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Conventional n-dimensional topological superconductors (TSCs) have protected gapless (n − 1)-dimensional
boundary states. In contrast to this, second-order TSCs are characterized by topologically protected gapless
(n − 2)-dimensional states with the usual gapped (n − 1) boundaries. Here, we study a second-order TSC with a
two-dimensional (2D) magnetic topological insulator proximity coupled to a high-temperature superconductor,
where Majorana bound states (MBSs) are localized at the corners of a square sample with gapped edge modes.
Due to the mirror symmetry of the hybrid system considered here, there are two MBSs at each corner for both
cases: d-wave and s±-wave superconducting pairing. We present the corresponding topological phase diagrams
related to the role of the magnetic exchange interaction and the pairing amplitude. A detailed analysis, based on
edge theory, reveals the origin of the existence of MBSs at the corners of the 2D sample, which results from the
sign change of the Dirac mass emerging at the intersection of any two adjacent edges due to pairing symmetry.
Possible experimental realizations are discussed. Our proposal offers a promising platform for realizing MBSs
and performing possible non-Abelian braiding in 2D systems.
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I. INTRODUCTION

The study of nontrivial topological bands has led to the
advent of a plethora of novel phases of matter characterized
by topological invariants, which are independent of their
microscopic details. These phases are characterized by a finite
energy gap in the bulk and protected gapless states at their
edges, with unusual properties. Recent years have seen a
great deal of theoretical and experimental efforts towards the
realization and exploration of Majorana zero modes (MZMs)
in topological phases of quantum matter [1–6]. MZMs are
zero-energy bound quasiparticles emerging at the boundaries
of topological superconductors (TSCs), which are expected
to exhibit exotic non-Abelian anyon statistics. This distinct
feature makes MZMs promising for studying fault-tolerant
topological quantum computations [7–9]. Several promising
condensed-matter systems potentially hosting MZMs have
been proposed, including spin-orbit coupling semiconduc-
tor nanowire/superconductor hybrid structures [10–15], fer-
romagnetic atomic chains on superconductors [16–19], topo-
logical insulator/superconductor hybrid structures [20–24],
and hybrid systems with unconventional superconductivity
[25–29], among others.

The nontrivial topological band structure of supercon-
ductor systems is the essential ingredient for the creation
of MZMs in previous proposals, which is characterized by
the bulk-boundary correspondence. Very recently, the con-
cept of higher-order topological insulators (TIs) [30–41] was
put forward, where the usual form of the bulk-boundary
correspondence is no longer applicable. As a new type of
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topological phase, it has no gapless surface states on three-
dimensional (3D) insulators and gapless edge states on two-
dimensional (2D) ones. Nevertheless, the n-dimensional sys-
tems have protected gapless (n − 2)-dimensional states with
the usual gapped (n − 1)-dimensional boundaries. For ex-
ample, a second-order TI in three dimensions hosts one-
dimensional gapless modes in its hinges, while a second-order
2D TI has zero-energy states localized at its corners.

In terms of second-order TSCs in two dimensions, the
MZMs will emerge at its corner, i.e., Majorana corner states
(MCSs), which are localized at the intersection of two gapped
topologically distinct edges. The study of MCSs is still at a
very exploratory stage, and a few works were recently re-
ported: high-temperature Majorana Kramers pairs with time-
reversal symmetry localized at corners [42–44], MCSs in a
p-wave superconductor with an in-plane external magnetic
field [45], Majorana bound states (MBSs) in a second-order
Kitaev spin liquid [46], and 2D and 3D second-order TSCs
with (p + ip) and (p + id ) superconductors [47].

