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Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED
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We describe a method to tune, in situ, between transverse and longitudinal light-matter coupling in a hybrid
circuit-QED device composed of an electron-spin degree of freedom coupled to a microwave transmission line
cavity. Our approach relies on periodic modulation of the coupling itself, such that in a certain frame the interaction
is both amplified and either transverse or, by modulating at two frequencies, longitudinal. The former realizes
an effective simulation of certain aspects of the ultra-strong-coupling regime, while the latter allows one to
implement a longitudinal readout scheme even when the intrinsic Hamiltonian is transverse, and the individual
spin or cavity frequencies cannot be changed. We analyze the fidelity of using such a scheme to measure the state
of the electron-spin degree of freedom, and argue that the longitudinal readout scheme can operate in regimes
where the traditional dispersive approach fails.
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I. INTRODUCTION

Electron spin is a highly robust quantum degree of freedom
the use of which in quantum information is often limited
by the difficulty of implementing fast high-fidelity readout and
the realization of long-distance interactions [1–5]. Spin-photon
coupling in hybrid devices composed of double quantum
dots (DQDs) coupled to superconducting transmission line
cavities is being investigated and developed as a means
to overcome these difficulties [5–19]. Very recently several
experiments have demonstrated strong spin-photon coupling
[20–22] based on coupling mediated by the charge degree of
freedom [23,24–26]. In addition to applications in quantum
information, such devices harbor new physics, including con-
trollable single-atom lasing [27–30], ground-state lasing [31],
bistability [32], nonequilibrium thermodynamics [33], and
quantum phase transitions [34].

In this paper we focus on the practical task of how to
switch [19], in situ, between an amplified longitudinal [35–40]
and an amplified transverse coupling, by only modulating the
coupling strength, and without changing the spin or cavity
energies directly. With the former (amplified longitudinal
coupling) one can realize fast high-fidelity readout [35] and
qubit-qubit coupling [36]. With the latter (amplified transverse
coupling) one can investigate the extreme limits of light-matter
coupling [41–47] in a simulated manner [48–52].

Our primary result is that one can realize an effective
amplified longitudinal coupling even when there is a non-
negligible intrinsic transverse term in the Hamiltonian by
modulating the coupling strength at both the cavity and
qubit frequencies simultaneously (two-tone), and moving to an
appropriate frame. We show that this works optimally when the
intrinsic qubit frequency is half of the cavity frequency. The
effect can be intuitively understood in terms of a simultaneous
resonant force on the cavity and electron-spin resonance on
the qubit. We say that the coupling strength is amplified in the

sense that the influence of the qubit on the cavity is increased
drastically as the effective cavity frequency is reduced.

With the electron-spin-based devices we discuss in this
paper this modulation is potentially achievable with electrical
control of a single gate voltage [36,53]. This method is
particularly desirable when, as is the case we outline below,
one cannot (or may not want to) directly engineer a lon-
gitudinal interaction, or cannot control in situ the intrinsic
properties of the device (other than the coupling itself). The
two-tone approach [54], similar in philosophy to stroboscopic
schemes [55,56], also has the advantage that, when used as a
means to measure the qubit state, it is faster than dispersive
readout, and can still operate well in the limit of strong
coupling and a bad cavity [56]. The downside is that, like
the normal dispersive readout scheme, it is approximate, and
the quantum nondemolition (QND) nature of the measurement
breaks down away from ideal parameters (unlike an ideal
intrinsic longitudinal coupling). Thus the longitudinal readout
part of our paper lies between the “pure” longitudinal case
and the traditional dispersive case, with the fast readout of the
former, and the potentially easier implementation of the latter
(albeit with corresponding limits to its intrinsic QND fidelity
away from an optimal choice of parameters).

First we describe the basic elements of the spin-photon
coupling mechanism. We then introduce the modulated cou-
pling, and discuss how the two-tone modulation allows us
to realize a longitudinal coupling even when the intrinsic
Hamiltonian is transverse. We then analyze the fidelity of a
two-tone longitudinal measurement scheme, and show how
it compares to the normal longitudinal readout (with only a
single-tone modulation of the coupling) and dispersive readout
approaches. We investigate the influence of unwanted ex-
change tunneling terms, and then finally discuss how a single-
tone modulation can give an amplified transverse coupling. In
the Appendix, we present a detailed analysis of the perturbative
limits of the two-tone modulation approach.
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II. ORIGIN OF THE SPIN-PHOTON COUPLING

Following the approach of Ref. [53] we consider a model
of a DQD operating in the two-electron regime, and at the
charge-degeneracy point to minimize dephasing. A microwave
resonator modifies the gate voltage that controls the interdot
tunneling, which results in a spin-photon coupling as described
below. In addition, the electrons in the dots are subject to an
external magnetic field Bex = Bẑ, separating the triplet states,
T+ = | ↑↑〉 and T− = | ↓↓〉, from the triplet state, T0 = (|↑↓
〉 + | ↓↑〉)/√2, and the singlet state, S = (| ↑↓〉 − | ↓↑〉)/√2.
For brevity we neglect reference to the corresponding spatial
orbital wave functions [57–60] of the electrons in the double
dot. The electrons are also subject to inhomogeneous magnetic
fields BL and BR , originating from either inhomogeneous
nuclear Overhauser fields or the strong gradient field of a
micromagnet. Here, we define

