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Estimating the Euclidean quantum propagator with deep generative modeling of Feynman paths
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Feynman path integrals provide an elegant, classically inspired representation for the quantum propagator
and the quantum dynamics, through summing over a huge manifold of all possible paths. From computational
and simulational perspectives, the ergodic tracking of the whole path manifold is a hard problem. Machine
learning can help, in an efficient manner, to identify the relevant subspace and the intrinsic structure residing at
a small fraction of the vast path manifold. In this work, we propose the Feynman path generator for quantum
mechanical systems, which efficiently generates Feynman paths with fixed endpoints, from a (low-dimensional)
latent space and by targeting a desired density of paths in the Euclidean space-time. With such path generators,
the Euclidean propagator as well as the ground-state wave function can be estimated efficiently for a generic
potential energy. Our work provides an alternative approach for calculating the quantum propagator and the
ground-state wave function, paves the way toward generative modeling of quantum mechanical Feynman paths,
and offers a different perspective to understand the quantum-classical correspondence through deep learning.
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I. INTRODUCTION

Feynman path (FP) integrals provide an elegant, classically
inspired representation for the quantum propagator and the
quantum dynamics, through summing over a huge manifold
of all possible paths connecting two fixed endpoints [1–3].
From the perspective of the path integral, quantum dynamics
arises from coherent contributions including both the classi-
cal path and quantum fluctuations. It thus also provides an
intuitive framework for understanding the quantum-classical
correspondence.

Generally, the ergodic tracking of each path contribution to
the quantum propagator is a computationally hard problem. In
this respect, a similar situation occurs in the classical simula-
tion of many-body quantum systems, whose Hilbert space is
exponentially large, prohibiting exact and efficient methods
in the generic case. However, in many practical scenarios,
physically relevant features and structures may only reside at
a small fraction of the vast Hilbert space; this enables efficient
machine learning techniques for quantum-physics problems,
like the neural-network approach for quantum many-body
systems [4–18], neural network quantum state tomography
[19–24], manifold learning and clustering of quantum phases
[25–30], and physical concepts rediscovered with neural net-
works [31,32].

Similarly, in the path integral formalism, contributions
from large deviations with respect to the classical path gener-
ically cancel each other due to rapid oscillations (in the
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Lorentzian space-time) or are exponentially suppressed (in the
Euclidean space-time) [1–3]. Therefore, dominant contribu-
tions to the propagator may only reside at a corner of the huge
path manifold. Then one may naturally ask:

(1) Can machine learning capture these structures in FPs?
(2) Can the propagator be efficiently estimated with neural

networks?
So far, the literature relating machine learning to FP inte-

grals either has not fully investigated these questions [33–37],
or has mainly focused on quantum field-theoretical systems
[38–45]. In this paper, we address these questions by propos-
ing the FP generator for quantum mechanical systems, which
provides a fresh perspective on efficiently calculating the
propagator as well as the ground-state wave function, and on
studying FPs with deep generative modeling.

II. LORENTZIAN AND EUCLIDEAN FEYNMAN PATHS

We start from a brief overview of the real- and imaginary-
time FP integral. The quantum unitary time evolution of the
wave function is given by

ψ (x f , t f ) =
∫

dxi K(x f , t f ; xi, ti )ψ(xi, ti ), (1)

where (x, t ) denotes the (d + 1)-dimensional space-time, and
ψ (xi, ti ) is the initial wave function. In the FP integral formu-
lation, the propagator (or kernel) is given by summing over all
possible paths starting from xi at time ti = 0 and ending at x f

at time t f [1–3,46]:

K (x f , t f ; xi, 0) = A(t f )
∑
{x(t )}

exp(iS[x(t )]/h̄), (2)
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FIG. 1. Schematics of Feynman paths and path integrals in
(a) Lorentzian and (b) Euclidean space-times. The times τ and t
are connected via the Wick rotation it → τ . The integrands of the
propagators are plotted with the respective representative action
curves S[x(t )] and SE [x(τ )]. In (a), Re and Im denote the real and
imaginary parts, respectively, and xcl (t ) stands for the classical path
(stationary path), which satisfies δS = 0 [3]. In (b), xcl (τ ) is the
path with the least Euclidean action. It can be seen that such paths
and their neighborhoods contribute dominantly to the propagators,
while large deviations away from them cancel each other through
rapid oscillations in (a), and are exponentially suppressed in (b). In
(b), the exponential decay factor defines a probability distribution
function for the Feynman paths in Euclidean space-time. In the case
when xcl (τ ) is identical to the classical Euclidean path, the red cloud
around it represents quantum fluctuations.

