrix
element, so that this state is able to emit photons. We find
that this effects increases when increasing the atom-field
coupling strength λ (see Fig. S6 of Supplemental Material

[37]). In order to exclude that this joint qubit excitation
does not occur via more conventional paths, involving the
creation of photon pairs and/or a one-qubit–one-photon
excitation, we have also calculated the photonic second-

order correlation function Gð2Þ
c ≡ hðX̂−Þ2ðX̂þÞ2i and the

qubit-cavity correlation Gð2Þ
qc ≡ hĈ−

i X̂
−X̂þĈþ

i i. We find
that their value is more than 2 orders of magnitude lower

than that of the two-qubit correlation Gð2Þ
q . Calculations

have been performed considering two-level atoms [see
Eq. (1)]. Although flux qubits (generally employed to
realize the USC regime with individual atoms) display very
high anharmomicity (see, e.g., Ref. [19]), it is interesting to
investigate if significant competing effects, lowering the
correlation, can arise from the presence of additional
atomic transitions. This analysis is carried out in Sec. IV
of Supplemental Material [37].
Figure 3(a) has been obtained without including loss

effects. The influence of cavity field damping and atomic
decay on the process can be studied by the master equation
approach. We consider the system interacting with zero-
temperature baths. By using the Born-Markov approxima-
tion without the post-trace RWA [35], the resulting master
equation for the reduced density matrix of the system is

_̂ρ ¼ i½ρ̂ðtÞ; Ĥ� þ κD½X̂þ�ρ̂þ γ
X

i

D½Ĉþ
i �ρ̂; ð2Þ

where the superoperator D is defined as D½Ô�ρ̂ ¼
1
2
ð2Ô ρ̂ Ô† − ρ̂Ô†Ô − Ô†Ô ρ̂Þ. We use κ¼γ¼3×10−5ωq.

Figure 3(b) shows how the cavity losses and the atomic
decay affect the system dynamics. As expected, the vacuum
Rabi oscillations undergo damping and, as expected, the
two-qubit correlation is more fragile to losses. Finally, we
have also considered the case of nonidentical qubits. We
find that also in this case, for qubit transition frequencies

such that ωq1 þ ωq2 ≃ ωc, it results hĈ−
1 Ĉ

þ
1 i ¼ hĈ−

2 Ĉ
þ
2 i≃

Gð2Þ
q (see Fig. S9 in Supplemental Material [37]). This

result further confirms the simultaneous and joint nature
of this multiatom process.
The processes described here can be observed by placing

two superconducting artificial atoms at opposite ends of a
superconducting transmission line resonator [42]. These
multiatom excitation and emission processes can find
useful applications for the development of novel quantum
technologies. Conditional quantum-state transfer is a first
possible application: the quantum information stored in one
of the two qubits can be transferred to the resonator
conditioned by the state of the second qubit. We also
observe that the quantum Rabi oscillations displayed in
Fig. 3 imply that a hybrid entangled Greenberger-Horne-
Zeilinger (GHZ) state, ðjg; g; 1i þ je; e; 0iÞ= ffiffiffi

2
p

, can be
obtained by an elementary quantum Rabi process after a
time t ¼ π=ð4ΩeffÞ. This state can be stored by just
changing the transition frequency of one of the two qubits.
Besides possible applications, the puzzling results

(a)

(b)

FIG. 3. (a) Time evolution of the cavity mean photon number
hX̂−X̂þi (dotted blue curve), qubit 1 mean excitation number
hĈ−

1 Ĉ
þ
1 i (continuous black curve), and the zero-delay two-qubit

correlation function Gð2Þ
q ¼ hĈ−

1 Ĉ
−
2 Ĉ

þ
2 Ĉ

þ
1 i (dashed red curve)

after the arrival of a π-like Gaussian pulse initially exciting the
resonator. After the arrival of the pulse, the system undergoes
vacuum Rabi oscillations showing the reversible joint absorption
and reemission of one photon by two qubits. hĈ−

1 Ĉ
þ
1 i and

Gð2Þ
q ðtÞ are almost coincident. This perfect two-qubit correlation

is a signature that the two qubits are jointly excited. (b) Time
evolution of the cavity mean photon number (dotted blue curve),
the qubit mean excitation number, and the two-qubit correlation
as in (a), but including the effect of cavity damping and atomic
decay. The corresponding rates are κ ¼ γ ¼ 4 × 10−5ωq.
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presented here, showing that one photon can divide its
energy into two spatially separated atoms, and that vacuum
fluctuations [43] can induce separate atoms to behave as a
single quantum entity (as testified by the one-photon
transition matrix element acquired by the transition
jg; gi → je; ei), provide new insights into the quantum
aspects of the interaction between light and matter.
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