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Exotic quantum light-matter interactions in bilayer square lattices
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We investigate quantum emitters (QEs) interacting with a photonic structured bath made of bilayer square
lattices, where the resonance anticrossing between the energy bands opens a symmetric middle energy gap. Due
to the intrinsic chiral symmetry of the bath and interactions with the squarelike band edges, the QE-photon
dressed states generated in this inner band gap are odd neighbor, robust, and anisotropic, when the emitters’
transition frequencies lie in the middle of the band gap. We also use giant artificial atoms to engineer and modify
the dressed states’ patterns. Exotic bound states can lead to spin models with symmetry protection, resulting
in fascinating many-body phases. As an example, we show that this proposal can be used to generate both
edge states and corner states in the generalized two-dimensional Su-Schrieffer-Heeger model. This work opens
up different avenues for research into innovative quantum many-body physics and quantum simulations with
photonic or phononic multilayer structures.
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I. INTRODUCTION

Bilayer two-dimensional (2D) materials offer a flexible
platform for studying strongly correlated electron movements
near electronic flat bands in moiré superlattices [1–4]. A
rapidly emerging field is to examine the optical and acoustic
analogs of bilayer 2D materials [5–12]. In this field, numerous
theoretical works have predicted the localization and conden-
sation of light in bilayer photonic crystals [10,13,14]. The
photonic counterparts have a distinct advantage in terms of
flexibility, which includes the ability to construct a variety of
lattice shapes and tune the coupling strength between layers
via interlayer separation or other methods [8,10,15]. Beyond
fundamental research focused on photonics, it is also very ap-
pealing to investigate light-matter interactions with quantum
emitters (QEs) in photonic layered structures [12,16,17].

Long-range tunable coherent dipole interactions, on the
other hand, mediated by bound states (BSs) produced within
the band gap of structured photonic baths, have attracted con-
siderable interest due to their possible applications in quantum
simulations [18–23]. Floquet engineering spin-spin interac-
tions by periodic driving [24,25], tailoring the geometry of
photonic interfaces [26–30], and exploiting giant atoms with
nonlocal coupling to several positions of the bath [31–38] are
some of the approaches proposed to develop more innovative
spin models. Remarkably, QEs interacting with topologi-
cal photonic lattices produce exotic BSs that can be chiral,
resilient, and exhibit power-law scaling [39–49]. However,
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previous works mostly focus on single-layer 2D or multilayer
3D photonic structures; in stark contrast, photonic bilayer
structures possess very distinct band shapes and new features
that have yet to be explored for light-matter interactions.

In this paper, we predict another type of QE-photon dressed
states and coherent interactions between QEs in photonic
bilayer square lattices. By taking advantage of only band
crossing in a bilayer structure, we can open a middle energy
gap around 2D van Hove singularities without breaking the
chiral symmetry of the lattices. The intrinsic chiral symmetry
of the bath together with the square geometries of the band
edges give rise to the emergence of odd-neighbor (the photon
profile vanishes to the even-neighbor sites of the QE), robust,
and anisotropic BSs when tuning the QE’s frequency to the
van Hove points of the bare bands. We also use giant atoms
in 2D to consider quasi-1D patterns and purify the anisotropy
of the odd-neighbor BSs, which cannot be implemented by
pointlike emitters. These BSs can mediate chiral symmetric
and anisotropic spin-spin interactions, which have wide ap-
plications ranging from robust entanglement distributions to
the simulation of nontrivial spin models. Through a specific
spin array arrangement, we can simulate a generalized 2D
Su-Schrieffer-Heeger (SSH) model that can support both edge
modes and corner-localized modes.

II. MODEL AND HAMILTONIAN

As illustrated in Fig. 1(a), we consider a photonic double-
layer structure, where J and ηJ respectively describe the
hopping amplitudes between the nearest-neighbor lattices in
the top and bottom layers, and G denotes the interlayer
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FIG. 1. (a) Schematics of emitters in bilayer square lattices. The
yellow and green disks represent lattice sites consisting of bosonic
modes. Here, J and ηJ denote the intracouplings and G is the inter-
coupling strength. Emitters are coupled to the lattice sites with the
interaction strength g. (b) Corresponding energy band structure of
the bath shown in (a), with the middle band gap εgap = 2G. Here,
η = −1 and G = J/4.

coupling strength. Here, we mainly focus on the parameter
regime η < 0. In this regime, we are particularly interested in
the η = −1 case (without loss of generality) and this bosonic
Hamiltonian with antisymmetric coupling corresponds to an
antiferromagnetic coupling, which is given by (h̄ = 1)