σz = | ↓↑〉〈↓↑ | − | ↑↓〉〈↑↓ | ≡ |T0〉〈S| + |S〉〈T0|, (1)

σx = | ↓↑〉〈↑↓ | + | ↑↓〉〈↓↑ | ≡ |T0〉〈T0| − |S〉〈S|. (2)

Within this restricted two-state subspace the Hamiltonian for
the spin states of the dots is given by

Hd = J0

2
σx + �h

2
σz, (3)

where J0 is the exchange tunneling [57,59,60] and �h =
geμB(BL − BR) is the difference in local Zeeman energies.
In this paper we focus on the regime where �h � J0.

We assume that the superconducting transmission line is
coupled to the interdot tunnel gate. The vacuum state in the
cavity has a nonzero voltage that can modify this barrier, and
thus induces a Hamiltonian,

Hc = ωca
†a + Jrσx(a + a†), (4)

where ωc is the resonant cavity frequency and Jr is the spin-
photon coupling strength (see below). Reference [53] considers
the eigenstates of Hd as the qubit basis, and by applying
a large global magnetic field the authors propose tuning
J0 → 0, to maximize the transverse spin-boson coupling. One
downside to this approach, however, is that this mechanism of
tuning J0 to zero is, to our knowledge, as yet unobserved in
experiments. It also requires strong external magnetic fields,
which, depending on design, may be incompatible with the
critical field requirements of a superconducting transmission
line resonator, and may also reduce the intrinsic strength of Jr .
In addition, Ref. [53] suggests that the opposite longitudinal
regime can be reached by tuning the Zeeman splitting �h, such
that it is much smaller than the exchange tunneling J0.

Here, we investigate a complementary approach to this
notion of switching between longitudinal and transverse inter-
actions, based purely on modulation of the coupling strength
between the cavity and double quantum dot. As mentioned in
the Introduction, this also allows us to realize fast longitudinal-
coupling readout [35]. This on-chip tunability is particularly
beneficial to certain double quantum dot devices where it may
be difficult to tune �h in situ, and where an inherently large
�h may be desirable for state-preparation purposes.

A. Driven coupling

In Ref. [53] the functional dependence of the exchange-
tunneling mediated spin-photon coupling Jr is given by

Jr (t) = eVr sinh

⎡
⎣16Vh(t)

(
ω2

0 + 2ω2
L

)
h̄ω2

0

√
ω2

0 + ω2
L

⎤
⎦

−1

(5)

where ωL = eB/2m is the Larmor frequency, ω0 is the fre-
quency of the harmonic well defining each dot, and Vh is the
height of the tunnel barrier between the two dots. Essentially,
the vacuum-fluctuation induced voltage Vr modifies the height
of the tunnel barrier, which in turn changes the exchange split-
ting between triplet and singlet states [57,59,60]. The height Vh

is in practice a tunable parameter which can be controlled by a
gate voltage. By applying time-dependent driving [61] to this
gate voltage, Vh(t), one can make Jr (t) time dependent. One
caveat is, in the same stroke, we also induce a time dependence
in the exchange tunneling, J0, itself. However, as discussed in
the different context of superconducting qubits [35], this type
of imperfection typically has a minimal influence of the fidelity
or QND-ness of the measurement (as we will discuss below).

Using exchange tunneling to realize modulated coupling
is not the only potential way to implement this tunable spin-
photon coupling scheme. Following the proposal described in
Ref. [8] one could couple the spin of a single electron in a
double dot structure to the microwave cavity by applying a
strong magnetic field gradient with a micromagnet [20,21].
This could then be made time dependent by electrical control
of the dot potential [19,62], or modulation of the field gradient
with a suspended nanomagnet [63]. There are various advan-
tages and disadvantages to using single spin versus an effective
singlet-triplet qubit. The latter tends to have worse dephasing
than the former when the exchange tunneling or the dot bias
are changed [8], but has the advantage of being well developed
in terms of electrical preparation and readout of the qubit state.

III. TWO-TONE DRIVING AND AMPLIFIED
LONGITUDINAL READOUT

When �h � J0 our intrinsic Hamiltonian is transverse,
and we assume �h is a static property that cannot be tuned
in situ. However, as mentioned in the introduction, we can
access an effective amplified longitudinal regime by driving
the coupling at two frequencies. When the natural splitting of
the qubit and cavity are off-resonance (�h ∼ ωc/2), we can
do quasi-QND amplified longitudinal readout of the σx basis,
as we have defined it. More specifically, returning again to the
Hamiltonian

