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We present a canonical derivation of an influence superoperator which generates the reduced dynamics of a
Fermionic quantum system linearly coupled to a Fermionic environment initially at thermal equilibrium. We
use this formalism to derive a generalized Lindblad master equation (in the Markovian limit) and a generalized
version of the hierarchical equations of motion valid in arbitrary parity-symmetry conditions, important for the
correct evaluation of system correlation functions and spectra.
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I. INTRODUCTION

The reduced dynamics of a quantum system linearly cou-
pled to Bosonic and Fermionic baths at thermal equilibrium
can be fully specified by correlation functions characterizing
the environments. Using path-integral techniques, Feynman
and Vernon [1] used these correlations to define influence
functionals able to generate the effective dynamics of the
system after tracing out the degrees of freedom of a Bosonic
environment [2,3]. The capability of the path-integral formal-
ism to intrinsically encode the Fermionic anticommutation
relations using Grassmann variables enabled the extension of
the original derivation to the Fermionic case [4–8]. As an
alternative to these path-integral approaches, the influence of
the environment on the system can also be derived through
stochastic [9–13] and algebraic [14–17] techniques or by map-
ping the bath into physical [18–27] or unphysical [28–33]
degrees of freedom. In particular, for Bosonic environ-
ments, it is also possible to derive “influence superoperators”
using a canonical, i.e., purely operator-based, formalism
[34–37].

In order to generalize these canonical methods to the
Fermionic case, it is necessary to model anticommutation
rules throughout the time evolution, akin to the strategies in-
volving Grassmann variables in path integrals. To achieve this,
we use a parity-based formalism to present a purely canonical
derivation of an influence superoperator which describes the
effects of Fermionic environments initially at thermal equi-
librium linearly coupled to a quantum system. The resulting
expression allows the computation of the system’s dynamics
even when the initial state is in a superposition of an even-odd
number of fermions. This is, in principle, generally prevented
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by parity and charge superselection rules [38,39]. However,
by refraining from making this (usually) physical assumption,
we allow the formalism to be used in more general contexts,
such as the computation of correlation functions [40] (where
fictitious states evolve in time).

To demonstrate the utility of this formal result, we use
it to (i) derive a generalized Gorini-Kossakowski-Sudarshan-
Lindblad master equation [41,42] (valid in the Markovian
regime) and to (ii) derive a generalized version (with-
out parity-symmetry restrictions) of another formally exact
method: hierarchical equations of motion (HEOM) [7,8,43–
49]. As mentioned earlier, relaxing parity-symmetry re-
strictions is important for the correct evaluation of system
correlation functions and spectra, as demonstrated in the ap-
plication of the HEOM method to single-impurity Anderson
models and Kondo physics [40].

This article is organized as follows. The main article fo-
cuses on the logic of the derivation, highlighting the key
conceptual steps. At the same time, each section is associated
to a supplementary one presenting technical details which are
necessary to justify the proof but not essential to its overall
understanding.

The results are described in two main sections (see Fig. 1).
Section II presents the canonical derivation of the influence
superoperator which we split into four parts: In Sec. II A,
we introduce a parity-based formalism and analyze Fermionic
partial traces. In Sec. II B, we use this setup to trace out the
Fermionic bath and to further expand the reduced dynamics in
terms of a Dyson series. In Sec. II C, we explicitly highlight
the dependence of each n-point correlation function appearing
in the Dyson series with respect to the 2-point correlations;
i.e., we invoke a version of the Wick’s theorem for Fermionic
superoperators. Finally, in Sec. II D, the resulting expression
is formally re-summed into a compact expression written in
terms of an influence superoperator, which is the main result
of this article.
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FIG. 1. Diagram highlighting the milestones for the derivation
and the most important equations in this work.

In Sec. III, we use this result to derive a Lindblad master
equation in the Markovian regime (Sec. III A) and to derive
the HEOM (Sec. III B). In Sec. III C, we discuss the impor-
tance of arbitrary parity symmetry for computing correlation
functions.

II. FERMIONIC INFLUENCE SUPEROPERATOR

We start by introducing the physical setting which we
are going to analyze. We consider an open quantum system
[34,50–59] described by the Hamiltonian (h̄ = 1 throughout
the article)

H = HS + HE + HI , (2.1)

where HS is the system Hamiltonian (which we assume to
have even Fermionic parity) and HE = ∑

k ωkc†
kck is the

Hamiltonian of the environment in which the kth fermion has
energy ωk and it is associated with the destruction operator ck .
Here, the even/odd parity projections of the operator OS in
the domain S = S/E are defined as

Oe/o
S = ˆ̂Pe/o

S [OS ], (2.2)

where ˆ̂Pe/o
S [·] is the projector onto the even/odd subspaces.

Throughout this article, we use the double-hat notation to
label superoperators. Explicitly,

ˆ̂Pe/o
S [·] = Pe

S [·]Pe/o
S + Po/e

S [·]Po
S , (2.3)

where

Pe/o
S = (1 ± PS )/2, (2.4)

with

PS =
∏
k∈S

exp[iπ f †
k fk]. (2.5)

Here, fk destroys a fermion in the domain S (for example,
when S = E , fk → ck). We further assume the interaction
Hamiltonian to be

HI =
∑

k

gk (sc†
k − s†ck ), (2.6)

where s is an (odd-parity) Fermionic operator for the system
and gk quantifies the interaction strength between the system
and the kth Fermionic mode.

We define ρ(t ) to be the density matrix of the full
system+environment, i.e., the solution of the Schrödinger
equation with the Hamiltonian in Eq. (1.1) and subject to the
initial condition

ρ(0) = ρ
eq
E ρS (0), (2.7)

where ρ
eq
E characterizes the environment in thermal equilib-

rium. While this implies the state of the environment to have
even parity, we are not going to assume any parity symmetry
for the system’s state ρS (0).

The main quantity of interest of this article is the reduced
density matrix ρS (t ) which is the one containing the same
information as ρ(t ) as far as expectation values of system
operators are concerned, i.e., which fulfills

TrES[ASρ(t )] ≡ TrS[ASρS (t )], (2.8)

for all operators AS with support on the system.
Before attempting to find a formal solution for ρS , it is im-

portant to observe that the Fermionic anticommutation rules
require a careful analysis of the concepts of partial trace and
tensor product [60–62]). For example, the operators s and
ck in Eq. (2.6) cannot be interpreted as acting independently
(as they would in a tensor product) on the system and the
environment Hilbert spaces due to the fundamental fact that
independent fermions anticommute rather than commute be-
tween each other. In parallel, when the full density matrix
ρ(t ) has both even and odd parity contributions, the usual
definition ρS = TrEρ(t ) cannot be deduced from Eq. (1.8)
because of the properties of the partial trace.

Following [62], these Fermionic properties can be modeled
by a formalism which keeps track of the parity of operators
throughout the time evolution and which we introduce in the
next section.

A. A parity-friendly formalism

As a direct consequence of the Fermionic anticommutation
rules, two Fermionic operators are, in general, not indepen-
dent even when they have support on different physical spaces
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(here the environment and the system). At the same time,
Fermionic systems come equipped with a Z2 graded structure,
i.e., a decomposition of the Hilbert space into an even- and
odd-parity sector. Following Schwarz and collaborators [62],
it is possible to take advantage of this structure in order to
define a parity formalism in which the system’s operators can
be effectively treated as independent from the environmental
ones, while still accounting for all Fermionic effects.

