Supplemental Material for “Out-of-Time-Order Correlation as a Witness for
Topological Phase Transitions”

Qian Bin,! Liang-Liang Wan,! Franco Nori,>%4 Ying Wu,! and Xin-You Lii® *
LSchool of Physics and Institute for Quantum Science and Engineering,
Huazhong University of Science and Technology, Wuhan, 430074, China
2 Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
SRIKEN Center for Quantum Computing (RQC),
2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
4 Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
(Dated: January 24, 2023)

This supplemental material contains five parts: I. A detailed derivation of the analytical OTOC dynamics for the
nearest-neighbor SSH model. II. Discussion of OTOC witness when the initial state is the eigenstate of the system. III.
Additional discussion of the application of OTOC witness in the disordered systems. IV. Discussion of the application
of OTOC witness in two-dimensional lattice described by the Qi-Wu-Zhang model. V. Discussion of the application
of OTOC witness in the non-Hermitian systems.

I. DERIVATION OF THE ANALYTICAL OTOC DYNAMICS

In this section, we present the analytical derivation of the OTOC dynamics in the system described by the 1D
nearest-neighbor Su-Schrieffer-Heeger (SSH) model. We remind the Hamiltonian of the nearest-neighbor SSH model
in the absence of disorder

H, = Z {euaILalan + % al+1(01 +i02)an, + h.c.} } ) (S1)
n

where o, (j = 0,1,2,3) are the Pauli matrices, corresponding to the identity matrix I, o4, 0y, and o, respectively.
Here af = ((IL A aL ) is the annihilation operator of the unit cell n with sublattices A, B, and € (ev) is the intercell
(intracell) hopping strength. The parameter regimes v < 1 and v > 1 correspond to the topological non-trivial and
trivial phases, respectively. This model has a chiral symmetry defined by a chiral operator C1q4 =), al o3a, satisfying
[Hs,C14]+ = 0. By defining V' = Vpg = |1bo) (20|, the constructed OTOC becomes an experimentally feasible fidelity
of the final state p; projected onto an initial state pg, with

O(t) = tr[poe Bt W Te st p ity e —iHat] (S2)

In the following, we address in turn the analytical solutions of the OTOC dynamics for different choices of the operator
W and the initial state [1)g).

We consider a general initial state
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where M = 1 corresponds to |[t)g) = |1, A). The matrix of the SSH Hamiltonian Hy including 2N sites in single-particle
space has an implicit formula for the eigenpairs when v # 1[1]. Then it is very difficult to analytically calculate the
OTOC dynamics under this Hamiltonian. Comparing the cases of including 2N sites and 2N + 1 sites, the numerical
energy spectrum of the latter is hardly changed except for one zero energy level is added, when the value of N is
large enough. The OTOC dynamics is almost not influenced by this extending of the Hamiltonian size. Thus, to
analytically calculate the OTOC dynamics, we extend the size of the SSH model to 2N + 1 sites, and the Hamiltonian
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0 v
v 0 1
1 0 v
Hy=¢ (S4)
v 01
L0/ oniiyxentn
The eigenvalues of Eq. (S4) are
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and the corresponding eigenstates are
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respectively, where
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In the space spanned by the eigenstates {V(%), Vi(k)}7 the Hamiltonian Hj is given by

N
H, = AOvOyv©) 43 (A$“>|v+<’“)><v+<’“>| AW |v£’“>><v£’“>|) . (S10)
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Then we obtain the instantaneous state dominated by the forward evolution of Hy, with
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FIG. S1.  The values of (a) Oz(t), (b) Os(t), (c) Oa(t), and (d) Ri2(t) versus et and v when W = Zi:’z_ll alosa, and
[1ho) = |1, A). Other system parameters are N = 200 and d; = d2 = 0.

and
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When the OTOC operator W = Zlel a;r(og + oo)ar/2 = Zle a;Aal,A (L = 1 corresponds to the single-site
operation), we obtain

O(t) — tr[poeiHsthe—iHStpoeiHstwe—iHst]
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This equation is reduced to Eq. (3) of the main text under the conditions of L = 1 and M = 1. When the OTOC
operator W = Zn 1 al oza, = Eiv:l al oza, — a}L\,agaN, the OTOC function is reduced to