H = ωca
†a + �h

2
σz + Jr (t)σx(a + a†) (6)

and choosing

Jr (t) = Jr cos (ωct) cos (�ht) (7)

and moving to a rotating frame under the unitary transforma-
tion U = exp i[ωca

†a + (�h/2)σz]t , under the assumptions
that ωc,�h � Jr , and neglecting fast oscillating terms [64] of
frequency 2ωc, 2�h,ωc + �h, and ωc − �h (the neglect of
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FIG. 1. (a) An example of the evolution of the imaginary part of
the cavity state α = 〈a〉 when the qubit is prepared in the 〈+〉 or 〈−〉
eigenstate of the σx for the two-tone modulated longitudinal readout
scheme. Note that in our notation the scheme is longitudinal in the σx

basis, and is quasi-QND in that basis, as shown by the Bloch sphere
inset. The dashed curves show the approximate RWA solution, while
the solid lines show the full numerics, which includes oscillations due
to the counter-rotating terms. The insets (b) and (c) show the Wigner
function of the cavity state for the different initial qubit states at t =
16/κ . In this figure we have used nonideal parameters to accentuate
the unwanted oscillations, with �h = 0.15ωc, Jr = 0.05ωc, and κ =
Jr/2. The oscillations due to counterterms reduce the QND fidelity of
the measurement, but this can be improved by of course increasing �h

or reducing the coupling strength Jr [and correspondingly reducing
κ to maintain the same signal magnitude α(t → ∞) = Jr/2κ .]

which relies on ωc,�h,ωc − �h � Jr ), we obtain

H0 = Jr

4
σx(a + a†) . (8)

Thus, we have effectively entered a frame where both the cavity
frequency (as in the previous section) and the qubit splitting are
zero. This Hamiltonian thus describes a σx-dependent resonant
force on the cavity, and with it we can perform fast quasi-
non-QND readout of the eigenstates of that basis (albeit in
a rotating frame). It is more traditional to redefine the basis
states to measure in σz, but we refrain from doing so. With this
Hamiltonian the qubit-dependent displacement of the cavity
tends towards

α = 〈a〉 = ±Jr/2iκ (9)

in the steady state, as shown in Fig. 1, and does so faster than
the equivalent dispersive interaction [35] (here κ is the cavity
loss rate; see below for a full description). If one prefers to
perform a measurement in the σz basis one must of course
initially apply a rotation on the qubit before the measurement
is performed.

The validity of Eq. (8) depends strongly on

ωc,�h � Jr (10)

and

ωc − �h � Jr . (11)

In a regime where Jr/8 < �h < ωc − J/8, the leading non-
QND terms are, asymptotically,

O
{
max

[
J 2

r /�,J 2
r /(ωc − �)

]}
, (12)

suggesting an optimal point of

ωc = 2�h (13)

(see the Appendix for details). Explicitly, using Van-Vleck
perturbation theory (see the Appendix for the derivation), the
lowest-order non-QND terms are

H VV = H0 +
(

Jr

4

)2[ (a + a†)2

2�h

− �h

ωc
2 − �h2

(
a†a + 1

2

)]
σz. (14)

We validate this analysis with a numerical simulation of the full
dynamics [65,66], which involves solving a master equation
including the full time-dependent Hamiltonian Eq. (6) and
cavity loss rate κ:

ρ̇ = − i

h̄
[H (t),ρ] + κ

2
[2aρa† − a†aρ − ρa†a]. (15)

Here we neglect qubit (DQD) loss and dephasing, and focus
only on the influence of the cavity losses by assuming that
κ is the largest loss rate in our system. This assumption is
complementary to the benefit that the longitudinal readout
scheme works well in the bad cavity limit.

Figures of merit for the efficiency of the readout scheme are
the nondestructiveness (QND-ness) and the time-dependent
signal-to-noise ratio (SNR). In Fig. 2, from the full numerical
results, we show a simple measure, Min[〈|+〉〈+|〉]τ , of the
nondestructiveness of the measurement in terms of the min-
imum overlap between the state of the qubit (in the rotating
frame) and the initial state |+〉, across the whole time evolution
interval τ , as a function of �h. Note that, at this stage, we
tune across a large range of �h, but always assume that
�h � J0, even when �h → 0. This is because we wish to
first show the breakdown of our approach due to the failure
of the rotating-wave approximation (RWA) leading to Eq. (8).
We will address the issue of finite J0 in the next section.

At �h = 0, we retrieve the purely longitudinal results
of Didier et al. [35]. As �h increases, readout relying on
a single-tone modulation of the coupling just at the cavity
frequency of course fails to produce a satisfactory QND-ness,
as shown by the gray dashed curve. However, by modulating
at two frequencies (solid curve) we observe first a drop in
the QND-ness, and then right afterwards we see a revival,
as the simplified RWA model Eq. (8), which predicts ideal
nondestructive measurement at �h = ωc/2, becomes valid
(see the Appendix).