To do this, we define (see [62]) “hat” system operators ÔS

as being the same as OS but commuted to the right of all
environmental operators, i.e., ÔSOE = OE ÔS for all environ-
mental operators OE . This definition is nontrivial only when
OS has odd parity, in which case the relation with ÔS depends
on the number of environmental fermions present on the right
of OS . Explicitly, we can write, see Eq. (B4),

OS = Ôe
S + PE Ôo

S, (2.9)

where

PE =
∏
k∈E

exp [iπc†
kck]. (2.10)

The simplicity of Eq. (1.9) should not hide its ability to intro-
duce a Bosonic-like structure in the formalism as “hat” system
operators commute with environmental ones by construction.

This definition also allows us to write the following identity
for partial traces, see Appendix B 1 b, Eq. (B17),

TrES[ASOE ÔS] = TrS{ASTrE [OE ]Ôe
S + TrE [PE OE ]Ôo

S},
(2.11)

where the operators OE , AS , and OS have support on the
environment and system. By taking AS to be arbitrary, this
equation can be used to implicitly define properties of
Fermionic partial traces (at least when “hat” operators are
present) thereby overcoming the issues originating from the
fact that, in general, Tr[OE OS] �= TrE [OE ]OS in Fermionic
systems; see Eq. (B13).

Strategy to solve for the reduced system dynamics

Taken together, Eq. (1.9) and Eq. (1.11) give us a practical
strategy to find a formal solution for ρS (t ). The first step is to
use Eq. (1.9) to write the initial condition in Eq. (1.7) as

ρ(0) = ρ
eq
E ρS (0) = ρ

eq
E ρ̂e

S (0) + ρ
eq
E PE ρ̂o

S (0), (2.12)

and the interaction Hamiltonian in Eq. (2.6) as

HI = PE B†ŝ − PE Bŝ†, (2.13)

where B ≡ ∑
k gkck . The second step, analyzed in the next

section, is to formally solve the Schrödinger equation for ρ(t )
to find a decomposition of the full density matrix in the form

ρ(t ) =
∑

i

ρ i
E ρ̂ i

S. (2.14)

Using the substitution OE ÔS → ρ(t ) on the left-hand side of
Eq. (1.11), direct comparison between the right-hand sides of
Eq. (1.8) and Eq. (1.11) gives the following explicit definition
of the reduced density matrix as

ρS (t ) =
∑

i

TrE
[
ρ i

E

]
ρ̂ i,e

S + TrE
[
PEρ i

E

]
ρ̂ i,o

S ; (2.15)

see the derivation of Eq. (B21) in Appendix B 1 b for more
details.

As promised, in the next section we are going to find the
explicit expression for the terms in Eq. (1.14) which, used in
the equation above, will return the expansion of ρS (t ) in terms
of a “reduced” Dyson series.

B. Reduced Dyson series

In the interaction frame, the full density matrix ρ(t ) can be
written as the Dyson series

ρ(t ) =
∞∑

n=0

(−i)n

n!
ˆ̂T b

∫ t

0

[
n∏

i=1

dti
ˆ̂H×

I (ti )

]
ρ(0), (2.16)

where, using Eq. (1.13), HI (t ) = PE B†(t )ŝ(t ) − PE B(t )ŝ†(t )
(in which we used the invariance of PE under the free dy-
namics of the bath) in terms of ŝ(t ) = U †

S (t )ŝUS (t ) and B(t ) =∑
k gkcke−iωkt with U (t ) = exp[−iHSt]. Here ˆ̂HX

I (t ) = [H, ·],
where we recall that the double-hat notation is used to label
superoperators. Here, the time ordering ˆ̂T b is the same one
used for Bosonic variables. This is due to the fact that the
Hamiltonian is even in the fields; see [63], page 217 and page
132. We further stress that the time ordering is defined as
acting at the level of superoperators; see Eq. (B23).

The main ingredients of Eq. (2.16) are contributions of the
form ˆ̂H×

I (tn) · · · ˆ̂H×
I (t1)ρ(0) which, using Eq. (1.13) for the

Hamiltonian and Eq. (1.12) for the initial state, can be written
as a sum over terms with the following structure:

ˆ̂TE ˆ̂ρ ′n
E

[
ρ

eq
E

] ˆ̂TS ˆ̂ρ ′n
S

[
ρ̂e

S

] + ˆ̂TE ˆ̂ρ ′′n
E

[
ρ

eq
E PE

] ˆ̂TS ˆ̂ρ ′′n
S

[
ρ̂o

S

]
, (2.17)

where we omitted the zero-time specification in ρe/o
S (0) and

where the explicit expressions are presented in Appendix B 2
[see Eq. (B36)]. Here, we highlight that ˆ̂ρ ′n

E and ˆ̂ρ ′′n
E involve

environmental superoperators and that ˆ̂ρ ′n
S and ˆ̂ρ ′′n

S are defined
as the product of n superoperators each evaluated at a different
point in time.

Using the decomposition ˆ̂T b = ˆ̂TE
ˆ̂TS , these products are

time ordered in terms of both the environment and the system
superoperators. Interestingly, since HI is even in the fields, ˆ̂TE

and ˆ̂TS can be chosen as Fermionic, i.e., producing an extra
minus sign each time they apply a swap. This choice is made
in order to keep the symmetries explicitly consistent with the
application of the Fermionic Wick’s theorem as we will see in
the next section.

By using Eq. (1.9) in the expressions for ˆ̂ρ ′n
S and ˆ̂ρ ′′n

S
present in Eq. (2.17), the full density matrix ρ(t ) is written
in terms of the decomposition presented in Eq. (1.14); see
Eq. (B34) for further details. In turn, this justifies the use of
Eq. (1.15) for the reduced density matrix, ultimately allowing
us to finally trace out the environmental degrees of freedom to
get, see Eq. (B45),

ρS =
∞∑

n=0

(−1)n

n!

∫ t

0

(
n∏

i=1

dti

)

×
∑

qn,λn···q1,λ1

Cλn···λ1
qn···q1

ˆ̂TS

[
ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

]
ρS (0), (2.18)
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where we observe that there is no need to keep the “hat”
notation for system operators once the environment has been
traced out, and where

Cλn···λ1
qn···q1

= TrE
[ ˆ̂TE

ˆ̂Bλn
qn

· · · ˆ̂Bλ1
q1

][
ρ

eq
E

]
, (2.19)

with λ̄ = −λ. For notational convenience, we also hide the
time dependence of the superoperators ˆ̂B and ˆ̂S defined as

ˆ̂Bλ
q[·] = δq,1Bλ[·] + δq,−1

ˆ̂PE [·Bλ],
(2.20)

ˆ̂Sλ
q [·] = δq,1sλ[·] − δq,−1

ˆ̂PS[·sλ],

see Eq. (B86) for a more explicit version. This notation uses
the upper indexes to denote the presence (λ = 1) or absence
(λ = −1) of a Hermitian conjugation, and lower indexes to
characterize the left (q = +1) or right (q = −1) action. Here,
PS = ∏

k∈S exp [iπc†
kck] is the parity operator for the system.

Remarkably, the disjoint action on the odd and even ini-
tial conditions originally present in the terms described in
Eq. (2.17) has now been completely encoded into the corre-
lation Cλn···λ1

qn···q1
and the superoperators ˆ̂S which act on the full

ρS (0) directly.
The environment considered here is described by a

quadratic Hamiltonian and it is initially at thermal equilib-
rium. These characteristics specify the Gaussian nature of
the bath, i.e., the possibility to reduce the n-point correlation
functions appearing in Eq. (2.18) in terms of 2-point ones. We
analyze this in more detail in the next section.