where A(t f ) is the normalization factor independent of the
specific path; {x(t )} is the manifold of all possible FPs
connecting (xi, 0) and (x f , t f ) in space-time; S[x(t )] is the
classical action of the path x(t ); and h̄ is the Planck constant.

An equivalent but more convenient formalism for numeri-
cal evaluation is to work in the Euclidean space-time, via the
Wick rotation it → τ . Then the system propagates along the
imaginary time τ , and the propagator at τ = T reads

KE (x f , T ; xi, 0) = AE (T )
∑
{x(τ )}

exp(−SE [x(τ )]/h̄), (3)

where x(τ ) is the Euclidean FP and

SE [x(τ )] =
∫ T

0
HE [x(τ )]dτ (4)

is the Euclidean action, with

HE [x(τ )] = 1

2
m

(
dx

dτ

)2

+ V [x(τ )] (5)

the Hamiltonian and V (x) the potential energy.
From the Lorentzian and Euclidean path integrals, one

can find sparse features and patterns in the path manifold
(Fig. 1). The dominant contributions to the propagator come
from paths that are located at the basin around the stationary
path (which satisfies δS = 0) in the action landscape [47].
The stationary path together with quantum fluctuations in the
vicinity of it dictate the quantum kernel, while large deviations
cancel each other due to rapid oscillations in the real-time path
integral, and are exponentially suppressed in the Euclidean
version (3).

Equation (3) can be interpreted as a probability distribution
of FPs in Euclidean space-time,

PE [x(τ )] = Z−1exp(−SE [x(τ )]/h̄), (6)

where

Z =
∑
{x(τ )}

exp(−SE [x(τ )]/h̄) (7)

is the partition function. Note that here Z depends on the two
endpoints. When the normalization factor AE (T ) = 1, Z is the
imaginary-time propagator in Eq. (3). Here PE [x(τ )] is the
target distribution of our FP generator.

III. VARIATIONAL FEYNMAN PATH GENERATOR

We now show that the Euclidean quantum propagator can
be efficiently estimated through the generative modeling of
FPs. We first introduce the concept of the FP generator, which
produces FPs with fixed endpoints from a latent space, in
which tracking and sampling are made simple. The statistics
of the latent variables can be modeled by simple distributions
such as the standard Gaussian. Such FP generators can be
realized through variational recurrent neural networks (RNN)
[48] or through normalizing flows [49,50].

In this work, we will restrict ourselves to the Euclidean
space-time, where the density of paths is described by the tar-
get distribution (6), and we will use a variational FP generator
(VFPG) of deep neural-net architecture, to approximate the
target distribution and generate FPs via an efficient parallel

FIG. 2. (a) A variational realization of the Feynman path gen-
erator (VFPG) with a recurrent neural network (RNN). The input
of the VFPG is a two-dimensional (2D) latent vector z sampled
from the standard Gaussian distribution N (z; 0, I), followed by a
repeat operation (Repeat) that extends the dimension to match the
input shape of the RNN. The output sequence is fed into densely
connected layers (Dense) to produce the variational parameters φ for
the path distribution qφ[x(τ )], which is modeled, at each time stamp,
by a Gaussian mixture (see Appendix A for details). The network
is trained to target the path distribution in Eq. (6). (b) The structure
of the RNN in (a), where X (τ ) and Y (τ ) are the input and output
sequences, respectively; the blue squares on the right denote the RNN
units, and the blue arrows denote the hidden state transfer [55]. In this
work we use the long short-term memory (LSTM) [56] for the RNN.
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sampling. As shown in Fig. 2, the architecture of the VFPG
is similar to that of the decoder in the variational autoencoder
(VAE), a well-known generative model for learning image and
time-series signals [51–54].