ĤB = J
∑
〈n,m〉

(
â†

1mâ1n − â†
2mâ2n

) + G
∑

n

â†
1nâ2n + H.c., (1)

where â1n and â2n are the annihilation operators of bosonic
modes at the position n = (nx, ny) in layer 1 and layer 2,
respectively. Here, we write the bath Hamiltonian in a frame
rotating at the frequency ω1 =ω2, with ω1,2 being the cav-
ity’s resonance frequency in the two arrays. We also ignore
polarization and consider the case for photon fields with a
particular polarization (we assume that the E -field vector in
a direction perpendicular to the x-y plane). Note that this
bath is equal to the one with η = +1 and alternating phases
(−1)nx+ny in the interlayer couplings [50], where a photon
with momentum k in the top layer is coupled to a photon
with momentum k − (π, π ) in the bottom layer. One can
easily check that the energy band with such a momentum
shift is the same as the one with negative hopping rates. In
fact, both of them correspond to the introduction of a uniform
effective flux of π in each plaquette {â1n, â2n, â1np, â2np}, with
np − n = (0,±1) or (±1, 0). We next transform the Hamilto-
nian into k space by introducing the Fourier transformation
âk = 1/

√
N

∑
n e−ik·nân, with k being the wave vector (for

convenience, we assign the lattice constant d0 = 1 here). In
terms of V̂ †

k = (â†
1k, â†

2k ), the bath Hamiltonian in momentum
space can be written as ĤB = ∑

k V̂ †
k Ĥ (k)V̂k, with the kernel

Ĥ (k) =
(

f (k) G
G − f (k)

)
, (2)

where the function f (k) = 2J (cos kx + cos ky) is the disper-
sion of a monolayer square lattice. After diagonalization and
in terms of eigenoperators {ûk, l̂k}, ĤB = ∑

k[ωu(k)û†
kûk +

ωl (k)l̂†
k l̂k], with the dispersion of hybrid energy bands

ωu,l (k) = ±
√

f 2(k) + G2. (3)

The relation between the {â1k, â2k} and polariton operators
{ûk, l̂k} is given by(

ûk

l̂k

)
=

(− sin θk cos θk

cos θk sin θk

)(
â1k

â2k

)
, (4)

with sin θk = G/
√

G2 + [ωl (k) + f (k)]2 and cos θk =
G/

√
G2 + [ωu(k) + f (k)]2. Because of the chiral symmetry

protection, the bands are obviously symmetric about zero
energy [σ̂yĤ (k)σ̂y = −Ĥ (k)] and a middle band gap is
opened with size εgap = 2G. When η �= −1, the bath is
still bipartite (if looking at a suitably enlarged unit cell),
and the eigenvalues are in pairs ωu(k) = −ωl (k + �),
with � = (π, π ). The origin of this gap is the resonance
anticrossing between the bare energy bands (G = 0) at the
van Hove singularities. The dispersion of hybridized energy
bands is shown in Fig. 1(b). In particular, the shape of the
middle band edges (±G) is squarelike, where f (k) = 0.

In this paper, we focus on the QE-photon interactions
within the middle band gap. We consider one (or several) two-
level systems {|e〉, |g〉} as the QEs which are locally coupled
to a single polarization of light of the bath at one or more
sites, with transition frequency ωe. Other polarized light is
decoupled from the systems. The free Hamiltonian of these
QEs reads ĤS = �/2

∑
j σ̂

j
z , with detuning � = ωe − ω1 and

spin operators {σ̂z, σ̂
†, σ̂ }. The QE-bath interaction of a single

giant atom (the jth spin) can be described as

Ĥ j
int = σ̂

†
j

⎛
⎝ Np∑

α=1

gnα
â1nα

+
Nq∑

β=1

gnβ
â2nβ

⎞
⎠ + H.c., (5)

where gnα,β
is the QE-bath coupling strength at certain cou-

pling points, and Np (Nq) is the number of coupling points in
the top (bottom) layer. When choosing {Np, Nq} = {1, 0} or
{0, 1}, the interaction recovers the result of a small atom. This
QE-bath interaction Hamiltonian can be transformed into k
space,

Ĥ j
int = 1√

N
σ̂

†
j

∑
k

⎡
⎣ Np∑

α=1

gnα
eik·nα (− sin θkûk + cos θk l̂k)

+
Nq∑

β=1

gnβ
eik·nβ (cos θkûk + sin θk l̂k)

⎤
⎦ + H.c. (6)

Thus, the Hamiltonian of the whole system can be written as
Ĥ = ĤB + ĤS + ∑

j Ĥ j
int.