C. Wick’s theorem

At first sight, it is not obvious how to prove a Wick’s
theorem for the correlations defined in Eq. (2.19). The issue is
that the usual derivation (see for example [64], page 243) fails
because superoperators do not obey clear-cut commutation
or anticommutation relations. For example, superoperators
which create different Fermionic particles on different sides
of their argument trivially commute, while they anticommute
when acting on the same side. To deal with this, we use the
elegant techniques developed by Saptsov et al. in [65]. There,
see also the analysis done at the end of Appendix B 3 a,
it is shown that a form of Wick’s theorem holds when the
correlations are written in terms of linear combinations of the
fields ˆ̂Bλ

q we used in the previous section; see Eq. (2.20). For
this reason, following [65], see also Appendix B 3, it is then
possible to apply Wick’s theorem to write

Cλn···λ1
qn···q1

=
∑
c∈C̄n

(−1)#c
∏
i, j∈c

C
λi,λ j
qi,q j , (2.21)

in terms of two-point correlation functions which, using
Eq. (2.19), read

C
λi,λ j
qi,q j = TrE

[
ˆ̂TE

ˆ̂Bλi
qi

(ti )
ˆ̂Bλ j

q j (t j )ρ
eq
E

]
. (2.22)

Here, each full contraction c ∈ C̄n is one of the possible sets of
ordered pairs (or just, contractions) (i, j), i < j, over the set
N̄n = {n, · · · , 1}. We further denote by #c the parity of the
full contraction c, i.e., the parity of the permutation needed to
order the set N̄n, such that all pairs in c are adjacent.

D. Influence superoperator

We now have all the tools needed to derive the formal
expression of an influence superoperator which generates the
reduced dynamics of the system.

In fact, using Wick’s theorem, Eq. (2.21), in the expression
for the reduced density matrix in Eq. (2.18), we explicitly ob-
tain the following expression for the reduced density matrix,

ρS =
∞∑

n=0

(−1)n

n!

∫ t

0

(
n∏

i=1

dti

)∑
q,λ

∑
c∈C̄n

(−1)#c

( ∏
(i, j)∈c

C
λi,λ j
qi,q j

)
ˆ̂TS

[
ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

]
ρS (0), (2.23)

where
∑

q,λ ≡ ∑
q1,λ1···qn,λn

. Our goal is now to formally re-
sum this expression. To make progress, we recall the meaning
of the factor (−1)#c. This sign depends on the parity of the per-
mutation needed to bring the set N̄n = {n, . . . , 1} into one in
which all the pairs (i, j) ∈ c are adjacent. Quite conveniently,
this is exactly the same sign acquired when reordering the

sequence of operators ˆ̂Sλ̄n
qn

· · · ˆ̂Sλ̄1
q1

, such that all the pairs ˆ̂Sλ̄i
qi

ˆ̂Sλ̄ j
q j

with (i, j) ∈ c are adjacent. The origin of this latter extra
minus sign lies in the Fermionic nature of the time ordering
ˆ̂TS , justifying the choice made in Sec. II B. This means that
we can write, see Appendix B 4 a,

ρS (t ) =
∞∑

n=0

(−1)2n

(2n)!

∑
c∈C2n

∏
(i, j)∈c

2 ˆ̂TS
ˆ̂F (t )ρS (0), (2.24)

where we also use the fact that correlations are nonzero only
for even n. The previous expression is written in terms of the
influence superoperator

ˆ̂F (t ) =
∫ t

0
dt2

∫ t2

0
dt1

ˆ̂W (t2, t1), (2.25)

in which we enforce partial time ordering by constraining
the integration bounds which gives rise to the factor 2 in
Eq. (2.24). We also define, see Appendix B 4 b,

ˆ̂W (t2, t1) =
∑

q1,q2,λ1,λ2

Cλ2,λ1
q2,q1

ˆ̂S′λ̄2
q2

(t2) ˆ̂S′λ̄1
q1

(t1)

=
∑
σ=±

ˆ̂Aσ (t2) ˆ̂Bσ (t2, t1). (2.26)

Here, the superoperators ˆ̂Aσ and ˆ̂Bσ are defined as

ˆ̂Aσ (t )[·] = sσ̄ (t )[·] − ˆ̂PS[·sσ̄ (t )],

ˆ̂Bσ (t2, t1)[·] = −Cσ sσ (t1)[·] − C̄σ̄ ˆ̂PS[·sσ (t1)], (2.27)

with σ̄ = −σ and where Cσ ≡ Cσ (t2, t1) with

Cσ=1(t2, t1) = TrE [B†(t2)B(t1)ρE (0)],

Cσ=−1(t2, t1) = TrE [B(t2)B†(t1)ρE (0)]. (2.28)

We now observe that in Eq. (2.24) there is no actual depen-

dence on the contraction c [in ˆ̂F (t), all indexes are contracted
and all times are integrated over]. In this way the product over
the pairs (i, j) ∈ c effectively simply amounts to taking the
nth power of the influence superoperator. For the same reason,
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the sum over c ∈ C2n effectively amounts to just counting
the number of contractions in a list of 2n elements, which is
(2n − 1)!!. With this in mind, we can write

ρS (t ) =
∞∑

n=0

(−1)2n(2n − 1)!!

(2n)!
2n ˆ̂TS

ˆ̂F (t )nρS (0)

= ˆ̂TSe
ˆ̂F (t )ρS (0), (2.29)

where we have used the identity (2n − 1)!!/(2n)! = 1/(2nn!);
see Appendix B 4 d. The formal expression in Eq. (2.29) is the
main result of this article and, for this reason, we highlight its
explicit form as

ρS (t ) =
∑
p=±

ˆ̂TS exp

{∫ t

0
dt2

∫ t2

0
dt1

ˆ̂Wp(t2, t1)[·]
}
ρ

p
S (0),

(2.30)

with ρ±
S (0) = ρ

e/o
S (0), and where (see Appendix B 4 c)

ˆ̂W±(t2, t1)[·] = −
∑
σ=±

Cσ (t2, t1)[sσ̄ (t2), sσ (t1)·]∓

−
∑
σ=±

Cσ (t1, t2)[·sσ̄ (t1), sσ (t2)]∓, (2.31)

in which [·, ·]+ denotes the anticommutator and [·, ·]− denotes
the commutator. This equation describes the reduced dynam-
ics of the system in terms of the exponential of an influence
superoperator and it can be applied to both even and odd parity
sectors. We note that, even when restricting to the physical
even-parity sector, it is in general not possible to use parity
symmetry to further simplify the final expression. To better
analyze this point, we can consider the application of the op-
erator ˆ̂W to an even state. In this case, the ˆ̂PS appearing in the
definition for ˆ̂Bσ ( ˆ̂Aσ ) can be effectively replaced by −1 (+1).
However, this is not the case when ˆ̂W appears in Eq. (2.29),
i.e., in the expression for the reduced dynamics. In fact, in
this case, the time ordering might end up introducing further
superoperators in between any of the ˆ̂Aσ and ˆ̂Bσ , thereby
making the alleged simplifications simply not correct (unless
the superoperators in ˆ̂W are evaluated at the same point in
time, as in the Markovian regime).

Given the generality of Eq. (2.29), it is opportune to show
that we can recover well-known results in some specific limits.
In the next section, we show that Eq. (2.29) leads to a gener-
alized Lindblad master equation in the Markovian regime and
that it is a sufficient condition to derive a generalized version
of the hierarchical equations of motion. The mentioned gen-
eralization consists of the possibility to apply the formalism
to initial states with arbitrary parity symmetry and it recovers
the usual Lindblad and HEOM form when restricted to the
even-parity sector.

III. APPLICATIONS

Despite its innocent appearance, the exponentiation of the
Fermionic influence superoperator in Eq. (2.29) is not easy to
solve. One reason is the presence of the time-ordering oper-
ator ˆ̂TS which prevents the direct computation of the integral

in the expression for ˆ̂F (t ). In turn this makes Eq. (2.29) a
formal expression ultimately referring back to the reduced
Dyson series.

