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Out-of-time-order correlation as a witness for topological phase transitions

Qian Bin,1 Liang-Liang Wan,1 Franco Nori ,2,3,4 Ying Wu,1 and Xin-You Lü 1,*

1School of Physics and Institute for Quantum Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China

2Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
3RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

4Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 16 April 2022; accepted 20 January 2023; published 31 January 2023)

We propose a physical witness for dynamically detecting topological phase transitions (TPTs) via an ex-
perimentally observable out-of-time-order correlation (OTOC). The distinguishable OTOC dynamics appears
in the topological trivial and nontrivial phases due to the topological locality. In the long-time limit, the OTOC
undergoes a zero-to-finite-value transition at the critical point of the TPTs. This transition is robust to the choices
of the initial state of the system and the operators used in the OTOC. The proposed OTOC witness can be applied
to systems with and without chiral symmetry, e.g., the lattices described by the Su-Schrieffer-Heeger model,
Creutz model, and Haldane model. Moreover, our proposal, as a physical witness in real space, is still valid even
in the presence of disorder. Our work fundamentally brings the OTOC into the realm of TPTs and offers the
prospect of exploring topological physics with quantum correlations.
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Topological phase transitions (TPTs) are fundamentally
interesting in modern physics because these go beyond the
paradigm of traditional phase transitions associated with sym-
metry breaking [1]. They offer a nontrivial paradigm for
the classification of matter phases and thus are attracting
enormous attention in condensed matter physics [2–5], op-
tics [6], and non-Hermitian physics [7]. The occurrence of
TPTs involves the gap closing and opening of bands (the
change in system topology) with preservation of symmetry.
According to the extended bulk-boundary correspondence, the
nth-order TPT in a d-dimensional (dD) system leads to the
appearance of a (d − n)-dimensional gapless boundary state
in the topological nontrivial phase [8–19]. This symmetry-
protected boundary state has strong robustness to disorder
[20–22] and defects [23]. It can be used to realize topological
lasers exhibiting robust transport [23–27], topological pro-
tected quantum coherence [28,29], and quantum state transfer
[30]. Thus the detection of TPTs is a key for exploring topo-
logical physics. To quantitatively distinguish the topological
trivial and nontrivial phases, normally one calculates topolog-
ical invariants (e.g., winding number and Chern number) in
momentum space [31]. However, identifying TPTs with those
commonly used topological invariants is not suited for disor-
dered systems, where it is difficult to give the Hamiltonian
in momentum space. Then, it becomes a significant task to
identify TPTs via an alternative physical witness in real space
that is robust to disorder.

The out-of-time-order correlation (OTOC), defined as
O(t ) = 〈W †(t )V †W (t )V 〉 with W (t ) = eiHtWe−iHt , was pro-
posed in investigating the holographic duality between a
strongly interacting quantum system and a gravitational sys-
tem [32–37]. Here, W and V are initially commuting operators
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[38]. Different from the normal time-order correlation func-
tion characterizing classical and quantum statistics [39–43],
the OTOC can quantify the temporal and spatial correlations
throughout many-body quantum systems, which are closely
related to information scrambling. Thus it is a widely used
tool for diagnosing chaotic behavior [44–62], many-body lo-
calization [63–70], entanglement [71–75], and quantum phase
transitions [76–82]. Here, many-body localization is a kind of
many-body phenomenon in the nonequilibrium system caused
by many-body interactions. This is essentially different from
TPTs that describe the change in the topological structure
of systems. Under the framework of band topology theory,
normally TPTs occur in the system without many-body in-
teractions. Moreover, the OTOC can also be implemented
experimentally [83–87] by connecting the time reversal to
the Loschmidt echo technique [88–90]. Further exploiting
OTOC dynamics in topological systems may open a door
for completing the challenging problem of identifying TPTs
in the presence of disorder. Until now, the relation between
OTOC and TPTs remains largely unexplored, which may
substantially advance the fields of quantum correlation and
topological physics.