III. IMPLEMENTATIONS

Before proceeding, we make a simple discussion about
possible physical implementations for examining the single-
particle physics of our Hamiltonian model, in which particle
statistics plays a negligible role. As we ignore the polariza-
tion degree of freedom, the double-layer square lattices (i.e.,
the bath Hamiltonian) can be realized in various platforms,
such as cold atoms in optical lattices [51,52] and op-
tomechanical systems [53,54]. The two-level emitters (small
atoms) can be deeply trapped atom internal states [55–57]
and color centers [58–61], respectively. Taking cold atom
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realizations as an example, we may consider alkaline-earth-
metal atoms with different internal states trapped by optical
potentials [62], which mimic the bilayer square lattices and
the QE behavior. The bath Hamiltonian can be obtained and
controlled using laser-assisted tunneling [63–67], while an
empty bath corresponds to the Fermi level EF = min[ωk]. For
typical temperatures T of a few 100 nK and hopping rates
J/2π ∼ kHz [64,68], the initial mean thermal excitation num-
ber obeying Fermi-Dirac distribution is about 〈â†

kâk〉 = (1 +
eh̄(ωk−EF )/kBT )−1 ∼ 0.1 for modes near the van Hove singu-
larities. Lower-temperature fulfilling kBT � h̄G is preferable.
Moreover, matter-wave waveguide QED setups have already
been reported in experiments [69,70]. Therefore, we can re-
strict ourselves to the ideal case of T = 0 in the following
sections. As for the impurities, a theoretical proposal for engi-
neering giant atoms in 2D dynamical state-dependent optical
lattices has recently been put forward [33].

IV. BOUND STATES WITH SMALL ATOMS

In this work, we are particularly interested in the BS
produced in the inner band gap of manufactured bilayer struc-
tures. We first consider a small atom coupled to the site n0 =
(0, 0) in the top layer, with the Hamiltonian Ĥsys =�/2σ̂z +
g(â1n0 σ̂

† + H.c.). Then we can calculate the eigenvalue and
the wave function by solving the stationary Schrödinger equa-
tion (ĤB + Ĥsys)|ψ〉 = EBS|ψ〉 in momentum space, with a
general one-particle state

|ψ〉 =
(

Ceσ̂
† + 1/

√
N

∑
k

∑
β=a1,a2

Ck,ββ
†
k

)
|g〉|0〉. (7)

Here, |0〉 represents the ground state of the bath, and
the coefficients Ce, Ck,a1 = −gCe f (k)/ω2(k) and Ck,a2 =
[G/ f (k)]Ck,a1 are the probability amplitudes. Though the
energy EBS ∈ (−G, G) can be exactly solved by the pole equa-
tion EBS =� + �e(EBS), with self-energy �e [71], EBS ≈�

is a good approximation when {g,�} � G. In particular,
EBS =� when the spin is resonant with the cavity mode.
Finally, we obtain the spatial distribution of the photonic
part of the BS by means of the inverse Fourier transform
Cn,a1(2) ∝ ∑

n eik·nCk,a1(2) .
Different from the common BSs induced by the band

edge at kedge = (0, 0) or ±(π,±π ) in a monolayer square
lattice [20], the BS shown in parallel arrays is derived from the
interactions with the band edges around kedge = ±(kx, π ±
kx ) [see Fig. 1(b)]. Returning to real space, the superposition
of exponentials resulting from interactions with the opposite
side of the square band edges can provide an interference
effect, which causes the wave function to be enhanced or
suppressed in certain neighboring sites. The maximum inter-
ference is observed when the QE’s transition frequency is at
the middle of the band gap.

In Fig. 2, we plot the spatial distribution of the photonic
part of the BSs, when a single small atom with frequency
� = 0 is coupled to the n = 0 site in the top layer. We list the
main features of these BSs as follows: First, in the top layer,
the wave function only emerges at the odd lattices, while in
the bottom layer, it appears at the even lattices. We denote this
exotic dressed state odd-neighbor BS because they are both

FIG. 2. Spatial distributions (a), (c) Cn,a1 and (b), (d) Cn,a2 of the
odd-neighbor, robust, and anisotropic BSs with G = J/4, when the
emitter with interaction strength g = 0.1J is coupled to the n = 0 site
in the top layer. There are no disorders in (a), (b) and off-diagonal
disorders in (c), (d).

odd-neighbor sites with regard to the site to which the QE is
coupled. Second, the wave-function phases alternate with ±1,
with the exception of the vicinity around the QE. Third, the
BS has an anisotropic nature [20,33], with the wave function
predominantly distributed along the nx ± ny = ±(∓)1 direc-
tions in the top layer and along the nx ± ny = 0 directions in
the bottom layer, due to the squarelike dispersion of the band
edges.