Here a FP x(τ ) is represented by a discrete Nτ -dimensional
sequence (trajectory) {x(τk )}Nτ −1

k=0 , with τk = k × �τ , where
�τ = T/(Nτ − 1) is the time step (see Appendix A for
details). The VFPG samples 2D latent vectors z from the
standard Gaussian distribution N (z; 0, I) as its input and gen-
erates the path time series x(τ ) with fixed endpoints (xi, 0)
and (x f , T ), respectively, according to the output variational
density distribution of paths qφ[x(τ )], with φ the output of the
VFPG. The most probable output path should be the one that
minimizes SE .

As pictured in Fig. 2, the output sequence of the RNN is
fed into a densely connected layer to produce the variational
parameters φ, and at each time stamp, qφ[x(τ )] is modeled as
a Gaussian mixture model, which is a universal approximator
of densities [55] (see Appendix A). We use the long short-term
memory (LSTM) [56] for the RNN to build the generative
network.

IV. LOSS FUNCTION AND TRAINING

The loss function of the network is given by the Kullback-
Leibler (KL) divergence between qφ[x(τ )] and PE [x(τ )] in
Eq. (6):

LVFPG = DKL{qφ[x(τ )] || PE [x(τ )]}, (8)

subject to the constraints

x(0) = xi, x(T ) = x f . (9)

The definition of the KL divergence is

DKL[q(x) || p(x)] = E
x∼q(x)

ln
q(x)

p(x)
, (10)

where E denotes the expectation value.
After some straightforward derivations with the definition

of the KL divergence and the expression of the target proba-
bility PE [x(τ )] in Eq. (6), the VFPG loss can be rewritten as

LVFPG = h̄−1
{

E
x∼qφ

SE [x(τ )] + h̄ E
x∼qφ

ln qφ[x(τ )]
}

+ ln Z.

(11)

The last term in Eq. (11) is independent of the network param-
eters and does not contribute to the gradient of the loss. The
second expectation term is the (negative) differential entropy
of the variational distribution qφ .

The generator is trained to effectively find an equilibrium
for the competition between minimizing the averaged action
and maximizing the differential entropy. Viewing the action as
an energy functional of a path configuration, and h̄ as the tem-
perature (setting the Boltzmann constant kB = 1), the quantity
in the large brackets in Eq. (11) describes the variational free
energy of the path manifold (ensemble):

Fφ = E
x∼qφ

Fφ[x(τ )], (12)

where

Fφ[x(τ )] = SE [x(τ )] + h̄ ln qφ[x(τ )]. (13)

The true free energy is given by F = −h̄ ln Z . By taking the
normalization in Eq. (3) to be AE (T ) = 1, we can estimate
the Euclidean quantum propagator with KE (x f , T ; xi, 0) =
Zφ , that is,

KE (x f , T ; xi, 0) = exp(−Fφ/h̄). (14)

This means that we used an estimator Zφ for Z which sets
LVFPG = ln(Z/Zφ ).

Note that the generator loss (11), in terms of the gap
between the variational and the true free energies, was also
used for addressing the statistical mechanics of lattice spin
models [38,57,58], for sampling molecular structures [59] and
lattice field theories [38–45], and for the variational neural
annealing [60]. For the VFPG here, the latent space is low
dimensional and the path manifold is continuous, bringing
new challenges for modeling the output density distribution
of paths. In addition, the constraints on the two endpoints of
each path will be considered as penalties during the training
process [61] (see Appendix B for details).

V. GENERATING FEYNMAN PATHS AND ESTIMATING
THE QUANTUM PROPAGATOR

Once the VFPG is trained, it can generate FPs by sampling
the latent variables z ∼ N (z; 0, I), giving an estimation of the
Euclidean propagator KE (x f , T ; xi, 0), which is the kernel of
the imaginary-time propagation. In the demonstrated exam-
ples, we note that the choice of the number of time stamps,
Nτ , only affects the normalization prefactor of the propagator
that is independent of FPs. Thus the normalized propagator
will not depend on the value of Nτ .