Here we propose an OTOC witness for dynamically de-
tecting TPTs in lattice systems. As shown in Fig. 1(a), the
constructed OTOC becomes an experimentally observable fi-
delity [83] of a final state ρ f projected onto an initial state ρ0

by defining V = V ρ0 = |ψ0〉〈ψ0|, i.e.,

O(t ) = tr[ρ0eiHtW †e−iHtρ0eiHtWe−iHt ] = F (t ). (1)

Due to the topological locality, the long-time limit of the
OTOC O(t → ∞) undergoes a zero-to-finite-value transition
along with the system entering into the nontrivial phase from
the trivial phase. This sudden change is not limited by the
choices of the operators V (corresponding to the initial state
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FIG. 1. (a) A schematic illustration of implementing the OTOC,
which is equal to the fidelity F (t ) = tr[ρ0ρ f ] [73,83]. First, the initial
state ρ0 evolves into the state ρ1(t ) under T− = e−iHt . Second, the
system changes from ρ1(t ) to ρ2(t ) after the operation of W . Lastly,
the system evolves backward to get the final state ρ f under T+ = eiHt .
(b) and (c) Schemes of the 1D SSH model and Creutz model, respec-
tively, which describe lattice systems with chiral symmetry. (d) and
(e) Phase diagrams of the NN SSH model: the OTOC vs εt and ν

for W = a†
1,Aa1,A (d) and W = ∑N−1

n=1 a†
nσ3an (e), where N = 200,

|ψ0〉 = |1, A〉 and d1 = d2 = 0. TNP and TTP, topological nontrivial
and trivial phases, respectively.

of system) and W . In comparison with previous methods of
detecting TPTs [5], the proposed OTOC, as a witness in real
space, can be applied in disordered systems. Moreover, it not
only is suitable for systems with chiral symmetry described
by the nearest-neighbor (NN) Su-Schrieffer-Heeger (SSH)
model, next-next-nearest-neighbor (NNNN) SSH model, and
Creutz model, but also can be used for systems without chiral
symmetry, such as two-dimensional (2D) lattices described
by the Haldane model and Qi-Wu-Zhang model. We also
demonstrate the validity of the OTOC witness for detecting
second-order TPTs. Our work fundamentally broadens the
realm of OTOC by bringing it to the next stage of application
in topological physics.

Detecting TPTs in systems with chiral symmetry. With-
out loss of generality, we choose the 1D SSH model and
Creutz model depicted in Figs. 1(b) and 1(c) as examples
for demonstrating the validity of detecting TPTs with OTOC
in systems with chiral symmetry. The corresponding system
Hamiltonians can be written as [31,91–93]

HS =
∑

n

{
νna†

nσ1an+
[

(ωna†
n+1+εηa†

n+2)
σ1+iσ2

2
an+H.c.

]}
,

(2a)

HCr =
∑

n

{
η0a†

nσ1an + η′
0

[
a†

n+1

σ1−iσ3

2
an + H.c.

]}
, (2b)

where the number of cells is N , σ j ( j = 0, 1, 2, 3) is the Pauli
operator, and a†

n = (a†
n,A, a†

n,B) is the annihilation operator of
the unit cell n with sublattices A and B. For the SSH model
with Hamiltonian HS, ωn = ε(1 + d1rn) [νn = ε(ν + d2r′

n)] is
the intercell (intracell) hopping strength. Disorder with the
dimensionless strengths d1, d2 has been included here, and
rn, r′

n are the independent random real numbers chosen from
the uniform distribution [−0.5, 0.5]. Physically, ε is the char-
acteristic intercell strength, ν is the ratio of intra- to intercell
hopping in the clean system, and εη is the NNNN hopping
strength. Here, Hs is reduced to a standard Hamiltonian of
the NN SSH model when η = 0. For the Creutz model with
Hamiltonian HCr, the arrows in Fig. 1(c) indicate the sign of
the hopping phase, and η0 (η′

0) is the vertical (horizontal and
diagonal) hopping strength. The above models possess a chi-
ral symmetry with a well-defined chiral operator C1D, which
can reverse the energy of the system, i.e., C1DHC−1

1D = −H
(H = HS, HCr), where C1D = ∑N

n=1 a†
nσ3an for the SSH model

and C1D = ∑N
n=1 a†

nσ2an for the Creutz model.
Let us first consider the case of no disorder, i.e., d1 = d2 =

0; the NN (NNNN) SSH model and Creutz model feature the
TPTs at ν = 1 (η = 0, 1) and η0 = η′