Another interesting feature of these odd-neighbor BSs
is the robustness to off-diagonal disorders (i.e., disorders
in the hopping amplitudes). To illustrate this effect, we
plot odd-neighbor BSs under the off-diagonal disorders in
Figs. 2(c) and 2(d), where we add random perturbations
Ĥdis = ∑

〈n,m〉(ε1nâ†
1nâ1m + ε2nâ†

2nâ2m + ε3nâ†
1nâ2n + H.c.) to

the bath Hamiltonian ĤB, with disorder strengths {ε1n, ε2n} ∈
[−J/4, J/4] and ε3n ∈ [−G/4, G/4]. With respect to the n =
0 site, we discover that there is no distribution in the even-
neighbor sites, and the BSs’ energy is fixed at zero.

To further understand the odd-neighbor profiles and the
robustness, we turn to consider a unit cell including more sites
such that the bath Hamiltonian is bipartite. When the QEs with
a transition frequency � = 0 are only coupling to the odd sites
defined by sum(n) ≡ (nx + ny) ∈ Zodd, the full Hamiltonian
in terms of the block matrix can be formally written as

H =

⎛
⎜⎝

0 Qp g
Q†

p 0 0
g† 0 0

⎞
⎟⎠, (8)

with the submatrix Qp describing the bipartite interactions and
the submatrix g being the atom-photon coupling term in the
odd-site subspace. By solving H� = E� with eigenvector
� = (�T

odd,�
T
even,�

T
QE)T , we can find an eigenvalue E = 0

with �odd = 0 for this block matrix since det(H ) = 0. Obvi-
ously, E = 0 persists when only adding off-diagonal disorders
dQp to the lattice, while �odd = 0 manifests a vanishing
wave function in the odd-site subspace (i.e., odd-neighbor
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FIG. 3. Wave-function distribution of the odd-neighbor BSs
formed by a giant atom coupling to bilayer square arrays. (a),
(b) The giant atom is coupled to two sites n1,2 = (0, 0) and (1,1)
in layer 1. (c), (d) The giant atom is coupled to four sites n =
(±1, ±1), (±1,∓1) in layer 1.

property). This general conclusion can be applied to arbi-
trary dimensions. Indeed, this phenomenon has already been
observed in the 1D and 3D chiral symmetric photonic lat-
tices [28,40,41].

V. BOUND STATES WITH GIANT ATOMS

The pattern of the BSs can be further engineered by taking
advantage of giant atoms. To protect the BSs’ odd-neighbor
property, the coupling sites of a single giant atom should
be even neighbor. Quantum interference between nonlocal
coupling points can result in the cancellation of the spatial
distribution of the BSs in certain lattice sites or directions.

We first consider the case when a giant atom is coupled to
two sites n1,2 = (0, 0) and (1,1) in the top layer with identical
coupling strength g. Then the QE-bath interaction Hamilto-
nian in k space simplifies to

Ĥint = g√
N

σ̂ †
∑

k

[1 + ei(kx+ky )]

× (− sin θkûk + cos θk l̂k) + H.c., (9)

where the interference term I(k) = 1 + ei(kx+ky ) results
in destructive interferences for band-edge modes kedge =
±(kx, π − kx ). This is reflected in the cancellation of one
branch of the anisotropic BS pattern, as shown in Figs. 3(a)
and 3(b). Another example is to homogenize the anisotropy of
the BS through coupling to four positions in the top layer. The
four sites are n = (±1,±1), (±1,∓1) and the interference
term in k space can be chosen as I(k) = 4 sin kx sin ky. Clearly,
for the band-edge modes kedge = (0,±π ) and (±π, 0), this
term approaches zero. As a result, the non-Markovian part in
the BS stemmed from van Hove singularities is filtered, as
plotted in Figs. 3(c) and 3(d).
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FIG. 4. (a) Bipartite spin model with all the QEs at even lattices,
that is sum(n) ∈ Zeven. The QEs in layer 1 (blue) are only coupled
to the QEs in layer 2 (red) and vice versa. (b) Spin interactions of
(a) along the diagonal directions. (c) Vertical view of the config-
uration of a generalized 2D SSH model in the trivial phase, with
QEs alternately and dimerically placed in the double layers. (d) Spin
model energy spectrum of a finite system with 144 small atoms inside
the 35 × 35 bilayer square arrays. (e), (f) One of the edge modes
and corner modes extracted from the spectrum of the second-order
topological insulator shown in (d). Here, we choose G = 4J and
g = 0.1J .