O(t) = tr[poe Tt W e st poetflst e ~1Hst] — | O] 4 Oy (t) — O3(t) + O4(t)|? (S16)
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The terms Oq(t), O3(t) and O4(t) trend to zero over time, and O3(t), O4(t) < Oz(t) [see Figs. S1(a-c)]. Then the
above OTOC function can be approximately reduced to O(t) ~ |01 + Ox(t)|?, and we can obtain the Eq. (4) of
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FIG. S2. (a) Energy spectrum of the 1D nearest-neighbor SSH model. (b) The evolution of the OTOC for different values
of v, when the system is initially in the eigenstate |1)g)1a of the system whose eigenvalue has the lowest absolute value,
corresponding to the red curve of (a). (c) The average of the OTOC evolution O(t) versus v. System parameters are N = 200
and W = ZL ail’ a0n,A. The gray and white areas correspond to the topological non-trivial phase (TNP) and topological
trivial phase (TTP), respectively.
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FIG. S3. Topological phase diagrams: (a) the averaged OTOC O(t) versus disorder strength d and v when W = ij:l al’ A0n, A

and |)0) = Q1a|¥'r)14; (b) the order parameter defined in Refs. [2, 3] versus disorder strength d and v. Here all data are averaged
over 30 independent disorder configurations, and d2 = 2d; = d and N = 1000.

the main text under the conditions of L = 1 and M = 1. We define the ratio Ri2(t) = O1/Ox2(t). As shown in
Fig. S1(d), in the trivial phase v > 1, R12(t) < 1 means that the analytical solution can be approximatively reduced
to O(t) ~ O3(t), which evolves to almost zero in the long-time limit. In the non-trivial phase v < 1, we have
Ria(t — 00) > 1 and the OTOC is reduced to O(t — o) ~ OF, which is a finite value. At the critical point v = 1,
Ri2(t — 00) = 1 corresponds to O(t — oo) ~ 0. This can also be seen in the phase diagram Fig.1(e) of the main
text. Note that v # 0 in the above equations, and ¥ = 0 means that the hopping cannot occurs in the intercells. Here
we have extended the size of the SSH model to 2N + 1 sites, but these solutions Eqs. (S15-S17) are still valid for the
system including 2N sites when the value of N is large enough. In the main text, we have shown the numerical results
obtained by numerically calculating Eq. (S2) for the system including 2V sites and the analytical results obtained by
Egs. (S15-S17) for the system including 2N + 1 sites, respectively. The excellent agreement between the analytical
solutions and fully numerical simulations demonstrates the validity of our approximation.

II. THE OTOC WITNESS WHEN THE INITIAL STATE IS THE EIGENSTATE OF SYSTEM

In the section, we discuss the connection between OTOC dynamics and TPTs when the initial state is the eigenstate
[¥E)1a of the system whose eigenvalue has the lowest absolute value [see the red curve in Fig. S2(a)]. Let’s take the
system described by the the nearest-neighbor SSH model as an example. Applying an operation on the initial state,
we obtain [¢0) = Qs|¢r)1d, Where Qs = > al (00 + 03)a,/2. In the topological non-trivial phase v < 1, the



state [¢)g)1q is naturally an edge state of the system, e.g., the left edge state > ay|n, A) with > |a,|? = 1,
and then |1o) = Qualvp)ia = > anln, A) = |[Yg)1a. The OTOC is reduced to O(t) = tr[g3] = 1, which is a
conserved quantity. The averaged OTOC function O(¢t) = 1. In the topological trivial phase v > 1, [)g)14 is not
the edge state of the system, but a bulk state |¢g)1a = >, (an|n, A) + Bu|n, B)), where > (|an|> + |Ba]?) = 1
and Y, |an|?> = 3, 18a]* = 1/2. In Figs.S2(b,c), we show the OTOC dynamics and averaged OTOC in different
topological phases when the OTOC operator W = 25:1 aL,Aan,A = ZnN:1 al (oo + 03)a,/2 and \1;0) = Qs|YE)14-
The results are obtained by numerically calculating the OTOC function Eq. (S2), which demonstrates that the OTOC
periodically oscillates in the topological trivial phase and becomes a conserved quantity in the topological non-trivial
phase. The averaged OTOC O(t) is thus discrete at the critical point, i.e., O(t) = 0.375 and O(t) = 1 in the trivial
and non-trivial phases, respectively.