In this section we analyze two different ways in which this
problem can be approached. One is to operate in a Markovian
regime in which the action of the time ordering is trivial,
allowing us to derive a master equation in Lindblad form.
In more general regimes, it is instead possible to iteratively
postpone the evaluation of the time ordering leading to the
hierarchical equations of motion.

A. Markovian regime

The formal expression in Eq. (2.29) describes all the ef-
fects of the environment on the system. Among them is an
effective memory emerging when the correlation functions in
Eq. (2.28) are nontrivial for t2 �= t1. Because of these memory

effects, the time ordering applied to the terms ˆ̂Fn(t ) in the
reduced Dyson series might not leave the two superopera-

tors appearing in each ˆ̂F (t ) adjacent to each other thereby
preventing the direct computation of the integrals in the influ-
ence superoperator. The opposite regime is when Cσ (t2, t1) ∝
δ(t2 − t1), i.e., when we can neglect these memory effects.
To better describe this Markovian case, we first introduce the
spectral density

J (ω) = π
∑

k

g2
kδ(ω − ωk ), (3.1)

which characterizes the strength of the system-environment
interaction in the continuum limit, and in terms of which the
correlations take the form [see Eq. (D5) in Appendix D]

Cσ (t2, t1) =
∫ ∞

−∞

dω

π
J (ω)eiσω(t2−t1 )nσ (ω), (3.2)

where nσ (ω) = [1 − σ + 2σneq(ω)]/2 in terms of the equi-
librium Fermi-Dirac distribution neq(ω); see Eq. (D3). From
this expression, we see that a sufficient condition to define a
Markovian regime is to have both J (ω) and neq(ω) constant in
frequency, i.e.,

J (ω) = �,
(3.3)

neq(ω) = n0,

where � is a constant decay rate and 0 � n0 � 1. The assump-
tion of a constant spectral density is usually named the first
Markov approximation ([50], page 160).

On the other hand, the assumption of a constant Fermi-
Dirac distribution implies, using Eq. (D3), that an environ-
mental fermion with energy ω must be in an initial state with
an energy-dependent temperature β(ω) = ln(1/n0 − 1)/ω.
This explicitly shows how such a condition is not compatible
with a true thermal equilibrium (except in special limiting
cases such as for quantum transport at infinite bias; see
[66,67]). For this reason, the Markov regime defined here is
an idealization in which the environmental degrees of freedom
act as an effective quantum white noise (see [50], page 164).

Using Eq. (3.3) in Eq. (3.2), we can write

Cσ (t2, t1) = �(1 − σ + 2σn0)δ(t2 − t1), (3.4)
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where we use the exponential representation of the Dirac
delta which can be found, for example, in [50], Eq. (5.3.11).
As mentioned, this expression shows the absence of memory
effects, hence explicitly representing the Markovian regime.

The delta-correlated environment considered in this section
allows drastic simplifications in Eq. (2.29). This is mainly due
to the fact that all superoperators in Eq. (2.26) are evaluated
at the same point in time, leading to a simpler time-ordering
action. As can be explicitly seen in Appendix C 1, using
Eq. (3.4) in Eq. (2.29) leads to the following master equation
in a generalized Lindblad form,

ρ̇S = −i[HS, ρS]

+�
∑
r=±1

{
(1 − n0)Dr

s

[
ρr

S

] + n0Dr
s†

[
ρr

S

]}
, (3.5)

where we have omitted the time dependence for clarity. Here,
with an abuse of notation, the density matrix refers to the
Schrödinger picture and we define ρr = δr,1ρ

e
S + δr,−1ρ

o
S and

Dr
O[·] = 2rO[·]O† − O†O[·] − [·]O†O, for a generic operator

O. The generalization of this equation with respect to the more
commonly used Lindblad equation lies in the presence of an
extra minus sign in the jump term present in the dissipator in
the odd-parity sector, consistent with Eq. (13) in [62].

B. Hierarchical equations of motion

In this section we apply Eq. (2.25) to derive a generalized
version of the HEOM which can be applied to initial states
with arbitrary parity symmetry. When applied to density ma-
trices with even parity, this recovers the HEOM in their usual
form.

The HEOM [7,8,43–45,48] are iterative equations which
are based on the following ansatz for the correlation functions
[68,69],

Cσ (t2, t1) =
∑

m

aσ
me−bσ

m (t2−t1 ), (3.6)

where aσ
m, bσ

m ∈ C. In the continuum limit, the previous ex-
pression has no loss of generality making the HEOM a
formally exact method.

Nevertheless, for practical applications, the number of non-
trivial exponents in this expression needs to be truncated. This
leads to an approximation to the full functional form of the
correlation which can be non-negligible for heavily structured
environments or at zero temperature due to the number of
Matsubara frequencies approaching a continuum; see [31,70–
72] (although other, possibly more optimized, decompositions
are possible [73]).

By using the ansatz above, the influence superoperator in
Eq. (2.25) takes the form, see Appendix C 2 a,

ˆ̂F (t ) =
∫ t

0
dt2

∫ t2

0
dt1

∑
j

ˆ̂Aj (t2)e−b j (t2−t1 ) ˆ̂B j (t1), (3.7)

in terms of the multi-index j = (m, σ ) and where ˆ̂Aj ≡ ˆ̂Aσ as
defined in Eq. (2.27), b j ≡ bσ

m, and

ˆ̂B j (t )[·] ≡ ˆ̂Bσ
m(t )[·] = −{

aσ
msσ (t )[·] + āσ̄

mPS[[·]sσ (t )]
}
,

(3.8)

with σ̄ = −σ . Using this expression in Eq. (2.25) and taking a
time derivative [35], see Eq. (C24), we arrive at the following
self-referential equation of motion,

ρ̇S (t ) =
∑

j

ˆ̂Aj (t ) ˆ̂TS
ˆ̂
 j (t )ρS (t ), (3.9)

with ˆ̂
 j (t ) = ∫ t
0 dτe−b j (t−τ ) ˆ̂B j (τ ), which satisfies the key

property

d

dt
ˆ̂
 j (t ) = −b j

ˆ̂
 j (t ) + ˆ̂B j (t ). (3.10)

The self-referential nature of Eq. (3.9) can be formally lifted
by writing

ρ̇S (t ) = α−1
∑

j

ˆ̂Aj (t )ρ j (t ), (3.11)

in terms of the auxiliary density matrix

ρ j (t ) = α ˆ̂TS
ˆ̂
 j (t )ρS (t ), (3.12)

where we introduce the parameter α ∈ C upon which the sys-
tem’s dynamics does not depend. In fact, the auxiliary density
matrices in the HEOM are unphysical degrees of freedom
which can be rescaled (see also [74]).