0, respectively [31,91–
93]. To identify the topological nontrivial and trivial phases in
real space, in Fig. 2, we numerically calculate the OTOC dy-
namics with Eq. (1), which involves backward evolution. Note
that Fig. 2 includes the results for choosing different OTOC
operators V and W . It clearly shows that both for the SSH
model and for the Creutz model, the distinguishable OTOC
dynamics appears in the nontrivial and trivial phases. Specif-
ically, the OTOC evolves to a finite value and almost zero
in the topological nontrivial and trivial phases, respectively
[see the insets of Figs. 2(b), 2(d), and 2(f)]. This relates to the
physical mechanism that the information does scramble in the
trivial phase, while this scrambling is suppressed immensely
in the nontrivial phase. There exists a zero-to-finite-value tran-
sition in the long-time limit of the OTOC, when the system
enters into the nontrivial phase from the trivial phase. This
distinguishable OTOC dynamics is robust to the initial state
of the system (i.e., the operator V ), which could be a single-
site occupation or a multisite occupation state. Moreover, the
averaged OTOC becomes discrete at the critical point, when
the initial state is the eigenstate of the system whose eigen-
value has the lowest absolute value [94]. Figure 2 also shows
that the OTOC witness is not limited by the choice of the
operator W . In our proposal, the operator W can be either a
few-site (including single-site) operation on sublattice A (e.g.,
W = ∑L

l=1 a†
l,Aal,A, L = 1, 2, 3) or a multisite operation on

sublattices A and B (e.g., W = ∑N−1
n=1 a†

nσ jan, j = 2, 3), and
the chosen operators W neither commute nor anticommute
with the system Hamiltonian, i.e., [W, H]± �= 0.

To fully show the dependence of the OTOC witness on
system parameters, we also calculate the analytical solu-
tion of O(t ) under the condition of N � 1. Let us consider
the NN SSH model as an example and choose |ψ0〉 =∑M

m=1
(−1)m−1√

M
|m, A〉, where M = 1 corresponds to the case of

a single-site occupation state, i.e., |ψ0〉 = |1, A〉. Here, m and
A/B in state |m, A/B〉 represent the mth cell and sublattice A
or B, respectively. Corresponding to W = ∑L

l=1 a†
l,Aal,A and
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FIG. 2. The dependence of O(t → ∞) on ν, η, and η0/η
′
0

for (a), (c), and (e) W = ∑L
l=1 a†

l,Aal,A and (b), (d), and (f) W =∑N−1
n=1 a†

nσ jan [ j = 3 for (b) and (d) and j = 2 for (f)]. Results
are for the systems described by the NN SSH model [(a) and
(b)], NNNN SSH model [(c) and d)], and Creutz model [(e)
and (f)]. The initial states are set as |ψ0〉 = |1, A〉 [(a), (c), and
(e)], |ψ0〉 = ∑M

m=1(−1)m−1|m, A〉/√M [(b) and (d)], and |ψ0〉 =∑M
m=1(−1)m−1(|m, A〉 + i|m, B〉)/

√
2M (f). Insets in (b), (d), and (f):

the evolution of the OTOC for different values of ν, η, and η0/η
′
0

when M = 1. The curves and dots correspond to the fully numerical
simulations obtained by Eq. (1) and the analytical results obtained by
Eqs. (3) and (4), respectively. Other system parameters are N = 200,
d1 = d2 = 0, η = 0 [(a) and (b)], ν = 1 [(c) and (d)]. The TNPs and
TTPs are indicated by the shaded and unshaded areas, respectively.

W = ∑N−1
n=1 a†

nσ3an, we obtain [94]

O(t )≈
[

1/

N∑
n=0

ν2n+
N∑

k=1

2ε2ν2 cos(λ(k)
+ t )

(N + 1)(λ(k)
± )2

sin2

(
kπ

N + 1

)]4

(3)

and

O(t )≈
[

1/

N∑
n=0

ν2n+
N∑

k=1

2ε2ν2 cos(2λ
(k)
+ t )

(N + 1)(λ(k)
± )2

sin2

(
kπ

N + 1

)]2

,

(4)

respectively, for L, M = 1. Here, λ
(k)
± = ±ε[1 + ν2 +

2ν cos( kπ
N+1 )]1/2 and k = 1, 2, . . . , N . Note that the above

equations require ν �= 0, and ν = 0 means that intracell
hopping cannot occur, corresponding to O(t ) = 1. The
similar analytical results for L, M > 1 are shown in the
Supplemental Material [94]. As shown in Figs. 1(a) and 1(b),
the analytical solutions also present a zero-to-finite-value
transition of OTOC at the critical point of TPTs. This
conclusion is valid for both the case of choosing W as
a single-site operation and the case of choosing W as a

FIG. 3. (a) and (b) The dependence of O(t → ∞) on ν for
different disorder strengths d when (a) W = a†

1,Aa1,A and (b) W =∑N−1
n=1 a†

nσ3an. (c) The value of O(t → ∞) vs d for different choices
of the operator W when ν = 0.2. (d) The evolution of the OTOC
for different d indicated by the large circles in (c). Here all data are
averaged over 30 independent disorder configurations, and we have
chosen N = 200, d2 = 2d1 = d , and |ψ0〉 = |1, A〉. The TNPs and
TTPs are indicated by the shaded and unshaded areas, respectively.

multisite operation. Figures 2(a) and 2(b) show a very good
agreement between the analytical solutions and the fully
numerical simulations, which demonstrates the validity of our
solutions.