VI. BIPARTITE SPIN MODEL

The odd-neighbor, robust, and anisotropic BSs can me-
diate long-range tunable, chiral symmetric, and anisotropic
spin-spin interactions when involving multiple QEs. In the
Markovian limit, the coherent interactions can be described as
ĤS = ∑

i< j (gi j σ̂
†
i σ̂ j + H.c.), where the coupling strength gi j

vanishes for sum(ni j ) ∈ Zeven (Zodd) when two QEs are in the
same (different) layer(s), with relative position ni j = n j − ni.
In fact, a general analysis in Ref. [72] has shown that the emit-
ter Hamiltonian can inherit chiral symmetry of the photonic
bath in a one-emitter-per-resonator case, when setting � = 0.
A direct application of this spin model can realize high-fidelity
entanglement of multiple QEs located at the odd lattices via
an auxiliary one at the even lattice, where the unwanted cross-
talk is reduced (see Ref. [26] and Appendix D).

A potentially interesting configuration based on parity
properties is that the photonic lattice is half filled by the
QEs, in which the QEs only interact if they are coupled to
the lattice sites in different layers, as shown schematically in
Figs. 4(a) and 4(b). The anisotropic spin-spin interactions are
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mainly along the diagonal directions of the lattice arrays [see
Fig. 4(b)]. At this time, the spin model is bipartite in the layer
space, with the Bloch Hamiltonian

ĤS (k) =
(

0 fS (k)
f ∗
S (k) 0

)
, (10)

where fS (k) = ∑
n Jn

1,2 exp(−ik · n) is the off-diagonal term
and Jn

1,2 denotes the coupling between the QEs coming from
the different layers at a distance n. The system also has inver-
sion symmetry ĤS (k) → ĤS (−k), with σ̂x the corresponding
local operator [73]. The spin model protected by chiral sym-
metry can be harnessed to simulate exotic many-body phases,
such as double Néel ordered states [40,45].

VII. GENERALIZED 2D SSH MODEL

Apart from the key symmetries that provide topological
protection, bond order is another crucial ingredient required
for entering topology. We selectively position the QEs in a
dimeric and alternating manner in the bipartite spin model
whose vertical view is plotted in Fig. 4(c). This specific spin
array arrangement can investigate the topological phases of a
generalized 2D SSH model [74–82].

We consider a system composed of 35 × 35 bilayer square
lattices and a 12 × 12 spin array, with a configuration sim-
ilar to that shown in Fig. 4(c). The energy spectrum of the
spin interactions is plotted in Fig. 4(d), with G = 4J . Here,
the inner band gap of 8J occupies most of the entire range
of 8

√
2J . We point out that the ratio between out-of-plane

coupling and in-of-plane coupling G/J mainly influences the
localization length of the BSs. For a given light-matter cou-
pling g � {G, J}, the increasing of the detuning to band edges
reduces the localization length of the BSs and thereby the spin
couplings. The anisotropy is weakened as well even though
f (k) = 0 for ω(k) = ±G is still satisfied, as compared to the
patterns under weak interlayer coupling G = J/4. However,
the odd-neighbor and robust properties stemming from chiral
symmetry are independent of the ratio G/J . The profiles of the
BSs are more localized such that we can approximate emitter
interactions to the third-neighbor or even nearest-neighbor
hoppings. In this regime, the edge modes are spectrally iso-
lated from the bulk energy bands, as shown in Fig. 4(d).
Despite the challenges, we believe that 10−4J for the energy
eigenvalues is likely at finite temperatures in cold atom re-
alizations. This is because the spin frequencies are far away
from the Fermi level of an empty bath, and the bath modes are
traced out for arriving at spin-spin interactions.

By expanding the spin couplings up to the third-neighbor
hoppings, the nondiagonal term fS (k) in Eq. (10) can be
rewritten as

fSSH(k̄) �
(

f0(k̄x ) f0(k̄y)
f ∗
0 (k̄y) f ∗

0 (k̄x )

)
, (11)

with f0(k̄ j ) = t1 + t2eik̄ j + t3e−ik̄ j + t4e2ik̄ j ( j = x, y) and
wave vector k̄ = (k̄x, k̄y ) for the spin array. In the topological
phase, one finds |t2| � |t1| � |t4| � |t3|. To characterize the
existence of edge modes, we should calculate the topological

polarization through the integral [77]

P = 1

2π

∫
BZ

d k̄ Tr[Am(k̄)], (12)

where Am(k̄) = iψ†
m(k̄)∂k̄ψm(k̄) is the non-Abelian Berry

connection and ψm(k̄) represents the eigenfunction of a spin
Hamiltonian with band index m. In addition to numerical cal-
culation, another method is based on symmetry analysis [83].
Because the spin model respects C4 symmetry, the values of
the polarization are either (0,0) or ( 1

2 , 1
2 ) for a system being

in the trivial or topological phase, respectively. The existence
of corner states can be further characterized by the secondary
topological index Qcorner = 1

4 . Note that the corner modes here
are also known as bound states in the continuum with the
protection of the simultaneous C4v and sublattice symmetries.
A detailed analysis can be found in Ref. [84]. In Fig. 4(e),
we extract and plot one of the edge states distributed along
the boundary of the 2D spin array. While in Fig. 4(f), we give
a topological corner state with distributions localized at the
four corners of the square array, direct evidence of nontrivial
second-order topological insulating phases [85,86].