In this paper, we study a kind of hybrid superconducting
structure with a 2D magnetic TI and a high-temperature super-
conductor. This 2D magnetic TI shows a quantum anomalous
Hall effect and has been intensively investigated [48–50].
These can now be experimentally realized by introducing
magnetic doping with Cr, V, or Mn ions [51–57] or induc-
ing proximity-induced ferromagnetism with a ferromagnetic
insulator (FI) (i.e., TI/FI heterostructure) [57,58] to TI. More-
over, chiral MZMs are currently experimentally observed in
a magnetic TI through the proximity effect to a conventional
s-wave superconductor [24]. Additionally, the cuprate-based
[59–61] and iron-based [62–66] high-temperature supercon-
ductors have been experimentally reported to induce topologi-
cal superconductivity. One important open question is whether
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FIG. 1. Schematic view showing a magnetic TI approximated by
a high-temperature superconductor. The Majorana bound states are
located at the four corners of the green square sample. I, II, III, and
IV label the four edges of the lattice.

a 2D magnetic TI approximated by a high-temperature super-
conductor can exhibit a second-order TSC hosting MBSs lo-
calized at their corners and how the magnetic exchange inter-
action in the 2D magnetic TI influences the second-order topo-
logical features. Here, we show that a second-order TSC can
be achieved by a 2D magnetic TI grown on a cuprate-based
or iron-based high-temperature superconductor. Although the
hybrid superconductor system is in the topologically trivial
regime with an insulating gap, there are MBSs localized at
each corner of a square sample. The existence of MCSs
requires a magnetic insulator in a topologically nontrivial
regime with protected chiral edges. These edge states can be
gapped out once the high-temperature superconductor pairing
(e.g., d-wave pairing) is introduced. Due to the supercon-
ducting pairing symmetry, the gapped two adjacent edges
intersecting at corners have opposite Dirac masses, where
MCSs are generated at one corner. Because the hybrid system
considered here has mirror symmetry, there are two MBSs at
each corner. In this paper, in order to demonstrate this second-
order TSC, we apply an intuitive edge argument. Moreover,
we derive the topological phase diagrams involving the role
of magnetic exchange interaction and pairing amplitude. The
proposed second-order TSC provides an alternate method
for realizing MBSs. This suggests a promising platform for
braiding MZMs in 2D systems, which may not be achieved
for chiral Majorana modes in conventional 2D TSCs [67].

This paper is organized as follows: in Sec. II, we consider
a minimal model on a square lattice describing a magnetic TI
approximated by a high-temperature superconductor. Section
III presents the results of magnetic TIs grown on either a
d-wave or an s±-wave superconductor. An intuitive edge
argument is given, and topological phase diagrams of hy-
brid high-temperature superconducting systems are provided.
Section IV describes the experimental feasibility of hybrid
superconducting systems and concludes this paper.

II. MODEL

We here consider a minimal model on a square lat-
tice, which describes a magnetic TI approximating a high-
temperature superconductor, as shown in Fig. 1. The tight-
binding Hamiltonian is given by H = Ht + Hso + Hz +
Hsc + H.c.,

Ht = m0

2

∑
j,s

c
†
j,a,sσ

ab
z cj,b,s + mx

2

∑
j,s
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†
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ab
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2

∑
j,s

c
†
j,a,sσ

ab
z cj+y,b,s − μ

2

∑
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c
†
j,σ,scj,σ,s , (1)
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2

∑
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v σ ab
x cj+v,b,β , (2)
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2

∑
j,σ

(c†j,σ,↑cj,σ,↑ − c
†
j,σ,↓cj,σ,↓), (3)
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∑
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†
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†
j,σ,↓ + �x

2
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j

c
†
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†
j+x,σ,↓
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2

∑
j

c
†
j,σ,↑c

†
j+y,σ,↓, (4)

where these terms are the kinetic term Ht, spin-orbit coupling
Hso, Zeeman coupling Hz, and superconducting pairing Hsc.
Also, si and σi are Pauli matrices denoting the electron
spins (↑,↓) and orbitals (a, b), respectively. The cj,a,s is the
fermion operator at site j , m0 is the orbital-dependent on-site
energy, and mx and my are the intraorbital hopping amplitudes
along the x and y axes, while μ is the chemical potential.
Moreover, λso is the spin-orbital coupling strength, and λz is
the exchange field amplitude along the z axis induced by the
magnetization. The superconducting pairing terms �0, �x ,
and �y are combined to characterize dx2−y2 - and s±-wave
pairing.