The spectral representation of the kernel is given by [62]

KE (x f , T ; xi, 0) =
∑
n=0

e−T En/h̄ψn(xi )ψ
∗
n (x f ), (15)

where En is the nth eigenenergy and ψn(x) is the correspond-
ing eigenstate at x. In the case T � h̄/�E , where �E is the
energy gap between the ground state and the first excited state,
we have

|ψ0(x)|2 ∝ KE (x, T ; x, 0). (16)

Therefore, the normalized Euclidean propagator leads to the
ground-state probability density |ψ0(x)|2.

A. Harmonic oscillator

First in Fig. 3 we present the results for the prototypical
harmonic oscillator. Figure 3(a) shows the estimated Eu-
clidean propagator (or the kernel) after the trace normalization
(blue dots), with fixed xi = 0. The propagator trace is defined
as

trKE =
∫

dx KE (x, T ; x, 0), (17)

which is estimated through integrating over the smooth fit of
VFPG results for the diagonal propagator. Figure 3(b) plots
the ground-state probability density obtained from the diago-
nal propagator (blue dots). The blue dashed line is a Gaussian
fit of the VFPG observations. In Figs. 3(a) and 3(b), the VFPG
observations exhibit good agreement with the (red dashed)
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FIG. 3. Estimating the Euclidean quantum propagator through the variational Feynman path generator (VFPG) for a harmonic oscillator,
where V (x) = 1

2 mω2x2. (a) The trace-normalized propagator vs x f , with xi = 0, ω = 1, and T = 0.5. (b) The ground-state probability density
obtained from the Euclidean propagator. The blue dashed line is fit from the VFPG observations (blue dots), and we have used ω = 5 and
T = 1. In (a) and (b), the error bars denote the two standard deviations of the plotted quantity, evaluated from the training noise (standard
deviation) of Fφ . See the main text. (c) An example of the distribution of 104 generated Feynman paths in the plane of the variational log
probability and the action SE , where both axes are shifted, with SEmin the minimum action and b = (−Fφ + SEmin )/h̄. The red solid line
represents the exact exponential distribution (6). It is also the location of Feynman paths satisfying Fφ[x(τ )] = Fφ , and the color (from blue
to red) indicates the distance between Fφ[x(τ )] and its expectation value Fφ . (d) An example of the free energy Fφ (blue line) during the
training process for estimating the quantum propagator in (a), where the width of the red shaded area denotes its two standard deviations in
the generated path ensemble. The parameters used in (c) and (d) are the same as that in (a), except that the final positions are fixed at x f = 1.
Other representative parameters used are Nτ = 32, h̄ = 1, and m = 1, respectively.

analytic exact results, which are obtained via Wick rotating
the real-time propagator [2].

Note that we use a stochastic gradient descent algorithm
to train the network (with Adam optimizer and learning rate
η = 1 × 10−4), with 2048 data points sampled from the 2D
latent space and a batch size of 128. Such a training algorithm
causes statistical noises in the final result of Fφ . Following
the error analysis formula in Ref. [42] and with Eq. (14), the
error bars (two standard deviations) in Figs. 3(a) and 3(b) are
estimated from the training noises (standard deviation δFφ)
of the free energy, with δKE = KE δFφ/

√
Nr , in Nr = 10

independent runs of the training with each up to 3000 epochs.
For the purpose of an intuitive understanding, we plot in

Fig. 3(c) an example of the distribution of the generated FPs
in the plane of the variational log probability vs the action.
The approximate paths are distributed along the red solid line,
which is the training target of the VFPG (in the case that

Fφ is unbiased for −h̄lnZ), i.e., the exponential distribution
(6). The red solid line is also the location of FPs that ex-
actly satisfy Fφ[x(τ )] = Fφ , and the color of the images of
the generated FPs (from blue to red) encodes the distance
d = |Fφ[x(τ )] − Fφ| from the exact distribution. Note that
both the two axes in Fig. 3(c) are shifted for a universal target
distribution, where SEmin is the smallest Euclidean action and
b = (−Fφ + SEmin)/h̄. Figure 3(d) shows an example of the
behavior of the free energy (blue line) during the training
process (only 1000 epochs are shown), where the width of the
red shaded area is its two-standard derivations in the generated
path ensemble.