VIII. CONCLUSION

In summary, we developed a photonic bath with a sym-
metric middle band gap caused by parallel array interlayer
hybridization. In this band gap, the quantum optical proper-
ties of small and giant atoms are investigated. Interactions
with squarelike band-edge modes of a chiral symmetric pho-
tonic lattice, in particular, result in odd-neighbor, robust, and
anisotropic BSs, which can mediate spin-spin interactions that
inherit the BSs’ properties. We have demonstrated the capa-
bility of our system in the simulation of nontrivial many-body
phases, such as topological phases of high-order topological
insulators.
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APPENDIX A: BILAYER SQUARE LATTICES OF η �= −1

Although we particularly focus on the η = −1 case in the
main text, we present some results in the η �= −1 case in
this Appendix. The dispersion relations of two hybrid energy
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FIG. 5. (a) Dispersion relationship of hybrid energy bands.
(b) Corresponding density of states. (c)–(f) Wave-function spatial
distribution of the BS with a small random off-diagonal disorder.
In (c), (d) � = 0 and (e), (f) � = 0.5J . Here, η = −4, G = J , and
g = 0.1J .

bands read

ωu/l (k) = (1 + η) f (k)

2
±

√
(1 − η)2 f 2(k)

4
+ G2. (A1)

It is obvious that the solutions are no longer strictly symmetric
k → −k with respect to the zero energy, but still come in pairs
ωu(k′) = −ωl (k), with k′ = (kx + π, ky + π ). Besides, the
energy gap opened around van Hove singularities persists as
long as G �= 0 and η < 0, even though the band-edge modes
no longer entirely satisfy f (k) = 0. Nevertheless, the shape
of the middle band edges is still squarelike. To clarify it, we
plot the energy bands in Fig. 5(a), with η = −4 and G = J .
The corresponding density of states is also given in Fig. 5(b),
which shows a divergency in the middle band edges.

APPENDIX B: DETAILS OF BOUND STATES WITH A
SINGLE COUPLING POINT

As discussed in the main text, the full Hamiltonian is given
by Ĥ = ĤB + Ĥsys. The QE-photon dressed state formed in
the single-excitation subspace can be solved based on the
secular equation Ĥ |ψ〉 = EBS|ψ〉, with the eigenvalue EBS

and one particle ansatz

|ψ〉 =
⎛
⎝Ceσ̂

† +
∑

n

∑
β=a1,a2

Cn,ββ†
n

⎞
⎠|g〉|0〉. (B1)

To obtain the coefficients, we solve the stationary Schrödinger
equation in k space and do the inverse Fourier transform,
which yields

Cn,a1 = gCe

4π2

∫∫
BZ

dkeik·nCk,a1 , (B2)

Cn,a2 = gCe

4π2

∫∫
BZ

dkeik·nCk,a2 , (B3)

with wave functions in reciprocal space

Ck,a1 = sin2 θk

EBS − ωu(k)
+ cos2 θk

EBS − ωl (k)
, (B4)

Ck,a2 = − sin θk cos θk

EBS − ωu(k)
+ sin θk cos θk

EBS − ωl (k)
. (B5)

Here, sin θk = G/
√

G2 + [ωl (k) − η f (k)]2 and cos θk =
G/

√
G2 + [ωu(k) − η f (k)]2. Though the probability

amplitude Ce can be obtained by imposing the normalization
condition, Ce ≈ 1 is a good approximation in the Markovian
limit g � εgap/2, with εgap the size of the middle band gap.
When considering η = −1 and EBS = 0, we arrive at

Cn,a1 = gCe

4π2

∫∫
BZ

dkeik·n − f (k)

f 2(k) + G2
, (B6)

Cn,a2 = gCe

4π2

∫∫
BZ

dkeik·n −G

f 2(k) + G2
, (B7)

which are used in the main text. One can easily check that
Cn,a1 = 0 for sum(n) ≡ (nx + ny) ∈ Zeven and Cn,a2 = 0 for
sum(n) ∈ Zodd due to the interference between the k mode
and the k′ mode, with k′ = (kx + π, ky + π ). The intrinsic
chiral symmetry of the bath Hamiltonian is responsible for
the odd-neighbor profiles and the robustness.