An interesting feature of Eq. (3.11) is that it involves the
time ordering through the definition of the auxiliary density
matrix ρ j , leading to the possibility of iteratively postponing
its challenging evaluation. In fact, we can define the nth aux-
iliary density matrix as

ρ
(n)
jn··· j1

(t ) = αn ˆ̂TS
ˆ̂
 jn (t ) · · · ˆ̂
 j1 (t )ρS (t ), (3.13)

so that, in this notation, ρS (t ) = ρ (0)(t ). Its derivative can be
computed by using Eq. (3.10) and Eq. (3.11) and leads to the
following generalized version of the HEOM,

ρ̇
(n)
jn··· j1

= −
n∑

k=1

b jk ρ
(n)
jn··· j1

+ α−1
∑
jn+1

ˆ̂Aσn+1ρ
(n+1)
jn+1··· j1

+ α

n∑
k=1

(−1)n−k ˆ̂B jk ρ
(n−1)
jn··· jk+1 jk−1··· j1

, (3.14)

which is valid for both even- and odd-parity initial conditions;
see Eq. (C25). However, if we now assume ρ (0)(t ) to have
even parity, then the parity superoperators inside the defini-
tions in Eq. (3.8) translate into signs dependent on the iteration
index n. By moving to the Schrödinger picture and making the
choice α = i, this leads to

ρ̇
(n)
jn··· j1

=
(

ˆ̂L −
n∑

k=1

b jk

)
ρ

(n)
jn··· j1

− i
∑
jn+1

ˆ̂Aσn+1
n ρ

(n+1)
jn+1··· j1

− i
n∑

k=1

(−1)n−k ˆ̂C jk
n ρ

(n−1)
jn··· jk+1 jk−1··· j1

; (3.15)

see Eq. (C29). Here, ˆ̂L = −i[HS, ·], and

ˆ̂Aσ
n [·] = sσ̄ [·] + (−1)n[·]sσ̄ ,

ˆ̂C j
n[·] = aσ

n sσ [·] − (−1)nāσ̄
n [·]sσ . (3.16)
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The equation above is one of the standard forms for the hi-
erarchical equations of motion; see, for example, Eq. (38) in
[75].

C. Computing system correlation functions

The influence superoperator defined in the previous section
allows one to generate the reduced system dynamics without
restrictions on the parity of the initial state. This feature can be
convenient when computing correlation functions of the kind

CXY (t ) = TrSE [XS (t )YSρ(0)], (3.17)

where XS and YS are system operators. Here, the time depen-
dence is intended in the full system+environment space, i.e.,
XS (t ) = U †(t )XSU (t ), where U = exp[−iHt] in terms of the
Hamiltonian in Eq. (1.1). Consequently, we can write

CXY (t ) = TrSE [XSU (t )YSρ(0)U †(t )]. (3.18)

Supposing Eq. (1.7) and using Eq. (1.8) and Eq. (2.29), we
can compute this quantity as

CXY (t ) = TrS[XSρ
′
S (t )] = TrS[XS

ˆ̂TSe
ˆ̂F (t )ρ ′

S (0)], (3.19)

where the initial condition is ρ ′
S (0) = YSρS (0). We point out

that, for a physical initial state ρS (0) with even parity, ρ ′
S (0)

has the same parity as YS , which might be odd. However,
since the results presented in the previous sections apply to
initial states with arbitrary parity symmetry, Eq. (3.19) follows
directly.

Remarkably, it is also possible to compute thermal correla-
tions of the kind

Cth
XY (t ) = TrSE [XS (t2)YS (t1)ρ th]

= TrSE [XS (0)U (t2−t1)YS (0)ρ thU †(t2−t1)], (3.20)

where t = t2 − t1 and where ρ th ∝ exp(−βH ) is the com-
bined system-environment thermal-equilibrium state. One
possible way to proceed is to suppose this state to be sep-
arable (akin to the hypothesis of the quantum regression
theorem [76]) thereby reducing to solving an expression
equivalent to Eq. (3.18). However, the thermal-equilibrium
state usually includes entanglement between the system and
the environment—i.e., it is not separable; i.e., Eq. (1.7) does
not hold. This prevents us from using the results given in
Sec. II directly.

To make progress, we can use the following idea [40,77–
80] instead. We suppose that at a time −T < 0 the
system+environment is in a separable nonequilibrium state
ρ(−T ) = ρeqρS (−T ). We then assume the existence of a
thermal equilibration time T th 
 T , so that the equality ρ th =
U (T )ρ(−T )U †(T ) holds. Using this identity in Eq. (3.20) we
can write

Cth
XY (t ) = TrSE [XS (0)ρY (t )], (3.21)

where t > 0 and

ρY (t ) = U (t )YS (0)U (T )ρ(−T )U †(T )U †(t ). (3.22)

In order to compute this quantity, it is possible to generalize
the reasoning developed in Sec. II and Sec. III B to find (see
Appendix C 3) that the formal time derivative of the density
matrix has the same form as Eq. (3.9), i.e.,

ρ̇Y
S (t ) =

∑
j

ˆ̂Aj (t ) ˆ̂TS
ˆ̂
 j (t )ρY

S (t ), (3.23)

but with a different initial condition given by

ρY
S (0) = YS

ˆ̂TSe
ˆ̂FT (0)ρY

S (−T ), (3.24)

where ˆ̂FT is defined in Eq. (C45). This result offers the fol-
lowing strategy to compute the correlations Cth(t ).

(i) Solve the HEOM from time −T [with initial condition
ρS (−T )] to time 0 to obtain a collection of auxiliary density
matrices ρ

(n)
jn··· j1

(0). For T much longer than the thermal equi-
libration time, ρS (0) = ρ (0)(0) = ρ th represents the thermal
state of the system+environment.

(ii) The HEOM are local in time, implying that the ma-
trices ρ

(n)
jn··· j1

(0) must contain all the information about the
dynamics from time −T to 0 (needed to further propagate
the state further in time). This information is equivalent

to that contained in the formal expression ˆ̂TSe
ˆ̂FT (0)ρY

S (−T ).
From another point of view, these matrices also represent the
system-environment entanglement [40,77–80].

(iii) Using Eq. (3.13), the initial condition ρY
S (0) in

Eq. (3.24) can be implemented by multiplying each auxiliary
density matrix by YS , i.e., ρ

(n)
jn··· j1

(0) → YSρ
(n)
jn··· j1

(0).
(iv) As implied by Eq. (3.23), the density matrix ρY

S (t ) at
time t can be computed by solving the same HEOM as before
with initial condition given by the auxiliary density matrices
defined in (iii).

(v) By using the matrix ρY
S (t ) computed in (iv), the ther-

mal correlation in Eq. (3.21) can be computed as Cth
XY (t ) =

TrS[XS (0)ρY
S (t )], by definition of the partial trace.

In conclusion, we have shown that the possibility to apply
the influence superoperator and the HEOM to initial states
with arbitrary symmetry can be used to compute thermal
correlation functions which characterize the equilibrium prop-
erties of the system+environment.

IV. CONCLUSION

We presented a canonical derivation of an influence su-
peroperator which encodes the full dynamical effects of a
Fermionic environment linearly coupled to a Fermionic quan-
tum system. Such a superoperator can be used to generate the
reduced system dynamics without restrictions in terms of the
parity of the initial state. In a Markovian regime where the
environment acts as an ideal quantum white noise, the for-
malism becomes equivalent to a generalized Lindblad master
equation. In general, the expression for the Fermionic influ-
ence superoperator represents a sufficient condition to deduce
a version of the hierarchical equation of motion which can
be applied to states with arbitrary parity symmetry, which
is vital for the evaluating impurity correlation functions and
spectra [40].
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APPENDIX A: TABLE OF SYMBOLS

In Table I we review the meaning of the most relevant
symbols used throughout the article.

APPENDIX B: FERMIONIC INFLUENCE
SUPEROPERATOR

Here, we present the detailed reasoning and calculations
supporting each subsection of Sec. II.

1. A parity-friendly formalism

We start by presenting more details on the definition of
“hat” operators (see [62]) and on the Fermionic partial trace.

a. “Hat” operators

Given a Fermionic system, its Hilbert space H is naturally
endowed with a Z2-graded structure H = He ⊕ Ho due to the
action of the parity operator; see, for example, [81–84]. Here,
vectors in He/o are homogeneous; i.e., they have well-defined
(0/1) parity. This structure is also inherited by operators O :

H → H which can also be decomposed into their even and
odd parts, i.e., O = Oe + Oo.