The time-dependent signal-to-noise ratio is given by

SNR(τ ) = 〈M(τ )+〉 − 〈M(τ )−〉
[〈δM(τ )2+〉 + 〈δM(τ )2−〉]1/2

, (16)
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FIG. 2. As a figure of merit of the QND fidelity of the mea-
surement process we use for an initial excited state |+〉, i.e.,
Min[〈|+〉〈+|〉]τ , and we take the maximum evolution time as τ =
2/κ . Here we use parameters closer to those expected in a DQD-
cavity setup, with ωc/2π = 5 GHz, Jr/2π = 50 MHz, and κ/2π =
25 MHz. In the black curve we set the static exchange tunneling
to zero, J0 = 0, and we tune �h/2π across the range 0–250 MHz
(the magnitude of Jr is indicated by the vertical gray line). The
black dashed curve shows the same except with a modulation of
the spin-photon coupling just at the cavity frequency alone. When
�h = 0 we recover the pure longitudinal result of Didier et al. [35].
As �h is increased, the QND-ness of the two-tone modulation scheme
decreases until a critical turning point, corresponding to the passage
from an adiabatic regime to a fast-modulation regime, where the RWA
starts to become valid. This regime is ideal when �h = ωc/2 (see the
Appendix for a complete analysis), but we see that, for the parameters
in this example, it already performs well as �h → ωc/20. The red
dashed curve shows the influence of a modulated exchange tunneling,
δJ0/2π = Jr/2π = 50 MHz. The dashed orange curve shows the
influence of a static exchange tunneling, J̄0/2π = Jr/2π = 50 MHz,
following strategy A for preparation and readout, described in the
text. The dash-dotted blue curve shows the influence of a static
exchange tunneling, J̄0/2π = Jr/2π = 50 MHz, following strategy
B for preparation and readout, also described in the text. In the cases
with static exchange coupling present, we modulate the spin-photon
coupling at the eigenenergy of the dot system ωq =

√
�h2 + J̄0

2
.

where + and − refer to the qubit state in the σx basis, and

M(τ ) = √
κ

∫ τ

0
dt [a†

out(t) + aout(t)] (17)

is the homodyne signal in terms of the integrated quadrature
amplitude of photons leaking out of the cavity at a rate
κ [where aout(t) = √

κa(t) + ain(t) includes vacuum noise
〈ain(t)a†

in(t ′)〉 = δ(t − t ′)]. The integrated noise is given by
the sum of the variance of both outcomes, δM(τ ) = M(τ ) −
〈M(τ )〉, which can be evaluated as [67,68]

δM(τ )2 = κ2
∫ τ

0
dt

∫ τ

0
dt ′(Tr[(a + a†) exp{L(t ′ − t)}

× (aρ(t) + ρ(t)a†)]u(t ′ − t)

+ Tr[(a + a†) exp{L(t − t ′)}(aρ(t ′)

+ ρ(t ′)a†)]u(t − t ′)) + κτ − 〈M(τ )〉2, (18)

FIG. 3. Here we show the integrated signal-to-noise ratio obtained
up to time τ = 2/κ , as a function of �h, with other parameters set as in
Fig. 2,ωc/2π = 5 GHz,Jr/2π = 50 MHz, andκ/2π = 25 MHz. The
black curve shows that SNR is maximal for �h → 0, then drops and
saturates as �h is increased (the magnitude of Jr is indicated by the
vertical gray line). The black dashed curve shows the same except with
modulation of the spin-photon coupling just at the cavity frequency
alone. The red dashed curve shows the influence of a modulated
exchange tunneling, δJ0/2π = Jr/2π = 50 MHz. The dashed orange
curve shows the influence of a static exchange tunneling, J̄0/2π =
Jr/2π = 50 MHz, following strategy A for preparation and readout,
described in the text. The dash-dotted blue curve shows the influence
of a static exchange tunneling, J̄0/2π = Jr/2π = 50 MHz, following
strategy B for preparation and readout, also described in the text. In
the cases with static exchange coupling present, we modulate the
spin-photon coupling at the eigenenergy of the dot system ωq =√

�h2 + J̄0
2
.

which, in the case that the state in the cavity is a coherent state,
reduces to δM(τ )2 = κτ , where τ is the total measurement
period. Here, the step functions are defined as u(t) = 1 for
t > 0 and u(t) = 0 for t < 0.

In Fig. 3 we show the signal-to-noise ratio, Eq. (16), also
as a function of �h, up to a maximum integration time of
τ = 2/κ . The larger SNR at �h = 0 is ultimately due to the
effectively larger coupling Jr , compared to the case when one
has a finite frequency of modulation (i.e., at �h = 0, Jr is
effectively two times larger compared to when the modulation
at finite �h occurs, and whence averaging over fast oscillations
effectively reduces the coupling strength). As �h increases, as
with Fig. 2, modulating the coupling at just a single frequency
is accompanied with a loss of signal. However, if one modulates
at two frequencies, ωc and �h, the SNR plateaus, as expected
from Eq. (8) and the analysis performed in Ref. [35].

In comparing their pure longitudinal measurement scheme
to the traditional dispersive approach, Ref. [35] argued that the
SNR of the longitudinal scheme increases faster than that of
the dispersive one at short times:

SNR(τ ) ∝ 1

κ
(κτ )5/2 for the dispersive case,

SNR(τ ) ∝ 1

κ
(κτ )3/2 for longitudinal readout,

SNR(τ ) ∝ 1

κ
(κτ )1/2 for both at longer times τ � κ−1.
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While this is also the case for the two-tone readout, we point
out an additional advantage of both the purely longitudinal
scheme [35] and our two-tone modulation readout. In the
examples shown in Figs. 2 and 3 we evolve to time scales
of order κ−1 and we set the loss κ = Jr/2. The choice of this
ratio is important in the sense that a smaller coupling would
give a lower magnitude steady state, and a smaller SNR, while
a smaller loss κ would give a slower overall readout time. In
the normal dispersive readout, the equivalent requirement for
a non-negligible SNR on this same time scale is