B. Double-well potential

In Fig. 4 we show the results from the VFPG for a
double-well potential V (x) = αx4 + βx2, with α = 0.05, and
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FIG. 4. Double-well potential V (x) = αx4 + βx2. (a) Ground
state wave function obtained from the Euclidean quantum propagator
estimated via the variational Feynman path generator (VFPG), where
the red dashed line is the result of the exact diagonalization. The
green dashed line denotes the shifted and rescaled potential energy
Ṽ (x) = [V (x) + 5]/100. (b) An example of the distribution of 104

generated Feynman paths (with xi = x f = x = 3) in the plane of
the log-probability and the action SE , where both axes are shifted,
with SEmin the minimum action and b = (−Fφ + SEmin )/h̄. The red
solid line represents the training target (6). It is also the location
of Feynman paths that exactly satisfy Fφ[x(τ )] = Fφ , and the color
(from blue to red) indicates the distance d = |Fφ[x(τ )] − Fφ | from
the exact distribution. Representative parameters used are: α = 0.05,
β = −1, Nτ = 32, h̄ = 1, m = 1 and T = 2, respectively.

β = −1. Figure 4(a) plots the estimated ground-state prob-
ability densities (blue dots), which again exhibit good
agreement with the result from the exact diagonalization (red
dashed). It has two peaks centered at the two respective min-
ima of the double-well potential. Details for training and the
error estimation formula are the same as those stated above
for the harmonic oscillator. Again, the error bars (two stan-
dard deviations) here are estimated from the training noises
(standard deviation δFφ) of the free energy, in Nr = 10 inde-
pendent runs of the training with each up to 3000 epochs, as
in Figs. 3(a) and 3(b).

Shown in Fig. 4(b) is an example of the cluster of generated
FPs in the plane of the variational log probability vs the action,

where the representative position value is taken as x = 3. As
in Fig. 3(c), the generated paths are distributed around the
training target of the VFPG (red solid line). Details and other
physical parameters can be found in the caption of Fig. 4.

VI. DISCUSSION AND OUTLOOK

The propagator plays the role of the kernel for the quantum
evolution. By virtue of the FP integral representation, here the
kernel as well as the ground-state density can be efficiently
estimated by generating FPs via parallel sampling. Instead of
the generative modeling of quantum fields [38–45], here we
focus on generating Feynman paths for quantum mechanical
systems (i.e., trajectories or sequences as in Refs. [63,64]),
with a fixed starting and terminating position. There are
two advantages of the proposed VFPG: First, the sample
complexity in the 2D latent space is lower compared with
normalizing-flow models [39,41–45,49,50], which are bijec-
tions between the latent space and the path space and require a
much higher latent dimension (same as the output dimension).
Second, the sampling of the output paths is performed in a
parallel manner and therefore is more efficient than Markov
chain Monte Carlo (MCMC) methods [62], which iteratively
generate path samples from the exact target path distribution
in Eq. (6). Moreover, the Monte Carlo method cannot give a
direct estimation of the partition function (i.e., the propagator)
as in our work.

In the limit h̄ → 0, the loss function in Eq. (11) will be
dominated by the action term, and we find that Feynman paths
generated by our RNN decoder (the VFPG) collapse to the
minimal-action path, which can give a different perspective to
understand the quantum-classical correspondence. In contrast,
normalizing flows are bijections, which cannot be used for this
purpose. As a matter of fact, we also produced ourselves some
results on estimating the propagator of a harmonic oscillator
with flow-based models (e.g., the real-valued non-volume pre-
serving (real NVP) transformations in Ref. [50]), but so far
the performance is not as good as the results presented in this
paper (therefore those are not shown here). More elaborations
in this respect and detailed comparisons between the current
VFPG and normalizing flows are left for future work.

In addition, the variance reduction for discrete variable
systems as in Ref. [57], inspired from reinforcement learning,
does not apply well to the continuous variables considered
here. An alternative systematic variance reduction is required,
which is particularly important when the numerical value of
the final free energy is small. Other possible generalizations
may include extending the current results to higher spatial
dimensions and to more complex systems, as well as inves-
tigating the generative modeling of FPs in the Lorentzian
space-time.