Now let us discuss the influence of disorder on our pro-
posal by choosing the NN SSH model as an example. The
proposed OTOC witness for identifying the TPTs is also suit-
able for disordered systems. As shown in Figs. 3(a) and 3(b),
O(t → ∞) still undergoes the zero-to-finite-value transition
along with the occurrence of the TPTs, even when weak disor-
der is introduced into the system. In terms of information, this
transition originally comes from the topological locality in
the nontrivial phase. Specifically, the information scrambling
occurs in the trivial phase and is suppressed immensely in
the nontrivial phase. Similarly to the case of no disorder, this
result is robust to the choices of the operator W . Figures 3(a)
and 3(b) also show that the above distinguishability of the
OTOC dynamics disappears in the strong-disorder regime
(e.g., d > 4). Physically, this is because the TPTs, together
with the symmetry-protected boundary state, will disappear
as the disorder is too large. Figures 3(c) and 3(d) further
demonstrate the vanishing of the topological nontrivial phase
induced by strong disorder. Moreover, the proposed OTOC
witness can also be considered as an order parameter of the
topological phase diagram and predict topological Anderson
insulator physics [94]. It is consistent with previous works in
Refs. [20,22], which further verify the validity of our OTOC
witness.

Detecting TPTs in systems without chiral symmetry. The
proposed OTOC witness for identifying TPTs is not limited to
the above systems with chiral symmetry, but is applicable for
systems without chiral symmetry, such as 2D lattice systems
described by the Haldane model and Qi-Wu-Zhang model.
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FIG. 4. (a) Scheme of the Haldane model, where the unit cell
consists of sublattices A and B. (b) The dependence of O(t → ∞)
on μ/η1 for different cell numbers when |ψ0〉 = |1, A〉 and W =∑

j c†
j c j (the summation index j only covers all sublattice B sites).

Here we have chosen η1 = η2 and φ = π/2. The red and blue curves
correspond to cell numbers of 4 × 4 and 20 × 20, respectively.
(c) Scheme of the 2D SSH model with gauge flux π penetrating
any plaquette. (d) The dependence of O(t → ∞) on ν ′/w for W =
a†

1,1a1,1 (black curve) and W = a†
1,1a1,1 + a†

1,3a1,3 + a†
3,1a3,1 (blue

curve) when |ψ0〉 = |1, 1〉. The TNPs and TTPs are indicated by the
shaded and unshaded areas, respectively.

As shown in Fig. 4(a), the Haldane model on the honeycomb
lattice has the Hamiltonian [106,107]

HHa =η1

∑
〈 j, j′〉

c†
j c j′ +η2

∑
〈〈 j, j′〉〉

eis j j′ φc†
j c j′ +μs′∑

j

c†
j c j, (5)

where c†
j (c j) is the creation (annihilation) operator of the jth

site and the summation indices cover all sites. The symbol
μ in the last term denotes the sublattice potential, where
s′ = +1 and s′ = −1 correspond to sublattices A and B, re-
spectively. Here, η1 and η2 are the real-valued nearest- and
next-nearest-neighbor hopping amplitudes, respectively. The
next-nearest-neighbor hopping contains the phases s j j′φ with
s j j′ = ±1, which can break the time-reversal symmetry. The
system has no chiral symmetry and is a paradigmatic example
of a 2D lattice featuring TPTs. For example, the parameter
ranges |μ/η2| < 3

√
3 and μ/η2 = other correspond to the

topological nontrivial and trivial phases, respectively, when
φ = π/2. Using a procedure similar to the one used in 1D
systems with chiral symmetry, we numerically calculate the
OTOC dynamics with Eq. (1) to identify the occurrence of
TPTs in real space. As shown in Fig. 4(b), the zero-to-finite-
value transition of O(t → ∞) can still be observed when the
system enters into the topological nontrivial phase from the
trivial phase. Similar results can also be obtained in the system
described by the Qi-Wu-Zhang model [94].