E

κ

J 2
r

�
> κ/2, (19)

where � = ωc − �h, and E is the magnitude of an external
resonant drive on the cavity. However, due to the perturbative
nature of the dispersive interaction, there is a limit on the
value of E/κ < (�/

√
8Jr ) (sometimes termed the “critical

photon number” [69–74]). This in turn limits the value of κ one
can allow in the dispersive readout scheme at least to Jr/

√
2,

and in practice much less (the critical photon number is an
extreme upper limit, related to how dressed the eigenstates of
the dispersive Hamiltonian become at larger photon numbers).
On the other hand, the longitudinal schemes function with high
fidelity up to the “bad cavity” limit ofκ = Jr/2 (as illustrated in
Figs. 2 and 3), a regime which potentially offers faster readout
(a related point regarding single-shot readout with longitudinal
coupling, even in the bad cavity limit, was made by Beaudoin
et al. [56]). For example, for the same parameters we use in
the figures, the dispersive readout fails completely.

A. Finite exchange tunneling

As discussed in the Introduction, it was proposed in
Ref. [53] that one can tune J0 → 0 by applying a large global
magnetic field. However, in general there may be technical
issues limiting how small J0 can be made. In addition, even
with negligible J0 there may be be a residual time-dependant
exchange tunneling arising when we modulate the height of
the gate voltage. For completeness, we discuss the influence
of these two imperfections on our results in Figs. 2 and 3.
Returning to the Hamiltonian for the dot system,

Hd = J0

2
σx + �h

2
σz, (20)

we define J0 = J̄0 + δJ0(t), i.e., an exchange tunneling with
both a static and modulated part.

If J̄0 = 0, and the residual modulation of the exchange
term has the same functional dependance as the modulated
coupling, δJ0(t) = δJ0 cos(�ht) cos(ωct), then the influence
of this modulation on the QND-ness is negligible if δJ0 �
ωc ± 2�h,ωc. We illustrate this in Figs. 2 and 3, where the
red dashed curves show that a modulation with a magnitude
equal to the spin-photon coupling in those figures has almost no
influence on the SNR and QND-ness for this parameter range.
However, nonzero δJ0 does reduce the QND-ness and SNR
around (but not at) the optimal point �h = ωc/2, where the
above RWA condition breaks down (we do not explicitly show
this in the figures). Precisely at the optimal point �h = ωc/2,
the QND-ness and SNR are restored because the Hamiltonian
again becomes of the QND form.

Conversely, if J̄0 is small but finite, and the accidental
modulation of the exchange term is δJ0(t) = 0, we require
J̄0 � �h for the influence of the static exchange tunneling to
be negligible, as one might expect. This error can be mitigated
to some degree by changing the modulation of the coupling
term so that it is on resonance with the new eigenenergy of the
qubit, ωq =

√
�h2 + J̄0

2. In this basis, the full Hamiltonian
becomes

H = ωq

2
σ̄z + ωca

†a + Jr cos(ωqt) cos(ωct)[sin(θ )σ̄x

+ cos(θ )σ̄z](a + a†), (21)

where θ = arctan(�h/J̄0).
Given this new Hamiltonian, we have two options, which

are distinguished as option A and option B in the figures. In
option A, we still assume the qubit starts in an eigenstate of
the original-basis Pauli operator σx , and it is in that basis, and
in the interaction picture of the ωqσ̄z free Hamiltonian, that we
evaluate the QND-ness and SNR in the orange dashed curves
in Figs. 2 and 3. For J̄0 = Jr the presence of this static J̄0 does
reduce the QND-ness and SNR for small �h, but this rapidly
increases and becomes comparable to the ideal case around
�h = 0.1ωc. The SNR does not recover for �h = 0 in this
case because of the residual modulation of the coupling at J̄0

in this limit.
Alternatively, for option B, we change the basis of our

readout such that the qubit is prepared, and measured, in an
eigenstate of σ̄x . This implies that the error term, for finite J0,
is the residual cos(θ )σ̄z part of the above Hamiltonian. This
choice has a better performance for intermediate �h, but fails
completely when �h → 0. This is trivially seen to be because,
at �h = 0, our choice of initial state is not an eigenstate of the
remaining coupling Hamiltonian, σ̄z.

Note that, for the same parameters, but modulating at just
�h, and using just the �h part of the free Hamiltonian to define
the interaction picture, and the measurement basis, there is a
much larger reduction in the QND-ness around �h = J̄0. We
do not explicitly show this case in the figures, as it essentially
performs worse than the above two options. Also not shown is
the influence of both finite J̄0 and δJ0(t) on options A and B,
as the influence of the static J̄0 is the dominant contribution
for the parameters shown in the figures.