When we compose two or more Fermionic systems (hav-
ing Hilbert spaces H1 and H2) the physical anticommutation
rules require a compatibility between the tensor product and
the graded structure. To see this, it is possible to consider a
graded tensor product ⊗g which, within the operator algebra,
is characterized by the following identity,(

Ox
1 ⊗g Oy

2

)(
O′x′

1 ⊗g O′y′
2

) = (−1)x′yOx
1O′x

1 ⊗g Oy
2O′y′

2 , (B1)

where x, x′, y, y′ = e/o, and which characterizes the physical
Fermionic statistics under particle exchange. This equation is
equivalent to the following, perhaps more evocative, defini-
tions,

Ox
1Oy

2 = (Ox
1 ⊗g Oy

2),
(B2)

Oy
2Ox

1 = (−1)xy(Ox
1 ⊗g Oy

2),

where Ox ≡ Ox
1 ⊗ I2 and Oy ≡ I1 ⊗ Oy

2. Using these equa-
tions, it is possible to define creation/annihilation operators
with proper Fermionic statistics so that the full Hilbert space
can be constructed by acting on the composite vacuum |0〉 ≡
|0〉1 ⊗g |0〉2.

In order to systematically deal with the signs appearing as
a consequence of the graded structure, we follow [62]. It is in
fact possible to map the graded tensor product between two
Fermionic systems (which, for us, are the environment E and
the system S) into a nongraded tensor product ⊗ through the
substitution

Ox
1 ⊗g Oy

2 �→ δy,0Ox
1 ⊗ Ôy

2 + δy,1Ox
1P1 ⊗ Ôy

2, (B3)

where P1 is the parity operator in the space H1. Identify-
ing 1 �→ E , 2 �→ S, and for a generic operator OS with no
given parity symmetry, Eq. (B3) leads to the more direct

TABLE I. List of symbols.

Symbol Description

S System/environment physical domain: S = S/E .
OS Generic operator in the domain S.
ÔS System operator equivalent to OS but commuted to the right of all environmental operators.
ˆ̂OS Generic superoperator in the domain S.

PS Parity operator in the domain S: PS = ∏
k∈S exp[iπ f †

k fk], where fk destroys a fermion in the domain S.
ˆ̂PS Parity superoperator: ˆ̂PS [·] = PS [·]PS .
ˆ̂Pe/o
S Projector in the even/odd parity sector: ˆ̂Pe/o

S [·] = Pe
S · Pe/o

S + Po/e
S · Po

S .

Oe/o
S Even/odd part of the operator OS : Oe/o

S = ˆ̂Pe/o
S [OS ].

cσ
k Annihilation/creation (σ = ±1) operator for the kth fermion in the environment.

σ̄ Opposite of σ : σ̄ = −σ .
Bσ Environmental coupling operator: Bσ = ∑

k∈E gkcσ
k .

s System coupling operator.

ρeq Equilibrium state for the environment: ρ
eq
E = ∏

k∈E (e−β(ωk−μE )c†
k ck /{1 + exp[−β(ωk − μ)]}).

Cσ (t2, t1) Correlation function: Cσ (t2, t1) = TrE [Bσ (t2)Bσ̄ (t1)ρeq
E ].

C̄σ (t2, t1) Complex conjugate of the correlation function.
ˆ̂TS Time-ordering superoperator in the domain S.
J (ω) Spectral density: J (ω) = π

∑
k∈E g2

kδ(ω − ωk ).
β, μ Inverse temperature and chemical potential.
neq(ω) Fermi equilibrium distribution: {exp[β(ω − μ)] + 1}−1.
ˆ̂Bλ

q[·] Environmental superoperator ˆ̂Bλ
q[·] = δq,1Bλ[·] + δq,−1

ˆ̂PE [·Bλ].
ˆ̂Sλ

q [·] System superoperator ˆ̂Sλ
q [·] = δq,1sλ[·] − δq,−1

ˆ̂PS[·sλ].

035121-8



CANONICAL DERIVATION OF THE FERMIONIC … PHYSICAL REVIEW B 105, 035121 (2022)

identification

OS = Ôe
S + PE Ôo

S, (B4)

where, explicitly,

PE =
∏
k∈E

exp [iπc†
kck] (B5)

is the parity operator over the environment variables and
where superscript indexes e/o label the even and odd part,
i.e.,

Oe
S = Pe

S OSPe
S + Po

S OSPo
S ,

(B6)
Oo

S = Pe
S OSPo

S + Po
S OSPe

S ,

where

Pe
S = (PS + 1)/2,

Po
S = (1 − PS )/2. (B7)

Intuitively in its “hat” version, a system operator is to be
placed on the right of any environmental operator. As a con-
sequence, Eq. (B2) is replaced by the “Bosonic”-like Ox

E Ôy
S =

Ôy
SOx

E . This notation is extremely practical to use. In fact,
after using it in the initial condition in Eq. (1.7) and in the
interaction Hamiltonian in Eq. (1.6), it allows us to treat the
tensor structure between system and environment as if it were
Bosonic, while still being assured that all Fermionic signs
are correctly accounted for.

b Partial trace in Fermionic systems

Within the graded structure of the environment+system
Hilbert space, a basis of vectors can be written as

|vE , vS〉 ≡
(∏

i∈vE

c†
i

)(∏
j∈vS

c†
j

)
|0〉, (B8)

where vE (vS) is the ordered set specifying which environmen-
tal (system) fermions are present. We also explicitly define the

duals as

〈vS, vE | ≡ |vE , vS〉†

= 〈0|
(∏

j∈ṽS

c j

)(∏
i∈ṽE

ci

)
, (B9)

where ṽE/S denotes the sets vE/S inverted in their ordering.
Here, c†

i/ j are creation operators for fermions in the environ-
ment and system. Using these definitions, we can write the
partial trace of an operator OES over the environment as

TrE OES ≡
∑

vE ,vS ,v
′
S

〈vS, vE |OES|vE , v′
S〉|vS〉〈v′

S|. (B10)

We now use this definition to prove useful identities. First, we
point out that, unfortunately, for fermions, in general we are
prevented from using the otherwise very convenient

TrE (OE OS )
?= TrE (OE )OS. (B11)

To see this explicitly, we can consider an environment (sys-
tem) made out of a single fermion c (d). We can further
consider OE → IE and OS → d†. In this simple case, using
Eq. (B10) we obtain

TrE (IE d†) = 〈1, 0|d†|0, 0〉|1〉〈0| + 〈1, 1|d†|1, 0〉|1〉〈0|
= 〈1, 0|(d† + cd†c†)|0, 0〉 · |1〉〈0|
= 0

�= TrE (IE )d†

= 2d†, (B12)

which is enough to conclude that, in general,

TrE (OE OS ) �= TrE (OE )OS. (B13)

At the same time, it is possible to prove that the analogous
version with “hat” operators holds, i.e.,

TrE (OE ÔS ) = TrE (OE )ÔS. (B14)

In fact, since the partial trace over E must involve an even
number of environmental operators in order to give a nonzero
result, and using Eq. (B10), we have

TrE OE ÔS = TrE Oe
E ÔS

=
∑

vE ,vS ,v
′
S

〈0|
(∏

j∈ṽE

c j

)(∏
i∈ṽE

ci

)
Oe

E

(∏
i∈vS

c†
i

)
ÔS

⎛
⎝∏

j∈v′
S

c†
j

⎞
⎠|0〉 · |vS〉〈v′

S|

=
∑

vE ,vS ,v
′
S

〈0|
(∏

i∈ṽE

ci

)
Oe

E

(∏
i∈vE

c†
i

)(∏
j∈ṽS

c j

)
ÔS

⎛
⎝∏

j∈v′
S

c†
j

⎞
⎠|0〉 · |vS〉〈v′

S|, (B15)

where in the last step we observed that the number of envi-
ronmental operators involved is even. Each of the fermions
present in the matrix elements in the equation above has to
appear an even number of times in order for the result to be
nonzero. As a consequence, inserting an identity in between
the environment and the system operators is equivalent to

introducing |0〉〈0|. We then have

TrE [OE ÔS] =
∑
vE

〈0|
(∏

i∈ṽE

ci

)
Oe

E

(∏
i∈vE

c†
i

)
|0〉

×
∑
vS ,v

′
S

〈0|
(∏

j∈ṽS

c j

)
ÔS

⎛
⎝∏

j∈v′
S

c†
j

⎞
⎠|0〉 · |vS〉〈v′

S|
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= TrE
[
Oe

E

]〈0|
(∏

j∈ṽS

c j

)
ÔS

⎛
⎝∏

j∈v′
S

c†
j

⎞
⎠|0〉 · |vS〉〈v′

S|

= TrE (OE )ÔS, (B16)

where in the last step we reintroduce the odd part to the
operator OE (since it gives a zero contribution to the trace)
thereby proving Eq. (B14).