Application to second-order TPTs. Higher-order topolog-
ical insulators, as an extension of the topological insulators,
have recently attracted extensive attention [8–19]. High-order
TPTs usually can be identified by detecting the boundary
states in real space. For example, topological protected corner
states have been used to identify second-order TPTs in a
2D system [108–111]. Here, our proposed OTOC witness is

also applicable for detecting second-order TPTs. As shown in
Fig. 4(c), we take the extended 2D SSH model with nonzero
gauge flux as an example, and its Hamiltonian reads [111]

H2S(k) = (ν ′ + w cos ky)τ0 ⊗ σ1−w sin kyτ3 ⊗ σ2

− (ν ′ + w cos kx )τ2 ⊗ σ2−w sin kxτ1 ⊗ σ2, (6)

where k = {kx, ky} is the wave number and ±ν ′ (±w) is the
intracell (intercell) hopping strength. This system features a
second-order TPT when increasing the value of ν ′/w, i.e.,
ν ′ <w and ν ′ >w corresponding to the topological nontrivial
and trivial phases, respectively. To identify the occurrence
of second-order TPTs, in Fig. 4(d), we numerically calculate
the OTOC in the lattice system with 20 × 20 cells when the
different OTOC operators W are considered. Figure 4(d)
clearly shows the distinguishable OTOC dynamics in
the topological nontrivial and trivial phases. Both for
W = a†

1,1a1,1 and for W = a†
1,1a1,1 + a†

1,3a1,3 + a†
3,1a3,1,

the zero-to-finite-value transition of O(t → ∞) appears at
the critical point of the second-order TPT. Moreover, the
system is initially in the corner site (1,1) (i.e., |ψ0〉 = |1, 1〉),
which is experimentally feasible. Here, (x, y) represents a
lattice point in the square lattice, and |x, y〉 denotes the state
occupying the site (x, y). The creation (annihilation) operator
of the site (x, y) is denoted by a†

x,y (ax,y).
Experimental implementation and conclusions. Regarding

experimental implementations, the trapped ion [83,112–115]
is an ideal candidate for our proposal. We consider a set of 2N
trapped ions with excited and ground states arranged along a
1D chain as the SSH model. First, the system is initialized in
ρ0 = |1, A〉〈1, A| by applying a π pulse to excite the first ion
in the chain into its excited state [113–115]. Then, one should
make the system evolve under the Hamiltonian for a time t to
the state ρ1(t ) = e−iHtρ0eiHt . Subsequently, one applies the
operator W to get ρ2(t ) = W †ρ1(t )W . When the operator W
is a single-site operator on sublattice A, this can be achieved
by removing the polarizations of the ions except for that of
the first ions by using selective pulses [83,113–115]. Next, the
sign of H is inverted by the spin echo technique (i.e., applying
a π pulse to reverse the polarization of one of the ions) [88],
and the system is made to evolve again for t to obtain the final
state, ρ f = eiHtρ2(t )e−iHt [89,90]. Finally, the OTOC can be
obtained by measuring the overlap of the final state with
respect to the initial state via fluorescence detection [83,115],
similar to the many-body Loschmidt echo technique. For 2D
lattice systems, the OTOC measurement is similar to that
of the 1D lattice systems except for the construction of the
model. Note that our proposal is not limited to this particular
architecture and could be implemented or adapted on a variety
of platforms that have full local quantum control [84–86,116–
121], such as a nuclear magnetic resonance quantum simulator
[84–86] and superconducting qubit [116–118].

In conclusion, we have proposed an OTOC witness in real
space for identifying TPTs in general lattice systems with
or without chiral symmetry. Our proposal is robust to the
choices of the initial state of the system and the operators used
in OTOC. It is also suitable for disordered systems and can
predict topological Anderson insulator physics in the strong-
disorder regime. Moreover, the proposed OTOC witness can
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be used to detect not only first-order TPTs, but also second-
order TPTs. Applying it to non-Hermitian systems [94], the
TPTs can be identified without implementing the transition
from non-Bloch to Bloch theory. The generality of our pro-
posal leads to the proposed OTOC witness having predictive
power in detecting TPTs. For example, we could construct the
OTOC witness by preparing the system initially in the first site
and choosing a single-site operation as the W operator, even in
a situation where we do not already understand the structure
of a 1D lattice.
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