IV. AMPLIFIED TRANSVERSE COUPLING REGIME

The magnitudes of the spin-photon coupling strengths
predicted in theory [8,53], and seen in experiments so far [20–
22], are in the strong-coupling regime (in that it exceeds
the qubit and cavity losses). However, they are still far from
the ultra-strong-coupling regime [41–43,45–47], as they are
orders of magnitude smaller than the qubit or cavity frequency
themselves. In addition, in the system we describe in this paper,
the singlet-triplet spin qubit is typically off-resonant with the
cavity. If one wishes to realize effective resonant interactions,
or even simulate [48–52] certain aspects of the ultra-strong-
coupling regime, one can do so by modulating the qubit-cavity
coupling, Jr (t), to make the influence of the qubit on the cavity
again akin to a resonant force. One can do this by now choosing

Jr (t) = Jr cos (ωdt), (22)
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in which case the total Hamiltonian becomes

H = J0

2
σx + �h

2
σz + ωca

†a + Jr cos(ωdt)σx(a + a†).

Applying a standard transformation U = exp (iωda
†at), this

Hamiltonian becomes

H = J0

2
σx + �h

2
σz + (ωc − ωd )a†a

+ Jr cos(ωdt)σx(ae−iωd t + a†eiωd t ). (23)

Applying the RWA, assuming �h,Jr � ωd , in the limit that
J0 is negligible, one obtains

HR = �h

2
σz + (ωc − ωd )a†a + Jr

2
σx(a + a†). (24)

For resonant interactions, one can choose (ωc − ωd ) = �h. As
the effective cavity frequency is reduced, the influence of the
qubit on the cavity is amplified. To realize certain aspects of the
ultra-strong-coupling regime one can choose (ωd − ωc) = 0,
thus, as in the longitudinal case, entering a frame where the
cavity frequency vanishes. In principle, this would also allow
one to study a nonequilibrium variant of the single-qubit
Dicke phase transition [34], similar to the nonequilibrium
Dicke phase transition model studied by Bastidas et al. [75].

V. CONCLUSIONS

In this paper we showed how a two-tone modulation of
the coupling between a qubit, as exemplified with the singlet-
triplet states in a double quantum dot, and a cavity allows
one to switch between transverse and longitudinal coupling
schemes. While being more “approximate” than a purely
engineered longitudinal coupling, and thus not perfectly QND
in some regimes, this approach allows one to switch between
transverse and longitudinal coupling, as required. For the latter,
we present a detailed perturbative analysis in the Appendix, to
show the robustness of the scheme for realistic parameters.
Finally, we argued that the longitudinal scheme can be used
in the bad cavity (large κ) limit, in principle allowing for a
faster readout. Of course, this approach can also be applied
to traditional circuit-QED [35], and perhaps also to other
approaches to spin-photon coupling [8,20,21].
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APPENDIX

In this Appendix we present a perturbative analysis which
explains the different features of Figs. 2 and 3 for the case
where the exchange tunneling J0 is zero. We will do this for a
full range of �h from zero to ωc. Specifically, in Sec. 1 of this
Appendix, we identify the regimes where the full dynamics can
(or cannot) be well approximated by a QND time-independent
Hamiltonian. In Sec. 2 of this Appendix, we present a higher-
order approximation of such an effective dynamics. Finally, we
present two figures, complementary to Figs. 2 and 3 presented
in the main text for the QND and SNR, over the full range of
�h.

1. Perturbative analysis

Starting from the full Hamiltonian,

H = �h

2
σz + ωca

†a

+ Jr cos (ωct) cos (�ht)σx(a + a†), (A1)

with two-tone modulation of the coupling, we will perform a
perturbative analysis of the different regimes lying in the range
0 � �h � ωc.

It is convenient to write the previous Hamiltonian in a frame
˜|�〉 = U |�〉, with U = exp {i[ωca

†a + (�h/2)σz]t} as

H = Jr cos (ωct) cos (�ht)(ei�htσ+ + e−i�htσ−)

× (eiωcta† + e−iωct a)

= H0 +
∑

n�h,nC=−1,0,1

Hn�hnc
e2i(n�h�h+ncωc) (A2)

where

H0 = Jr

4
σx(a + a†),

H1,0 = Jr

4
(a + a†)σ+,

H0,1 = Jr

4
σxa

†,

H1,1 = Jr

4
σ+a†, and

H−1,1 = Jr

4
σ−a† (A3)

with H−n�h,−nc
= H

†
n�h,nc

and H0,0 = 0.
In the following we assume Jr/ωc < 1 and, for formal

convenience, define

J̃r = Jr

8
. (A4)

In the following, we will (1) perform an initial RWA to
write H = H RWA + O(J̃ 2

r /ωc) and (2) perform an additional
approximation, to put the rotating-wave Hamiltonian in a QND
form, i.e.,

H → Heff ∝ H0. (A5)

This will be achieved by either (1) an additional RWA,
to neglect terms which rotate at a frequency ω satisfying
λRWA(ω) = J̃r/ω < 1, or (2) an adiabatic approximation (A),
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to neglect slowly rotating terms at frequency ω satisfying
λA(ω) = ω/J̃r = 1/λRWA < 1.

The error of this approximation depends on the specific
range of parameters considered. Specifically, we will analyze
the regimes 0 < �h < ωc/2 and ωc/2 < �h < ωc separately.

a. Regime 0 < �h < ωc/2. When 0 < �h < ωc/2, the fre-
quencies ωc − �h,ωc,�h + ωc appearing in the Hamiltonian
in Eq. (A2) are O(ωc). Keeping the most relevant error, the
RWA allows us to write

H = H RWA
�h + O

(
J̃ 2

r

ωc

)
(A6)

where

H RWA
�h = H0 + 2J̃r (a + a†)(e2i�htσ+ + e−2i�htσ−). (A7)

To proceed further, we need to analyze the perturbative param-
eters λRWA and λA for the time-dependent part of the previous
Hamiltonian.