According to Eqs. (1)–(4), the Bogoliubov–de Gennes
(BdG) Hamiltonian can be written as HBdG = ∑

k �
†
kHBdG(k)

�k, where �k = (ck,a,↑, ck,a,↓, ck,b,↑, ck,b,↓, c
†
−k,a,↓,

−c
†
−k,a,↑, c

†
−k,b,↓,−c

†
−k,b,↑)T ,

HBdG(k) = m(k)σzτz + λso[sin(kx )sx + sin(ky )sy]σxτz

+ λzsz − μτz + �(k)τx ; (5)

here, m(k) and �(k) are

m(k) = m0 + mx cos(kx ) + my cos(ky ), (6)

�(k) = �0 + �x cos(kx ) + �y cos(ky ), (7)

where τi (i = x, y, z) are Pauli matrices in the Nambu
particle-hole space.

The Hamiltonian HBdG(k) is invariant under a particle-hole
symmetry � = τysyK, with K being the complex conjuga-
tion operator, a mirror-reflection symmetry Mz = iszσz, a
fourfold rotational symmetry C4 = e−i π

4 sz , and an inversion
symmetry P = σz,

�HBdG(kx, ky )�−1 = −HBdG(−kx,−ky ), (8)

MzHBdG(kx, ky )M−1
z = HBdG(kx, ky ), (9)

C4HBdG(kx, ky )C−1
4 = HBdG(−ky, kx ), (10)

PHBdG(kx, ky )P−1 = HBdG(−kx,−ky ). (11)

III. RESULTS

A. d-wave pairing

We first consider a magnetic TI grown on a d-wave cuprate
high-temperature superconductor that has been widely inves-
tigated in experiments [59–61]. For a d-wave superconductor
with dx2−y2 -wave symmetry, the pairing amplitude satisfies

�0 = 0, �x = −�y = �1. (12)

245413-2



MAJORANA CORNER STATES IN A TWO-DIMENSIONAL … PHYSICAL REVIEW B 98, 245413 (2018)

To explore whether the hybrid system of a magnetic TI/d-
wave superconductor exhibits second-order nontrivial topo-
logical phases, which support Majorana bound states at each
corner of a square sample, we first calculate the energy-band
spectrum of the system. The 2D magnetic insulator is in the
topologically nontrivial regime when the system parameters
satisfy

||mx | − |my || < |m0 ± λz| < |mx | + |my |. (13)

Figures 2(a) and 2(b) show the energy-band structure of a
2D magnetic TI nanoribbon along the x and y directions,
respectively. The red lines represent two degenerate gapless
chiral edge states characterized by the Chern number N = 2.
The zero-energy edge states in the y and x directions exist at
the kx = 0 and ky = 0 points with the parameters considered,
respectively.

When a dx2−y2 pairing is added to the magnetic TI, the chi-
ral edges are gapped out [see red lines in Figs. 2(c) and 2(d)].
In this case, the hybrid system is in a topologically trivial
regime with N = 0. However, by calculating the eigenener-
gies of a finite square sample, two quite localized zero-energy
states emerge at each corner, as shown in Fig. 2(e). Due to
particle-hole symmetry �, these zero-energy corner states are
MZMs known as Majorana corner states. The inset in Fig. 2(e)
exhibits the symmetrical eigenenergies with particle and hole
bands. Figure 3 shows the BdG energy spectrum with open
boundary conditions in the x and y directions as a function
of λz. The eightfold-degenerate localized zero-energy MCSs
states are indicated by the red curves, which exist only in finite
amplitudes of the exchange field.

