Supplemental Materials: Binary-coupling sparse SYK model
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FIG. S1. The average of neighboring gap ratio between non-
degenerate eigenvalues for unary sparse samples with least
degeneracy, plotted against the number of nonzero couplings.
“GSE”, “GUE”, “GOE”, and “Poisson” indicate the values
in Ref. [46].

S1. UNARY-COUPLING SPARSE SYK MODEL

As we have stated in Sec. II of the main text, the unary-
coupling sparse SYK model (i.e., all nonzero couplings
are +1) behaves similarly to the binary-coupling model
as long as 1 < K¢p1 < Niotal- Below, we will show basic
results regarding the unary-coupling model.

In the binary-coupling sparse SYK model, there were
two sources of randomness: (i) which coupling is nonzero,
and (ii) whether each nonzero coupling is +1 or —1. In
the unary-coupling model, the only source of randomness
is (i). Therefore, if K is too small or too large, it is
far less effective than the binary-coupling model. Specif-
ically, when K. = Niotal, there is no randomness at
all.

The anti-commuting relation between Majorana
fermions (2) means that reordering the Majorana
fermions (Xh X255 XN) = (XU(1)7 Xo(2)s-+ s XU(N))7
where ¢ is a non-unit element of the symmetry group
Sn, can flip some of the signs of the interaction. For
1 < Kcpl € Niotal, for a typical choice of the nonzero
terms, it would be possible to perform the reordering to
the binary-coupling model and make most of the signs
to be positive, then we do not expect a big difference
between ensembles of the binary-coupling and unary-
coupling model realizations.

In Fig. S1, we plot the average of neighboring gap ra-
tio between non-degenerate eigenvalues for the unary-
coupling sparse SYK model. The observed values are
nearly identical to those for the binary-coupling model
in Fig. 2 in the main text. In Fig. S2, we plot the spec-

tral form factor for the unary-coupling model. Again, the
results exhibit little difference from the binary-coupling
model in Fig. 3 in the main text. Note that changing all
nonzero Jgpeq for a particular realization of the binary-
coupling model results in a significant change of its spec-
trum. The observed agreement between the two models
is between their ensembles after the averaging.

S2. EXAMPLE OF SINGLE REALIZATIONS
FOR N = 32,34

In Fig. S3, we show the distributions for the un-
folded nearest-neighbor level separation P(s) and neigh-
boring gap ratio P(r) for single realizations of the
binary-coupling sparse SYK model for (N,Kq) =
(32,30), (34,36). The Hamiltonian we used are

H = X1X2X3X4 — X1X6X10X21 — X1X8X23X24
— X1X11X27X28 T X1X22X26X27 + X2X5X10X23
+ X2X15X25X30 + X3X5X10X32 — X3X5X24X31
+ X3X20X24X26 T X4X8X18X23 — X5X10X23X30
+ X5X19X23X30 — X5X25X20X32 — X6X7X20X23
+ X7X9X12X15 + X7X10X12X18 — X7X21X23X27
— X7X24X28X31 T X8X9X15X32 — X9X15X25X30
+ X9X19X21X27 + X10X11X19X32 + X10X12X14X16
— X11X17X25X28 — X12X14X20X24 — X12X19X31X32
+ X12X23X24X30 — X13X17X21X27 — X22X23X26X31,
(S1)
for N = 32 and

H = X1X6X20X28 T X1X7X22X24 — X1X10X15X25
— X1X15X19X31 — X1X15X21X26 — X2X3X17X23
+ X2X19X23X24 + X3X5X6X16 T X3X14X17X22
+ X3X15X20X25 T X3X21X28X34 + X3X23X32X33
T X4X5X6X30 — X4X9X15X29 — X4X9X30X32
+ X4X22X27X30 — X4X23X26X34 T X5X8X14X31
— X5X10X15X18 — X6X7X18X30 T X6X13X30X32
— X6X14X20X25 — X6X15X23X32 — X6X18X32X34
+ X6X21X31X32 — X7X24X28X30 + X8X13X14X19
+ X9X11X25X29 — X10X13X21X34 + X11X12X29X33
+ X11X22X28X30 — X13X21X23X25 T X15X18X27X28
— X16X25X27X28 — X17X19X24X28 — X19X25X31X3?é2)

for N = 34. The results agree well with those for the
GOE and GUE random matrices [46, 56], respectively.



ATt b AR bt

A/ww,vJ\/W;WVWMW‘V\M,MJWWMMWWr""nIJU'WW\Wﬁ

A .

A

A A i A A

P E

/JWW/«AJ'w.wuhmwwﬁrwmwmmwmMWWMW’WM

oMt »

107 B e
1071 10° 101! 102 10°3 104 10°

FIG. S2. The spectral form factor g(¢, 3 = 0) versus time ¢ for the unary-coupling sparse SYK model. The value of N as well
as the number of nonzero couplings, Kcp1, are indicated in the legend for each plot.
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FIG. S3. The distribution of the nearest-neighbor level spacing P(s) and that of the neighboring gap ratio P(r) for the
eigenvalues of the single realization of the binary sparse SYK model. [Top] N = 32 and K., = 30 with the specific realization
given by eq. (S1), [Bottom] N = 34 and K.p1 = 36 with the specific realization given by eq. (S2). For P(s), we omit the largest
5% and smallest 5% of the eigenvalues from the analysis to prevent the eigenvalues near the edges from affecting the polynomial
fit of the spectrum. We use tenth-order polynomial fitting for unfolding the spectrum.