(1) When 0 < �h < J̃r , we have λRWA(�h) = J̃r/�h > 1
and λA(�h) = 1/λRWA(�h) < 1, which is compatible with an
adiabatic approximation. In fact, for times t < τ with τ = 1/J̃r

(consistent with the choices T = 1/κ,2/κ and κ = Jr/2 = 4J̃r

used for the simulations), the condition 0 < �h < J̃r allows
one to expand the exponentials in Eq. (A7) at first order in
(�h t), to obtain

H RWA
�h = 2H0 + O(�h) (A8)

so that, in this regime, Heff = 2H0. The quality of this approx-
imation degrades as �h → J̃r .

(2) When �h = J̃r , the frequency of the time-dependent
term becomes equal to its energy scale and λRWA(J̃r ) = λA(J̃r )
and neither a further RWA nor the adiabatic approximation is
allowed.

(3) When J̃r < �h < ωc/2, we
have λRWA(�h) = J̃r/�h<1
and λA(�h) = 1/λRWA(�h) > 1, which allows us to perform
an additional RWA, giving

H RWA
�h = H0 + O

(
J̃r

2

�h

)
(A9)

so that, in this regime, Heff = H0.
b. Regime ωc/2 < �h < ωc. When ωc/2 < �h < ωc, the

frequencies �h,ωc,�h + ωc appearing in the Hamiltonian in
Eq. (A2) are O(ωc). Keeping the most relevant error, the RWA

allows us to write

H = H RWA
ωc−�h + O

(
J̃ 2

r

ωc

)
(A10)

where

H RWA
ωc−�h = H0 + 2J̃r [e2i(ωc−�h)t σ−a†

+ e−2i(ωc−�h)t σ+a]. (A11)

Again, to proceed further, we need to analyze the perturbative
parameters λRWA and λA.

(1) When ωc/2 < �h<ωc−J̃r , we have
λRWA(ωc − �h)=J̃r/(ωc − �h) < 1 and λA(ωc − �h) =
1/λRWA(ωc − �h) > 1, which again allows us to perform a
further RWA to write

H RWA
ωc−�h = H0 + O

(
J̃r

2

(ωc − �h)

)
(A12)

so that, in this regime Heff = H0.
(2) When �h = ωc − J̃r the frequency of the time-

dependent term becomes equal to its energy scale and
λRWA(ωc − g̃) = λA(ωc − J̃r ); once again neither a further
RWA nor the adiabatic approximation is allowed.

(3) When ωc−J̃r<�h<ωc, we have λRWA(ωc − �h) =
J̃r/(ωc − �h) > 1, and λA(ωc − �h) =
1/λRWA(ωc − �h) < 1, which once again allows us to
perform an adiabatic approximation. For times t < τ with
τ = 1/J̃r (again consistent with the choices T = 1/κ,2/κ

and κ = Jr/2 = 4J̃r used in the simulations), the condition
ωc − J̃r < �h < ωc allows one to expand the exponentials in
Eq. (A11) at first order in (ωc − �h)t to obtain

H RWA
ωc−�h = H0 + 2J̃r (σ−a† + σ+a) + O(ωc − �h)

= H0 + O(ωc − �h) + O(J̃r ) (A13)

so that, in this regime, Heff = H0. The quality of this
approximation degrades as �h → ωc − J̃r .

The results of this analysis are collected in Table I. Most
importantly, from Eq. (A9) and Eq. (A12) we see that the
scaling of errors is minimized for �h = ωc/2, justifying our
suggestion, in the main text, of �h = ωc/2 being the optimal
working point.

2. High-frequency regime

Deep in the high-frequency regime, where the condition
J̃r � �h � ωc − J̃r is satisfied, all time-dependent contribu-

TABLE I. In this table we summarize the analysis in the Appendix. For each parameter range, our goal is to identify the error in approximating
the behavior as an effective QND Hamiltonian Heff . These errors are minimized at the trivial extreme point �h = 0, where we return to the
intrinsically longitudinal case studied elsewhere. More interestingly, in the regime of interest of this paper (J̃r < �h < ωc − J̃r ), the scaling
of the errors suggests the presence of another optimal point at �h = ωc/2.