Figure 4 shows the topological phase diagram of the
magnetic TI/dx2−y2 high-temperature superconductor hybrid
system in the (m0, λz) plane, which reveals three distinct
phases: (i) second-order topological superconductor with
MCSs, (ii) chiral MZMs characterized by a finite Chern
number N , and (iii) topologically trivial states N = 0 with
zero chiral MZMs and MCSs. The phase boundaries are
determined by the zero eigenenergy of the BdG Hamiltonian
in Eq. (5) at the four corners of the Brillouin zone of a
square lattice, i.e., Γ = (0, 0), X = (0, π ), Y = (π, 0), and
M = (π, π ), where Γ and M are two high-symmetry points.
The energies at these points are

EΓ = ±μ ± (m0 + mx + my ) ± λz, (14)

EM = ±μ ± (m0 − mx − my ) ± λz, (15)

EX = ±
√

(μ ± m0 ± mx ∓ my )2 + 4�2
1 ± λz, (16)

EY = ±
√

(μ ± m0 ∓ mx ± my )2 + 4�2
1 ± λz. (17)

In addition, the existence of MCSs requires the 2D magnetic
insulator in the topologically nontrivial regime [see Eq. (13)].
All these determine the topological phase diagram shown in
Fig. 4.

In order to intuitively understand the appearances of MBSs
at the corners, we apply the edge theory (see, e.g., [2,42,45]).
Due to the mirror-reflection symmetry Mz, the BdG Hamil-
tonian can be written in the block-diagonal form by a unitary
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FIG. 2. Energy-band structure of a 2D magnetic TI nanoribbon
along the (a) x and (b) y directions. The red curves in (a) and (b)
denote two degenerate gapless chiral edge states. The zero-energy
edge states exist at the kx = 0 and ky = 0 points, respectively. The
BdG spectrum with a dx2−y2 -wave pairing along the (c) x and
(d) y directions. In the presence of d-wave pairing, the edge states
are gapped out (red curves). (e) The probability density distributions
of the BdG wave functions with zero energies for a sample size
with 30 × 30. There are two MBSs localized at each corner due to
the mirror symmetry of the BdG Hamiltonian. The inset shows the
eigenenergies of the same sample with energies around zero. Note
that there are eight zero-energy modes in the gap shown as eight red
dots. The parameters are chosen to be m0 = −0.8, λz = 0.4, λso = 1,
mx = my = 1, μ = 0, and �1 = 0.5.

transformation U ,

UHBdGU−1 =
(

H+(k) 0
0 H−(k)

)
, (18)

where H+(k) acts on the +i mirror subspace, H−(k) acts on
the −i mirror subspace, they are expressed as

H±(k) = m(k)ηzτz ± λzηz − μτz + �(k)τx

+ λso[sin(kx )ηx ± sin(ky )ηy]τz, (19)
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FIG. 3. BdG energy spectrum with open boundary conditions in
the x and y directions as a function of λz. The sample size is 20 × 20.
The red line corresponds to eightfold-degenerate MCSs, which exist
only for finite amplitudes of the exchange field. The parameters
are chosen to be m0 = −0.8, λso = 1, mx = my = 1, μ = 0, and
�1 = 0.5.

and ηi are the Pauli matrices. Note that the similar mirror
symmetries, in combination with time-reversal symmetry,
were taken into account in topological crystalline supercon-
ductors [68].

In order to solve the effective Hamiltonian of the edge
states, we consider the continuum model of the lattice Hamil-
tonian by expanding its wave vector k in Eqs. (18)–(19) to
second order around the Γ = (0, 0) point (we can also expand

-4
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2

4

z

-4 -2
0

0 2 4
m

MCS

FIG. 4. Topological phase diagram of the magnetic TI/dx2−y2

high-temperature superconductor hybrid system in the (m0, λz )
plane, which reveals three distinct phases: (i) second-order topolog-
ical superconductor with MCSs, (ii) chiral MZMs characterized by
a finite Chern number N , and (iii) topologically trivial states N = 0
with zero chiral MZMs and MCSs. The parameters are chosen to be
λso = 1, mx = my = 1, μ = 0, and �1 = 0.5.

k around the other high-symmetry points, e.g., M , which will
not influence the discussions below).

Hc(k) =
(

Hc
+(k) 0

0 Hc
−(k)

)
, (20)

where

Hc
±(k) =

[
m1 − 1

2

(
mxk

2
x + myk

2
y

)]
ηzτz ± λzηz − μτz

+ λso[kxηx ± kyηy]τz − �1

2

(
k2
x − k2

y

)
τx, (21)

where m1 = m0 + mx + my .
We first solve edge I of the four edges (see Fig. 1).