While Eq. (B14) does generalize Eq. (B11), only valid for
Bosonic fields, it is not enough for our purposes and we need
the further generalization

TrES[ASOE ÔS] = TrE [OE ]TrS
[
ASÔe

S

]
+ TrE [PE OE ]TrS

[
ASÔo

S

]
, (B17)

for all system operators AS . This can be proven directly as

TrES[ASOE ÔS] = TrES
[
ASOE

(
Ôe

S + Ôo
S

)]
= TrES

[
Ae

SOE Ôe
S

] + TrES
[
Ao

SOE Ôo
S

]
= TrES

[
Âe

SOE Ôe
S

] + TrES
[
PE Âo

SOE Ôo
S

]
= TrES

[
OE Âe

SÔe
S

] + TrES
[
PE OE Âo

SÔo
S

]
= TrE OE TrSÂe

SÔe
S + TrE PE OE TrSÂo

SÔo
S

= TrE OE TrSÂSÔe
S + TrE PE OE TrSÂSÔo

S

= TrSAS
{
TrE [OE ]Ôe

S + TrE [PE OE ]Ôo
S

}
,

(B18)

where, explicitly, we observe that traces with an odd number
of system operators must be zero to justify the second and
sixth equality. To justify the third and fourth equalities we
use the definition of the hat operator in Eq. (B4) and its
properties. We further use the identity in Eq. (B14) in the
fifth equality and finish noticing that, once the environmental
degrees of freedom have been traced out, hat operators are
equivalent to normal ones. The identity in Eq. (B17) has a
key role in characterizing how to find an expression for the
reduced density matrix which is capable of computing the
correct expectation values. In Sec. B 2, we explicitly see that
the full density matrix can be written as a linear combination
of terms taking the form OE ÔS , see also the simplified version
in Eq. (1.14), i.e., ρ(t ) = ∑

i ρ
i
E ρ̂ i

S , which leads to

TrES[ASρ(t )] =
∑

i

TrES
[
ASρ

i
E ρ̂ i

S

]
=

∑
i

TrSAS
{
TrE

[
ρ i

E

]
ρ̂ i,e

S + TrE
[
PEρ i

E

]
ρ̂ i,o

S

}
.

(B19)

Using the fact that AS is a generic system operator, we can
compare the previous equation to the defining property of the
reduced density matrix in Eq. (1.8), i.e., the ability to compute
expectation values

TrES[ASρ(t )] ≡ TrSASρS (t ), (B20)

to derive the expression for the reduced density matrix

ρS (t ) =
∑

i

TrE
[
ρ i

E

]
ρ̂ i,e

S + TrE
[
PEρ i

E

]
ρ̂ i,o

S , (B21)

i.e., Eq. (1.15) in the main text.

2. Reduced Dyson series

The starting point of this section is the Dyson series for the
environment+system in Eq. (2.16), which reads

ρ(t ) =
∞∑

n=0

(−i)n

n!
ˆ̂T b

∫ t

0

[
n∏

i=1

dti
ˆ̂H×

I (ti )

]
ρ(0), (B22)

where the time-ordering superoperator is defined as

ˆ̂T b[ ˆ̂HI (tP(n) ) · · · ˆ̂HI (tP(1) )] = ˆ̂HI (tn) · · · ˆ̂HI (t1), (B23)

where tn � · · · � t1 and P is a permutation. We begin by
analyzing in more detail the superoperator ˆ̂HX

I [·] = [HI , ·].
When it acts on an operator of the form OE ÔS , we have, using
Eq. (1.13) and omitting the time dependencies,

HX
I [OE ÔS] = [HI , OE ÔS]

= PE B†ŝOE ÔS − PE Bŝ†OE ÔS

− OE ÔSPE B†ŝ + OE ÔSPE Bŝ†

= PE B†OE ŝÔS − PE BOE ŝ†
1ÔS

− OE PE B†ÔSŝ + OE PE BÔSŝ†. (B24)

For reasons that will become apparent later (Sec. B 3), we
now introduce the full-parity superoperator ˆ̂P = ˆ̂PE

ˆ̂PS before
the terms where operators act on the right of OE ÔS , i.e., the
last two terms in the expression above. Here, ˆ̂PE [·] = PE [·]PE ,
where PE = ∏

k∈E exp [iπc†
kck] and ˆ̂PS[·] = PS[·]PS , where

PS = ∏
j∈S exp [iπd†

j d j], with ck (d j) the kth ( jth) fermion in

the environment (system). The introduction of the operator ˆ̂P
is “harmless” ([65], page 5) when the overall parity of OE ÔS

is even. However, since we are interested in analyzing a more
general situation, we also introduce it in the odd-parity sector,
which requires an extra minus sign. We then write, for OE ÔS

even,

HX
I [OE ÔS] = (PE B†OE )ŝÔS

− (PE BOE )ŝ†
1ÔS − ( ˆ̂PE OE PE B†) ˆ̂PSÔSŝ

+ ( ˆ̂PE OE PE B) ˆ̂PSÔSŝ†

=
∑
λ,q

ˆ̂B′λ
q [OE ] ˆ̂Sλ̄

q [ÔS], (B25)
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and, for OE ÔS odd,

HX
I [OE ÔS] = (PE B†OE )ŝÔS

− (PE BOE )ŝ†
1ÔS + ( ˆ̂PE OE PE B†) ˆ̂PSÔSŝ

− ( ˆ̂PE OE PE B) ˆ̂PSÔSŝ†

=
∑
λ,q

ˆ̂B′λ
q [OE ] ˆ̂S′λ̄

q [ÔS]. (B26)

Here, subscript indexes take the values ±1 and specify
whether the operator acts on the left (+1) or right (−1) of
its argument. Superscript indexes take the values ±1 and
distinguish the presence (+1) or absence (−1) of daggers in
the definition. We also use the notation λ̄ ≡ −λ. Explicitly,
the quantities ˆ̂Bλ

q and ˆ̂Sλ
q are defined as

ˆ̂B′1
1 (t )[·] = PE B†(t )[·],

ˆ̂B′−1
1 (t )[·] = PE B(t )[·],

ˆ̂B′1
−1(t )[·] = ˆ̂PE [[·]PE B†(t )],

ˆ̂B′−1
−1 (t )[·] = ˆ̂PE [[·]PE B(t )], (B27)

and
ˆ̂S−1

1 (t )[·] = ŝ(t )[·],
ˆ̂S1

1 (t )[·] = −ŝ†(t )[·],
ˆ̂S−1
−1 (t )[·] = − ˆ̂PS[[·]ŝ(t )],

ˆ̂S1
−1(t )[·] = ˆ̂PS[[·]ŝ†(t )]. (B28)

The only difference between the even and odd cases is the
definition of the system superoperators, which take an extra
minus sign when ˆ̂PS appear, i.e.,

ˆ̂S′−1
1 (t )[·] = ŝ(t )[·],

ˆ̂S′1
1 (t )[·] = −ŝ†(t )[·],

ˆ̂S′−1
−1 (t )[·] = ˆ̂PS[[·]ŝ(t )].