III. ADDITIONAL DISCUSSION OF THE APPLICATION OF OTOC WITNESS IN THE
DISORDERED SYSTEMS

We remind the Hamiltonian of the disordered nearest-neighbor SSH model

H, = Z {yna;flalan + % [ajﬂ_l(al +io9)an, + h.c.] } , (S18)

where w, = €(1 + dyry) [or v, = €(v + dar))] is the intercell (or intracell) hopping strength. Disorder with the
dimensionless strengths dy, ds has been included here, and r,, r, are independent random real numbers chosen
from the uniform distribution [—0.5,0.5]. In the clean system (i.e., d; = da = 0), the above equation is reduced
to a standard SSH Hamiltonian Eq. (S1). Indeed, the symmetry-protected boundary state has strong robustness to
weak disorder, but the topological features disappear as the disorder is too large. Moreover, the disorder can also
induce the appearance of the non-trivial topology when it is added in a topological trivial structure. This disorder-
driven topological phase is called as topological Anderson insulator phase. To fully show the effects of disorder on
the TPTs, we numerically calculate the OTOC function Eq. (S2) with different system parameters by choosing the
OTOC operator W = 25:1 aL,AamA and |1g) = Q1a|tE)1d. FigureS3(a) displays the dependence of the averaged
OTOC O(t) on the disorder strength d and v, which can be considered as a topological phase diagram for the systems
including disorders. There still exists an obvious step transition from 0.375 to 1 at the critical point in the presence
of weak disorder. When the disorder is increased, the distinguishability of the OTOC dynamics disappear. Besides
confirming the robustness of the OTOC witness to weak disorder, this phase diagram also shows topological Anderson
insulator phase. For example, the system enters into the topological non-trivial phase from the trivial phase along
with increasing the disorder strength, when the value of v is slightly larger than 1. The physical mechanism for this
result can be explained as follows. The relative strong disorder can induce an addition locality on the system, which
leads a shift of the critical point of TPTs, as the red curve in Fig. S3(a). Then, in the phase diagram, there appears a
range of v corresponding to the occurrence of the TPT from the trivial to non-trivial phase with increasing disorder.
Figure S3(b) shows the similar phase diagram from Refs. [2, 3]. Here, the topological phase diagram obtained by the
OTOC witness is consistent with previous works, which verify the validity of our results.

IV. THE APPLICATION OF OTOC WITNESS IN TWO-DIMENSIONAL LATTICE DESCRIBED BY
THE QI-WU-ZHANG MODEL

In this section, we discuss the connection between OTOC dynamics and TPTs of 2D lattice system described by the
Qi-Wu-Zhang model. As shown in Fig. S4(a), the Qi-Wu-Zhang model on the 2D square lattice has Hamiltonian [4, 5]

o3 + 10y 03 + 102
quz = Z {770 |:al+1’y <2> Qg y + al7y+1 (2> Qg y + hC:| -+ M’al,yUSUﬂc,y} s (819)
z,y
where al’y = (al’y’A,aLyyB) is the creation operator of the unit cell with sublattices A and B, 7y is the hopping

strength, and p' is the sublattice potential. The system does not have chiral symmetry. The topological trivial
and non-trivial phases in the system can be identified by Chern number in momentum space. The parameter ranges
—2 < 1/ /no < 2 and p' /ng = other correspond to topological trivial and non-trivial phases, respectively. In Fig. S4(b),
we show that the OTOC of the system in the long-time limit O(t — o) as a function of pi' /1o when W =3- al, , (00—
03)0z,4/2 and [thg) = |1, A), where [W, Hqw,|+ # 0. The distinct behavior of the OTOC dynamics in the trivial and
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FIG. S4. (a) Scheme of the Qi-Wu-Zhang model. The unit cell consists of sublattices A and B. (b) The OTOC in the
long-time limit O(t — oo) versus p’/no. The TNP and TTP are indicated by the gray shading and write area, respectively.
The cell numbers of x and y directions N, = Ny = 20, and other system parameters are W = Zzy alyy(ao - ag)alyy/Q and

[tho) = |1, A).

non-trivial phases is still observed in the system. The value of O(t — o0) changes from almost zero to the finite
values, when the system enters into the non-trivial phase from the trivial phase.

V. THE APPLICATION OF OTOC WITNESS IN NON-HERMITIAN SYSTEMS

In this section, we discuss the connection between TPTs and OTOC dynamics in non-Hermitian systems [6-10].
The Hamiltonian of the 1D non-Hermitian SSH model reads [11-14]

) —)
Hy = Z {G(V;—)ajl(ol +i09)an, + %al(m —i032)a, + %

al (01 +i02)an + h.c.} } : (S20)

n

where 0; (j = 0,1,2,3) are the Pauli matrices, corresponding to the identity matrix I, o,, oy, and o, respectively.

Here af, = (ajl’ A,al, p) is the annihilation operator of the unit cell n with sublattices A, B, and e is the intercell

hopping strength, and e(v + J) and e(v — ) are the intracell hopping strength. When ¢ = 0, Eq. (S20) is reduced to
the standard SSH Hamiltonian (S1), with the phase transition point v, = 1. When § # 0, Eq. (S20) is a non-Hermitian
Hamiltonian, and the phase transition point is v. = v/1 + 62, where v < v, and v > v, correspond to the topological
non-trivial and trivial phases, respectively.