By expressing ky as −i∂y and treating the pairing terms as
perturbation (which is valid when the pairing amplitude is
relatively small), we can rewrite the Hamiltonian Hc

± as Hc
± =

H 1
± + H 2

±:

H 1
±(kx,−i∂y ) = (

m1 + my∂
2
y

/
2
)
ηzτz ± λzηz − μτz

∓ iλsoηyτz∂y, (22)

H 2
±(kx,−i∂y ) = λsokxηxτz − (�1/2)τx∂

2
y , (23)

where we have already neglected the insignificant k2
x terms. To

obtain the eigenvalue equation H 1
±φ±(y) = E±φ±(y), with

E± = 0 under boundary conditions φ±(0) = φ±(+∞) = 0,
we write the solution in the following form:

φ±(y) = Ny sin(αy)e−βyeikxxχ±, (24)

where the normalization constant Ny = 2
√

β(α2 + β2)/α2.
The eigenvector χ± satisfies ηxχ± = ∓sgn(my )χ±. For the
sake of simplicity, we assume λso > 0 in our discussions
unless otherwise specified. Then the effective Hamiltonian for
edge I can be obtained in this basis as

HI
± =

∫ +∞

0
φ∗

±(y)H 2
±φ±(y) dy. (25)

Therefore, we have

HI
± = ∓sgn(my )λsokxτz + �1

2

(
α2

1 + β2
1

)
τx, (26)

where α2
1 + β2

1 = 2(m1 ± λz ± μ)/my .
The effective Hamiltonian for edges II, III, and IV can be

obtained by the same procedures:

HII
± = ∓sgn(mx )λsokyτz − �1

2

(
α2

2 + β2
2

)
τx, (27)

HIII
± = ±sgn(my )λsokxτz + �1

2

(
α2

1 + β2
1

)
τx, (28)

HIV
± = ±sgn(mx )λsokyτz − �1

2

(
α2

2 + β2
2

)
τx, (29)

where α2
2 + β2

2 = 2(m1 ± λz ± μ)/mx .
The first kinetic terms of the effective Hamiltonian in Eqs.

(26)–(29) describe the gapless edge states, which are gapped
out by the second terms with Dirac mass. Moreover, at the
mirror subspace with the Hamiltonians Hi

+ and Hi
− (i = I ∼

IV), due to mirror-reflection symmetry, the Dirac mass terms
change sign along four edges, edges I to IV, resulting from the

245413-4



MAJORANA CORNER STATES IN A TWO-DIMENSIONAL … PHYSICAL REVIEW B 98, 245413 (2018)

dx2−y2 pairing symmetry; that is, any two adjacent edge states
have opposite Dirac masses, while the same signs occur for
the first kinetic terms along the anticlockwise direction of the
edges. As a result, there is one MBS at each corner of a square
sample within each mirror subspace of the Hamiltonian (see
the Jackiw-Rebbi model [69]), i.e., two MBSs at each corner.
By comparing the coefficients of the Dirac mass terms, con-
taining α2

1 + β2
1 and α2

2 + β2
2 , for the two adjacent edge states

in Eqs. (26)–(29), in order to ensure the existence of Majorana
corner states, mx and my should satisfy the relation mxmy >

0. Note that the BdG system supports two MCSs at each
corner in the whole regime of the second-order topological
phase considered here due to the mirror-reflection symmetry
Mz for the Hamiltonian HBdG(k). When this mirror-reflection
symmetry is broken, a single MCS at each corner can be
achieved (see the Appendix).