To clarify it, we consider a chiral symmetric system with
multiple quantum emitters. The full Hamiltonian in terms of
the block matrix can take the form

H =
(

H p goe
g†

oe �

)
, with H p =

(
0 Qp

Q†
p 0

)
. (B8)

Here, the submatrix H p is the bath’s Hamiltonian, goe =
(godd, geven) is the coupling term and �/� = I. Assuming
� = 0 and no emitters in even sites geven = 0, and using the
formula for the block matrices

det

(
A B
C D

)
= det(A)det(D − CA−1B), (B9)

the determinant of the full Hamiltonian is zero, that is
det(H ) = 0. By solving H� = E� with eigenvector � =
(�T

odd,�
T
even,�

T
QE)T , we can always find an eigenvalue E = 0

with �odd = 0, in the presence of off-diagonal disorders dQp.
In Figs. 5(c) and 5(d), we plot the photonic part of the BS

with η = −4, G = J , and � = 0. We still find odd-neighbor
and robust properties when off-diagonal disorders are in-
cluded. As a contrast, we give the BS pattern in Figs. 5(e)
and 5(f) with � = 0.5J , in which the full Hamiltonian (the
emitter part together with the lattice part) is no longer pro-
tected by chiral symmetry. As a result, the single-emitter BS
can have weights in both odd and even sites.

045407-6



EXOTIC QUANTUM LIGHT-MATTER INTERACTIONS … PHYSICAL REVIEW B 108, 045407 (2023)

APPENDIX C: BOUND STATES WITH MULTIPLE
COUPLING POINTS

1. Some details

We now detail the results of the light-matter interaction
beyond the dipole approximation. In this case, the so-called
“giant atom” features nonlocal coupling to the optical lattices.
In terms of intralayer interference factors

I(k) =
Np∑

α=1

gnα
eik·nα , I′(k) =

Nq∑
β=1

gnβ
eik·nβ , (C1)

which reflect the interference effects stemmed from multiple
coupling points of the giant atom, the interaction Hamiltonian
in k space can be rewritten as

Ĥint = 1√
N

σ̂ †
∑

k

[I(k) × (− sin θkûk + cos θk l̂k)

+ I′(k) × (cos θkûk + sin θk l̂k)] + H.c. (C2)

From the view of the wave-function distribution of the BS, the
interference pattern is a superposition of multiple BSs based
on small atoms

Cg
n,a1

=
∑
nα

(gnα
/g)Cs

n−nα,a1
+

∑
nβ

(gnβ
/g)Cs

n−nβ ,a2
, (C3)

Cg
n,a2

=
∑
nα

(gnα
/g)Cs

n−nα,a2
−

∑
nβ

(gnβ
/g)Cs

n−nβ ,a1
. (C4)

To protect the parity property, we assume that the coupling
points are even neighbor with each other.

2. Other patterns

In addition to the unconventional patterns of two exam-
ples shown in Fig. 3, we present some other results in this
Appendix. First, we consider four coupling points n1,2,3,4 =
(1, 0)/(−1, 0)/(0, 1)/(0,−1) in the top layer with identical
coupling strength g. In this case, the interference factor can be
expressed as

I(k) = 2g(cos kx + cos ky), (C5)

which is zero for all the band-edge modes. This corresponds
to the trap of the photon population around giant atom, which
is plotted in Figs. 6(a) and 6(b).

We may further consider a single giant atom with coupling
points distributing in two layers. For simplicity, we assume
that the QE is simultaneously coupled to the n1 = (0, 0) lat-
tice site of the top layer and the n2 = (1, 0) lattice site of the
bottom layer, with identical coupling strength g. In this case,
I(k) = g and I′(k) = gei(kx+ky ) in the interaction Hamiltonian.
In Figs. 6(c)–6(e), we plot the BS pattern of such a config-
uration and show the chiral feature in some directions, such
as the nx = ny + 1 direction. Next, we attempt to understand
how it occurs. Taking the spatial distribution in the top layer
for example, the expression of Cg

n,a1 can be rewritten as

Cg
n,a1

= Cs
n−n1,a1

+ Cs
n−n2,a2

= Aeiθ1 + Beiθ2 , (C6)

where A/B denotes the amplitude and θ1/θ2 is the phase. We
recall that the BS for a small atom has alternating phases ±1
in real space. Thus, the phase difference δθ = θ1 − θ2 plays

FIG. 6. Modulus of the wave-function distribution in real space.
(a), (b) Four coupling points n1,2,3,4 = (±1, 0)/(0, ±1) distributing
in the top layer, with identical coupling strength g. Photon population
is trapped. (c), (d) Two coupling points n1,2 = (0, 0)/(1, 0) respec-
tively distributing in the two layers, with identical coupling strength
g. Chiral patterns occur in some directions. (e) Spatial distribution
Cn,a1 and (f) phase difference δθ = θ1 − θ2 along the nx = ny + 1
direction [labeled by the blue line in (c)]. A sudden jump of δθ occurs
at n2. Here, η = −1, G = J/4, and g = 0.1J .

an important role in the process of two site interferences. In
Fig. 6(f), we plot the relative phase δθ along the nx = ny + 1
direction and find a sudden jump between 0 and the π phase
difference. This means the appearance of destructive (con-
structive) interference on the left (right) side, which accounts
for the emergence of chirality.