VII. SUMMARY

We delivered the concept of FP generators for modeling
Euclidean quantum mechanical FPs with fixed endpoints from
the latent space. A variational realization with the recur-
rent neural network is performed, and as a proof-of-principle
demonstration, the quantum propagators (or kernel functions)
are efficiently estimated for both a harmonic oscillator and an
anharmonic potential. Our work paves the way toward deep
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generative modeling of FPs with fixed starting and terminating
points, respectively, and can provide a future fresh perspective
to understand the quantum-classical correspondence through
deep learning.

All the data and the code (in PYTHON and TENSORFLOW) for
generating the results in this work are available upon request
to the authors.

Note added. Recently, we noted the generative flow net-
work (GFlowNet) [63,64], which generates a set of paths from
a starting state to a terminating one on a graph, but with a
different learning objective (compared to the path generator
in our work) and for different tasks (in particular, molecule
generation).
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APPENDIX A: MODELING THE DENSITY OF PATHS
WITH VARIATIONAL RECURRENT NEURAL NETWORKS

Here the Feynman path x(τ ) is approximately repre-
sented by a discrete Nτ -dimensional vector of a time series
{x(τk )}Nτ −1

k=0 , with τk = k × δτ , where δτ is a fixed time step.
So the time interval τ ∈ [0, T ] is sliced into Nτ discrete points
with T = (Nτ − 1)δτ , while the spatial dimensions are con-
tinuous, i.e., not discretized. This is a time-domain lattice
approximation of the Feynman path, which is suitable for
machine learning models. It can be a good approximation
when a small time step δτ is used, and the dimension Nτ of
the time series is proportional to the total time T .

Here we model the output density qφ[x(τ )] of Feynman
paths with a recurrent neural network (see Fig. 2 in the main
text), where φ represents a set of neural-network parameters.
In such a model, the probability density of a discrete path
{x(τk )}Nτ −1

k=0 is given by an autoregressive form [55]

qφ[x(τ )] =
Nτ −1∏
k=0

qk[x(τk )|x(τ<k )], (A1)

where the factor distribution qk[x(τk )|x(τ<k )] denotes the
probability density of positions at τk conditioned on its pre-
vious times stamps, with < k denoting i = 0, 1, . . . , k − 1,
and the first and last positions are constrained to match the
specified endpoints, xi and x f , respectively. This factor dis-
tribution at each time stamp is parametrized by a Gaussian
mixture model (GMM), which is a universal approximator of
densities [55]. In the GMM, we have

qk[x(τk )|x(τ<k )] =
Nc∑
j=1

γ
(k)
j N

(
x(τk ); μ(k)

j , σ
(k)
j

)
, (A2)

where the mixing weight γ
(k)
j , the mean μ

(k)
j , and the standard

deviation σ
(k)
j of the component Gaussian are the output of

the recurrent neural network at the kth unit [see Fig. 2(b)
in the main text], and therefore they intrinsically have the
conditional dependence on the values in the previous time
stamps. The number of Gaussian components is Nc (we set
Nc to be the batch size in our code). The mixing weight
satisfies 0 � γ

(k)
j � 1 and

∑Nc
j=1 γ

(k)
j = 1, which is realized

by a softmax function. Compared to the MCMC sampling,
here the generation of Feynman paths can be obtained by
combinations of parallel samplings at each time stamps.

APPENDIX B: TOTAL LOSS FUNCTION

The training of the Feynman path generator involves the
minimization of the KL divergence between the variational
density qφ[x(τ )] of paths and the target distribution PE [x(τ )],
which equals to the (shifted) variational free energy in the
main text. The constraints on the two endpoints are added to
the KL loss as penalties. In the GMM formulation of qφ[x(τ )],
the total loss can be written as

Ltotal = LKL + L1 + L2, (B1)

where

LKL = E
x∼qφ

Fφ[x(τ )]/h̄, (B2)

with Fφ[x(τ )] = SE [x(τ )] + h̄ log qφ[x(τ )], and

L1 = Nτ

Nc∑
j=1

[
μ

(k=0)
j − xi

]2 + [
σ

(k=0)
j

]2
,

L2 = Nτ

Nc∑
j=1

[
μ

(k=Nτ −1)
j − x f

]2 + [
σ

(k=Nτ −1)
j

]2
, (B3)

where xi and x f are the initial and final positions of all possible
paths, respectively.
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