B. s±-wave pairing

Here, we consider the magnetic TI approximated by an
s± superconducting pairing, which is relevant for iron-based
high-temperature superconductors [62–66]. The pairing am-
plitude of an s±-wave superconductor satisfies

�x = �y = �2. (30)

As in the case for a d-wave superconductor, we first
consider the energy-band spectrum of the system. Figures 5(a)
and 5(b) show the energy-band structure of a 2D magnetic
TI nanoribbon along the x and y directions, respectively.
But, in contrast to the case for hybrid systems of magnetic
TI/d-wave superconductors, the zero-energy edge states in
the y and x directions exist at the kx = 0 and ky = π points for
magnetic TI/s±-wave superconductor hybrid systems when
my is set to a negative value. In the presence of the s± pairing,
the edges are gapped out [see the red curves in Figs. 5(c)
and 5(d)], where the hybrid system enters the topologically
trivial regime. However, similar to the case for a d-wave
superconductor, each corner of the finite-size sample supports
two localized MBSs [see Fig. 5(e)]. Moreover, when my is set
to have the same sign as mx , there are no MCSs. Note that
the system may support a single MCS at each corner when the
mirror-reflection symmetry Mz is broken (see the Appendix).

In order to understand the existence of MCSs with s±-wave
pairing, we also consider the edge theory. In this part, we
consider the continuum model of the lattice Hamiltonian by
expanding its wave vector k in Eqs. (18) and (19) to second
order around the X = (0, π ) point of the Brillouin zone,
obtaining

Hc(k) =
(

Hc
+(k) 0

0 Hc
−(k)

)
, (31)

where

Hc
±(k) =

[
m2 − 1

2

(
mxk

2
x − myk

2
y

)]
ηzτz ± λzηz

+ λso[kxηx ± kyηy]τz − μτz

+
[
�0 − �2

2

(
k2
x − k2

y

)]
τx (32)

and m2 = m0 + mx − my .
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FIG. 5. Energy-band structure of a 2D magnetic TI nanoribbon
along the (a) x and (b) y directions. The red curves in (a) and (b)
denote two degenerate gapless chiral edge states. The zero-energy
edge states exist at the kx = 0 and ky = π points, respectively. The
BdG spectrum with an s±-wave pairing along the (c) x and (d) y

directions. In the presence of s±-wave pairing, the edge states are
gapped out (red curves). (e) The probability density distributions of
BdG wave functions with zero energies for a sample of size 30 ×
30. There are two MBSs localized at each corner due to the mirror
symmetry of the BdG Hamiltonian. The inset shows eigenenergies
of the same sample with energies around zero. Note that there are
eight zero-energy modes in the gap shown as eight red dots. The
parameters are chosen to be m0 = −0.8, λz = 0.4, λso = 1, mx =
−my = 1, μ = 0, �0 = 0, and �2 = 0.4.

Then, the effective Hamiltonian for edges I, II, III, and IV
can be obtained as

HI
± = ∓sgn(my )λsokxτz +

[
�0 + �2

2

(
α2

3 + β2
3

)]
τx, (33)

HII
± = ±sgn(mx )λsokyτz +

[
�0 − �2

2

(
α2

4 + β2
4

)]
τx, (34)

245413-5



TAO LIU, JAMES JUN HE, AND FRANCO NORI PHYSICAL REVIEW B 98, 245413 (2018)

0

0.06

0.12
(a) (b)

30

60

30 60 30 60

-0.26

0

0.26

E

-0.28

0

0.28

E

FIG. 6. The probability density distributions (with the scale
shown in the right vertical bar) of the BdG wave functions with
zero energies for a sample size of 60 × 60, with different chemical
potentials: (a) μ = 0 and (b) μ = 0.1. There are two MBSs localized
at each corner. A finite chemical potential μ will not destroy the
MCSs. The inset shows the eigenenergies of the same sample with
the energies around zero. Note that there are eight zero-energy modes
in the gap shown as eight red dots. Other parameters are chosen to be
m0 = −0.8, λz = 0.1, λso = 1, mx = −my = 1, �0/�2 = 0.6, and
�2 = 0.4.

HIII
± = ±sgn(my )λsokxτz +

[
�0 + �2

2

(
α2

3 + β2
3

)]
τx, (35)

HIV
± = ∓sgn(mx )λsokyτz +

[
�0 − �2

2

(
α2

4 + β2
4

)]
τx, (36)

where α2
3 + β2

3 = −2(m2 ± λz ± μ)/my and α2
4 + β2

4 =
2(m2 ± λz ± μ)/mx .