Range RWA: H = H RWA + O(J̃ 2
r /ωc) Regime Heff Heff − H RWA

�h = 0 H RWA
0 = 2H0 2H0 0

0 < �h < J̃r H RWA
�h = H0 + 2J̃r (a + a†)(e2i�htσ+ + e−2i�htσ−) Adiabatic 2H0 O(�h)

J̃r < �h < ωc

2 H RWA
�h = H0 + 2J̃r (a + a†)(e2i�htσ+ + e−2i�htσ−) High-freq. H0 O(J̃r

2
/�h)

ωc

2 < �h < ωc − J̃r H RWA
ωc−�h = H0 + 2J̃r [e2i(ωc−�h)t σ−a† + e−2i(ωc−�h)t σ+a] High-freq. H0 O(J̃r

2
/(ωc − �h))

ωc − J̃r < �h < ωc H RWA
ωc−�h = H0 + 2J̃r [e2i(ωc−�h)t σ−a† + e−2i(ωc−�h)t σ+a] Adiabatic H0 O(ωc − �h) + O(J̃r )

�h = ωc H RWA
ωc

= H0 + 2J̃r (σ−a† + σ+a) H0 O(J̃r )
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FIG. 4. As in Fig. 2, we plot the QND fidelity of the measurement
process QND fidelity Min[〈|+〉〈+|〉]τ for an initial excited state |+〉 as
a function of �h. In this figure we use larger coupling magnitude, Jr =
0.1ωc, and loss κ = Jr/2, to accentuate the deviation from the ideal
QND behavior. As before we choose the total integration time τ =
2/κ . In black is the result for the full system Hamiltonian while the
other lines correspond to the effective Hamiltonians listed in Table I
in the Appendix. The black dashed vertical lines represent the points
�h = {J̃r ,ωc − J̃r}, which set the boundary between the adiabatic
and high-frequency regimes (which, for the reasons explained in the
text, we expect to be valid in the long measurement time limit, i.e.,
when κτ → ∞). It is clear that operating at the point �h = ωc/2 is
optimal, as also suggested by our perturbative analysis, apart from the
point corresponding to �h = 0, where the Hamiltonian is intrinsically
longitudinal (corresponding to the proposal in Ref. [35]). The inset
zooms on the parameter regime 0.2ωc < �h < 0.8ωc.

tions to the original Hamiltonian H satisfy λRWA � 1 and a
more rigorous analysis can be performed. By using Van Vleck
perturbation theory in Floquet space [76–78] an alternative
effective Hamiltonian [see Eq. (14) in the main text] can be
written as

H VV = DHD−1

= H0 − 1

2

∑
n�hnC=−1,0,1

[H−n�h,−nC
,Hn�h,nC

]

2n�h�h + 2nCωc

+O

(
J̃r

3

�h2

)
+ O

(
J̃r

3

ωc
2

)
+ O

(
J̃r

3

(ωc − �h)2

)

+O

(
J̃r

3

(ωc + �h)2

)

= H0 + (2J̃r )2

[
(a + a†)2

2�h
− �h

ωc
2 − �h2

(a†a + 1

2
)

]
σz

(A14)

in a frame defined as D = exp [−iS(t)], with

S(t) =
∑

n�h,nC

iHn�h,nc

2n�h�h + 2ncωc

Fn�h
Fnc

, (A15)

ωcωc

FIG. 5. For completeness, as in Fig. 3 we show the SNR as a
function of �h, with other parameters as in Fig. 4. As expected, the
SNR is large at �h = ωc/2, and maximal for �h → 0. The solid lines
are for τ = 1/κ , while the dashed lines are for τ = 2/κ , illustrating
how one acquires more signal for longer measurement periods. The
purple curves are for our two-tone modulation scheme, while the black
lines show the behavior when one modulates the coupling at just the
cavity frequency.

where Fn�h
= exp (2in�h�ht), FnC

= exp (2incωct). The ap-
pearance of σz at this order suggests it is the first non-QND
term that arises (recalling that our scheme is performing
measurements in the σx basis, such that evolution due to σz

terms will cause deviations from the desired QND behavior).
We note that the Floquet resonances defined by the intuitive

condition

n1�h + n2ωc + n3(ωc + �h) + n4(ωc − �h) � Jr/4

(A16)

with |ni − nj | = ±1,0 for i,j = 1,2,3,4 are due to a skewed
description of the system as a more appropriate description can
be found in terms of slow envelopes of the remaining high-
frequency pulses. As a consequence, the usual high-frequency
approximations in Floquet space can be supported by adiabatic
considerations [79–81] leading to Eq. (A14).

For completeness, it is also worth taking into consideration
the tilting of the frame described in Eq. (A15) in which the Van
Vleck Hamiltonian is valid. For example, at t = 0, the change
of frame is already nontrivial (although highly suppressed in
the high-frequency regime) and reads

S(0) =
∑

n�h,nc

iHn�h,nC

2n�h�h + 2ncωc

. (A17)

By undoing this change of frame with the operator D0 =
exp (−iS0) we get

HV V
0 = D−1

0 DHD−1D0,

= D−1
0 HV V D0,

= HV V − i[H0,S(0)] + O

(
g3

�h2

)
,

= HV V +
∑

n�h,nc

[H0,Hn�h,nc
]

2n�h�h + 2ncωc

, (A18)

and, finally,

HV V
0 = H0 + (2J̃r )2

{
(a + a†)2

2�h
− �h

ωc
2 − �h2

(
a†a + 1

2

)
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− (a + a†)

�h
+ �h

ωc
2− �h2

[1+ (a + a†)2]

}
σz. (A19)

To compare the different levels of approximations studied in
this Appendix, we finish by presenting, in Fig. 4, the QND
fidelity over the full range of �h, complementing Fig. 2
in the main text. In Fig. 5 we also present the SNR for
the same range of �h, complementing Fig. 3 in the main
text.
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