Similar to the discussion in Hermitian systems, here we choose |1)g) = |1, 4), and take the OTOC operators
W = aJ{VAaLA and W = 2712771 al o3a, as examples, where |n, A/B) represents the system occupying in the sublattice

A/B of the unit cell n. As shown in Figs. S5(a,b), the OTOC becomes almost zero along with the time evolution in
the trivial phase, while it trends to a non-zero finite value in the topological non-trivial phase. This means that the
distinguished OTOC dynamics in the trivial and non-trivial phases can be obtained for two choices of the operator
W. In FigsS5(c,d), we present the OTOC in the long-time limit O(t — oo) during a wide range of parameters,
which shows a sudden change of the values of O(t — o0) at the phase transition point. The above results further

demonstrate that the constructed OTOC can still be a witness for detecting TPTs even in non-Hermitian systems.

[1] B. C. Shin, A formula for eigenpairs of certain symmetric tridiagonal matrices, Bull. Austral. Math. Soc. 55, 249 (1997).

[2] 1. Mondragon-Shem, T. L. Hughes, J. T. Song, and E. Prodan, Topological Criticality in the Chiral-Symmetric AIII Class
at Strong Disorder, Phys. Rev. Lett. 113, 046802 (2014).

[3] E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P. Massignan, T. L. Hughes, and B. Gadway, Observation of the topological
Anderson insulator in disordered atomic wires, Science 362, 929 (2018).

[4] X.-L. Qi, Y. -S. Wu, and S. -C. Zhang, Topological quantization of the spin Hall effect in two-dimensional paramagnetic
semiconductors, Phys. Rev. B 74, 085308 (2006).

[5] J. K. Asbéth, L. Oroszlany, and A. Pélyi, A Short Course on Topological Insulators (Springer, 2016).



(d) 1

(c) 1

0.5 TNP TTP

O(t — )

(O .

0.5 1 1.5 2 0.5 1 1.5 2
1% 14

FIG. S5. (a—b) Dominated by Hyun, the evolution of the OTOC for different values of v. (¢c-d) The OTOC in the long-time
limit O(t — o0) versus v. The gray and white areas correspond to the TNP and TTP, respectively. Other system parameters

are 0 = 0.4, |[vo) = |1, A), (a,c) W = aI’AaLA, and (b,d) W = 22]:_11 alosan.

[6] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, Edge Modes, Degeneracies, and Topological Numbers in
Non-Hermitian Systems, Phys. Rev. Lett. 118, 040401 (2017).
[7] C. Gneiting, A. Koottandavida, A.V. Rozhkov, and F. Nori, Unraveling the topology of dissipative quantum systems,
Phys. Rev. Research 4, 023036 (2022).
[8] F. Minganti, I. I. Arkhipov, A. Miranowicz, and F. Nori, Continuous Dissipative Phase Transitions with or without
Symmetry Breaking, New J. Phys. 23, 122001 (2021).
[9] C. Leefmans, A. Dutt, J. Williams, L. Q. Yuan, M. Parto, F. Nori, S. Fan, and A. Marandi, Topological dissipation in a
time-multiplexed photonic resonator network, Nat. Phys. 18, 442 (2022).
[10] L. Jin and Z. Song, Symmetry-Protected Scattering in Non-Hermitian Linear Systems, Chin. Phys. Lett. 38, 024202 (2021).
[11] S. Lieu, Topological phases in the non-Hermitian Su-Schrieffer-Heeger model, Phys. Rev. B 97, 045106 (2018).
[12] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal Bulk-Boundary Correspondence in Non-
Hermitian Systems, Phys. Rev. Lett. 121, 026808 (2018).
[13] S. Y. Yao and Z. Wang, Edge States and Topological Invariants of Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803
(2018).
[14] C. H. Yin, H. Jiang, L. H. Li, R. Li, and S. Chen, Geometrical meaning of winding number and its characterization of
topological phases in one-dimensional chiral non-Hermitian systems, Phys. Rev. A 97, 052115 (2018).



	Supplemental Material for ``Out-of-Time-Order Correlation as a Witness for Topological Phase Transitions"
	Derivation of the analytical OTOC dynamics
	The OTOC witness when the initial state is the eigenstate of system
	Additional discussion of the application of OTOC witness in the disordered systems
	The application of OTOC witness in two-dimensional lattice described by the Qi-Wu-Zhang model
	The application of OTOC witness in non-Hermitian systems
	References