First, according to Eqs. (33)–(36), in contrast to the case
of d-wave superconductors, the existence of Majorana corner
states requires mx and my to satisfy mxmy < 0 for hybrid
systems with s± superconducting pairing.

Second, within each mirror subspace of the BdG Hamil-
tonian, in order to ensure the opposite Dirac mass terms for
any two gapped adjacent edge states, the following criterion
should be satisfied:[

�0 + �2

2

(
α2

3 + β2
3

)][
�0 − �2

2

(
α2

4 + β2
4

)]
< 0. (37)

Therefore, we have[
�0

�2
− m2 ± λz ± μ

my

][
�0

�2
− m2 ± λz ± μ

mx

]
< 0. (38)

Equations (13) and (38) determine the system parameters,
including the pairing amplitude and magnetic exchange in-
teraction, required for the existence of MCSs for s± super-
conducting pairing. As an example, according to Eqs. (13)
and (38), the criterion of �0/�2 < 1 should be satisfied to
ensure the existence of MCSs within each mirror subspace of
the Hamiltonian if m0 = −1 and mx = −my = −1.

Figure 6(a) shows the emergence of MCSs by computing
the probability density distribution of the BdG wave functions
for the magnetic TI/s± superconductor hybrid system with
the parameters λz, �0, �2, mx , and my satisfying all of these
criteria. There are then two MBSs localized at each corner. A
finite chemical potential μ within the limit of Eq. (38) will not
destroy the MCSs, as shown in Fig. 6(b).

0 0.5 1 1.5 2
0 / 2

-1.8

-0.9

0

0.9

1.8

MCSz

FIG. 7. Topological phase diagram of a magnetic TI/s± high-
temperature superconductor hybrid system in the (λz, �0/�2) plane,
which reveals three distinct phases: (i) second-order topological
superconductor with MCSs, (ii) chiral MZMs characterized by a
finite Chern number N , and (iii) topologically trivial states N = 0
with zero chiral MZMs and MCSs. Recall that �x = �y = �2,
as shown in Eq. (30). The parameters are chosen to be m0 = −1,
λso = 1, mx = −my = 1, μ = 0, and �2 = 0.4.

In terms of topological phase diagram, parts of the phase
boundaries are determined by the zero eigenenergy of the BdG
Hamiltonian in Eq. (5) at the four corners of the Brillouin zone
of a square lattice, i.e., Γ = (0, 0), X = (0, π ), Y = (π, 0),
and M = (π, π ). The energies for a TI/s± hybrid system at
these points are

EΓ = ±
√

(μ ∓ m0 ∓ mx ∓ my )2 + (�0 + 2�2)2 ± λz,

(39)

EM = ±
√

(μ ± m0 ∓ mx ∓ my )2 + (�0 − 2�2)2 ± λz,

(40)

EX = ±
√

(μ ± m0 ± mx ∓ my )2 + �2
0 ± λz, (41)

EY = ±
√

(μ ∓ m0 ± mx ∓ my )2 + �2
0 ± λz. (42)

In addition, the phase boundaries are simultaneously deter-
mined by Eqs. (13) and (38). Figure 7 shows the topological
phase diagram of the magnetic TI/s± high-temperature su-
perconductor hybrid system in the (λz,�0/�2) plane. As in
the case of d-wave superconductors, there are three distinct
phases: (i) a second-order topological superconductor with
MCSs, (ii) chiral MZMs characterized by a finite Chern
number N , and (iii) topologically trivial states N = 0 with
zero chiral MZMs and MCSs.