APPENDIX D: EIGHT-PARTICLE ENTANGLEMENT

When a set of small atoms are taken into account,
the BSs can mediate odd-neighbor, robust, and anisotropic
dipole-dipole interactions. In the parameter regime of g � G
(Markovian regime), the effective dynamics is governed by
the following Hamiltonian,

ĤS = 1

2

∑
i, j

(gi j σ̂
†
i σ̂ j + H.c.), (D1)

with coupling strength

gi j =

⎧⎪⎨
⎪⎩

gCni j ,a1/Ce, Qi, Qj ∈ layer 1,

−gCni j ,a1/Ce, Qi, Qj ∈ layer 2,

gCni j ,a2/Ce, Qi ∈ layer 1, Qj ∈ layer 2,

(D2)

where ni j = n j − ni is the relative position. Based on the
parity property of the BS, the coupling strength gi j vanishes
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(0,0)

(n+1,-n)

(n,-n-1)

(n+1,n)

(n,n+1)(-n,n+1)

(-n-1,n)

(-n-1,-n)

(-n,-n-1)

(a)
(b)

Fi
de

lit
y

time ( J-1)

FIG. 7. (a) Configuration for eight-particle entanglement, with
nine atoms in the top layer. Eight of them are in the odd sites and
an auxiliary one is at the origin. (b) Time evolution of the fidelity of
the goal state |φ〉goal, with initial state |φ0〉. Both the ideal result and
the situation under dissipation are plotted. Here, η = −1, G = J/4,
and g = 0.1J .

for sum(ni j ) ∈ Zeven (Zodd) when two atoms are in the same
(different) layers. This means that we can divide the atoms
into two manifolds, and in each manifold there is no intercou-
pling.

A possible direct application, which makes use of this
spin-spin interaction, is long-distance entanglement distribu-
tion. We consider nine QEs located in the top layer of the
bilayer lattices, and eight of them are odd-site QEs along
the diagonal directions with n1−8 = (n,±n ± 1)/(−n,±n ±
1)/(n + 1,±n)/(−n − 1,±n), while an auxiliary one is at
the origin, as shown schematically in Fig. 7(a). The effective
Hamiltonian of this setup can be constructed by

Ĥeff = gCn1,a1/Ceσ̂
†
a

8∑
i=1

σ̂i + H.c. (D3)

Here, we assume an identical atom-photon coupling strength
and in the weak-coupling limit. In order to prepare the desired

entanglement state, we consider the initial state |φ0〉 = |e〉a ⊗
|g〉⊗8, where the auxiliary atom is initially in the excited state
and the other eight atoms are initially in the ground state. After
a time interval τ = πCe/(4gCn1,a1 ), the system evolves into
the target entanglement state

|φ〉goal = |g〉a ⊗ 1√
8

8∑
i=1

σ̂
†
i |g〉⊗8. (D4)

Compared with a previous four-particle entanglement scheme
discussed in Ref. [26], we can generate an entangled state
involving more particles (up to eight), and more importantly
avoid the unwanted cross-talk which dominates the infidelity.
Thus, our scheme may achieve higher fidelity. The time evo-
lution of the dynamics under dissipation is governed by the
following master equation,

d ρ̂

dt
= −i[Ĥeff, ρ̂] + nphκ

∑
n

(D[â1,n]ρ̂ + D[â2,n]ρ̂)

+�

8∑
i=1

D[σ̂i]ρ̂ + �D[σ̂a]ρ̂, (D5)

where nph is the photonic component of the BS, κ and �

denote the photon loss of each site and the decay rate of each
QE, and D[Ô]ρ̂ = Ôρ̂Ô† − 1

2 Ô†Ôρ̂ − 1
2 ρ̂Ô†Ô for a given op-

erator Ô. In the weak-coupling limit, we can neglect cavity
damping terms since nphκ � �. In Fig. 7(b), we plot the fi-
delity as a function of evolution time and show a high-fidelity
preparation of the target state.
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Holzgrafe, M. Gündoğan, C. Stavrakas, A. Sipahigil, C. Chia,
R. Evans, M. J. Burek, M. Zhang, L. Wu, J. L. Pacheco, J.
Abraham, E. Bielejec, M. D. Lukin, M. Atatüre, and M. Lončar,
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