IV. DISCUSSION AND CONCLUSION

For experimental realizations, we require a magnetic TI
in proximity to a high-temperature superconductor. For the
magnetic TI, we can consider the recently experimentally
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discovered TIs of 2D transition-metal dichalcogenides (e.g.,
monolayer WTe2 [70,71]) or IV-VI semiconductors (e.g.,
monolayer PbS [72,73]), which coat a ferromagnetic insula-
tor. The high-temperature superconductors could be cuprate-
based [59–61] or iron-based [64,66] materials, where topolog-
ical superconductivity has been experimentally reported. It is
thus quite attractive to study second-order TSC and possibly
observe MCSs in these systems by considering their hybrids.
Moreover, the magnetic exchange interaction in magnetic TI
is usually highly tunable by external fields, and thus, it is also
interesting to study how the exchange interaction influences
the features of second-order topological superconductivity.

In conclusion, we investigated the hybrid structure of a
magnetic TI and a high-temperature superconductor, which
exhibits second-order topological superconductivity. Both d-
wave and s±-wave superconducting pairings related to high-
temperature superconductors were discussed. The hybrid sys-
tems are in the topologically trivial regime but still support
MBSs at each corner of a square sample. Because the hybrid
systems preserve mirror-reflection symmetry, there are two
MBSs at each corner in the whole regime of the second-order
topological phase studied here. We derived their correspond-
ing topological phase diagrams, which emphasize the role of
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FIG. 8. (a) BdG energy spectra of a dx2−y2 -wave pairing super-
conductor with open boundaries along the x and y directions as
a function of λx . The red dots denote eightfold-degenerate MCSs,
and the black dots represent the fourfold-degenerate MCSs. The
probability density distributions of mid-gap states for (b) λx = 0.3
and (c) λx = 0.5. The inset shows the eigenenergies with energies
around zero. The parameters are chosen to be m0 = −0.8, λz = 0.4,
λso = 1, mx = my = 1, μ = 0, and �1 = 0.5.

magnetic exchange interactions and pairing amplitudes. An
intuitive edge argument showed that the corner states result
from the opposite Dirac masses of two adjacent edges due
to pairing symmetry. In the future, it would be interesting to
look for experimental realizations of second-order TSCs and
study the possibility of non-Abelian braiding of MCSs in a 2D
system.
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APPENDIX: BROKEN MIRROR-REFLECTION
SYMMETRY

The Hamiltonian HBdG(k) in Eq. (5) respects the mirror-
reflection symmetry Mz. Therefore, there are two MCSs at
each corner in the whole regime of the second-order topo-
logical phase considered here. When this mirror-reflection
symmetry is broken, a single MCS at each corner may be
achieved for both d-wave and s±-wave superconducting hy-
brid systems.

Let us now break the mirror-reflection symmetry by adding
the term λxsx to Eq. (5), so the Hamiltonian becomes

H̄BdG(k) = m(k)σzτz + λso[sin(kx )sx + sin(ky )sy]σxτz

+ λzsz − μτz + �(k)τx + λxsx. (A1)

In the presence of the λxsx term, the mirror-reflection sym-
metry is broken. Figure 8(a) shows the BdG energy spectrum
of a dx2−y2 -wave pairing superconducting hybrid system with
open boundaries along the x and y directions as a function

of λx . The eightfold-degenerate MCSs exist [see red dots in
Fig. 8(a) and probability density distributions in Fig. 8(c)]
when λx is small, while there are only fourfold-degenerate
MCSs [see black dots in Fig. 8(b) and probability density
distributions Fig. 8(c)] as λx increases, where the second-
order topological phase transition occurs. Therefore, a single
MCS appears when the mirror reflection is broken with an
appropriate magnitude of λx

As in the case for a d-wave superconductor, for a hy-
brid system with an s±-wave pairing superconducting hybrid
system, a single MCS at each corner can exist when the
mirror-reflection symmetry is broken in the presence of the
λxsx term with an appropriate magnitude (see Fig. 9). The ef-
fect of the breakdown of mirror-reflection symmetry on the
MCSs in both d-wave and s±-wave superconducting hybrid
systems can be interpreted by considering the effective edge
Hamiltonians derived from the Hamiltonian H̄BdG(k) in Eq.
(A1), as treated based on the block-diagonal Hamiltonian [see
Eqs. (18)–(29) and (31)–(38)].
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