ˆ̂S′1
−1(t )[·] = − ˆ̂PS[[·]ŝ†(t )]. (B29)

Now, using Eq. (B25) and Eq. (B26) we derive the first-order
contribution to the Dyson equation in Eq. (2.16) as

[HI (t1), ρ(0)] =
∑
λ,q

[ ˆ̂B′λ
q (t1)

[
ρ

eq
E

] ˆ̂Sλ̄
q (t1)

[
ρ̂e

S (0)
]

+ ˆ̂B′λ
q (t1)

[
ρ

eq
E PE

] ˆ̂S′λ̄
q (t1)

[
ρ̂o

S (0)
]]

, (B30)

where we use the initial condition written in Eq. (1.12).
Since the superoperators ˆ̂S involve hat operators ŝ, the

result above is in the form
∑

j O j
E Ô j

S . Furthermore, since the
Hamiltonian HI is even in the fields, each term in Eq. (B30)
has the same overall parity as the part of the density matrix
for the system (the initial condition) that they are acting upon
[for example, the first term is even as it acts on the even
part ρ̂e

S (0)]. As a consequence, we can use this symmetry,
together with linearity, to explicitly write all perturbative
terms in Eq. (2.16). For example, the second-order term
T [HI (t2), [HI (t1), ρ(0)]] becomes∑

q,λ

ˆ̂TE
ˆ̂B′λ2

q2
(t2) ˆ̂B′λ1

q1
(t1)

[
ρ

eq
E

] ˆ̂TS
ˆ̂Sλ̄2

q2
(t2) ˆ̂Sλ̄1

q1
(t1)

[
ρ̂e

S (0)
]

+ ˆ̂TE
ˆ̂B′λ2

q2
(t2) ˆ̂B′λ1

q1
(t1)

[
ρ

eq
E PE

] ˆ̂TS
ˆ̂S′λ̄2

q2
(t2) ˆ̂S′λ̄1

q1
(t1)

[
ρ̂o

S (0)
]
,

(B31)

where we use the shorthand
∑

q,λ ≡ ∑
q1,λ1

∑
q2,λ2

, and where
we factorize the time-ordering operator for the full system
ˆ̂T b = ˆ̂TE

ˆ̂TS into time ordering for the system ˆ̂TS and the en-
vironment ˆ̂TE . Since these two newly defined superoperators
act on a sequence of system and environmental field operators
which have the same time ordering, we can define them to be
of Fermionic type, i.e.,

ˆ̂TSOS (tP(n) ) · · · OS (tP(1) ) = (−1)#POS (tn) · · · OS (t1), (B32)

where tn � · · · � t1, and where P is a permutation with par-
ity #P. The same definition applies to ˆ̂TE , upon changing
OS → OE . The importance of this choice becomes apparent
in Sec. II D.

By iteratively using the arguments above, we can write the
density matrix ρ(t ) for the full environment+system as

ρ(t ) =
∞∑

n=0

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

){ ∑
qn,λn,··· ,q1,λ1

[ ˆ̂TE
ˆ̂B′λn

qn
(tn) · · · ˆ̂B′λ1

q1
(t1)

[
ρ

eq
E

]] ˆ̂TS
[ ˆ̂Sλ̄n

qn
(tn) · · · ˆ̂Sλ̄1

q1
(t1)

][
ρ̂e

S (0)
]

+
∑

qn,λn,··· ,q1,λ1

[ ˆ̂TE
ˆ̂B′λn

qn
(tn) · · · ˆ̂B′λ1

q1
(t1)

[
ρ

eq
E PE

]] ˆ̂TS
[ ˆ̂S′λ̄n

qn
(tn) · · · ˆ̂S′λ̄1

q1
(t1)

][
ρ̂o

S (0)
]}

. (B33)

Here, we explicitly remark on the absence of the operator
PE in front of the environmental operators acting on ρ

eq
E PE .

However, such an operator will appear in the corresponding
correlation functions as we are about to show.

Crucially, the expression above shows that the density ma-
trix has a decomposition in the form given by Eq. (1.14), i.e.,

as a sum of terms in which environmental operators multiply
“hat” system operators. Explicitly,

ρ(t ) =
∑

i

ρ i
E ρ̂ i

S ≡
∑

ie

ρ
′ie
E ρ̂

′ie
S +

∑
io

ρ
′′io
E ρ̂

′′io
S . (B34)
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The terms in Eq. (B34) are defined through the following
identifications:∑

ie/io

→
∞∑

n=0

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

) ∑
qn,λn,...,q1,λ1

,

ρ
′ie
E → ˆ̂TE

ˆ̂B′λn
qn

(tn) · · · ˆ̂B′λ1
q1

(t1)
[
ρ

eq
E

]
,

ρ̂
′ie
S → ˆ̂TS

ˆ̂Sλ̄n
qn

(tn) · · · ˆ̂Sλ̄1
q1

(t1)
[
ρ̂e

S (0)
]
,

ρ
′′io
E → ˆ̂TE

ˆ̂B′λn
qn

(tn) · · · ˆ̂B′λ1
q1

(t1)
[
ρ

eq
E PE

]
,

ρ̂
′′io
S → ˆ̂TS

ˆ̂S′λ̄n
qn

(tn) · · · ˆ̂S′λ̄1
q1

(t1)
[
ρ̂o

S (0)
]
. (B35)

We note that the full density matrix ρ(t ) in Eq. (B34) could
be, equivalently, written as∑

i

ˆ̂TE ˆ̂ρ ′i
E

[
ρ

eq
E

] ˆ̂TS ˆ̂ρ ′i
S

[
ρe

S (0)
] + ˆ̂TE ˆ̂ρ ′′i

E

[
ρ

eq
E PE

] ˆ̂TSρ̂
′′i
S

[
ρo

S (0)
]
,

(B36)
where

ˆ̂ρ ′i
E → ˆ̂B′λn

qn
(tn) · · · ˆ̂B′λ1

q1
(t1),

ˆ̂ρ ′i
S → ˆ̂Sλ̄n

qn
(tn) · · · ˆ̂Sλ̄1

q1
(t1),

(B37)
ˆ̂ρ ′′i

E → ˆ̂B′λn
qn

(tn) · · · ˆ̂B′λ1
q1

(t1),

ˆ̂ρ ′′i
S → ˆ̂S′λ̄n

qn
(tn) · · · ˆ̂S′λ̄1

q1
(t1),

which gives the explicit definitions to the quantities presented
in Eq. (B36) in the main text.

From now on, for clarity of exposition, we omit the primes
and double primes in ρ

ie/o
E and ρ

ie/o
S and, with a further abuse

of notation, use the indexes ie/o as the way to uniquely iden-
tify them. As we remarked in Sec. II A, we can use the

decomposition in Eq. (B34) into Eq. (1.11)

TrESASρ(t ) =
∑

i

TrSAS
{
TrE

[
ρ i

E

]
ρ̂ i,e

S + TrE
[
PEρ i

E

]
ρ̂ i,o

S

}
=

∑
ie

TrSAS
{
TrE

[
ρ

ie
E

]
ρ̂

ie,e
S + TrE

[
PEρ

ie
E

]
ρ̂

ie,o
S

}
+

∑
io

TrSAS
{
TrE

[
ρ

io
E

]
ρ̂

io,e
S + TrE

[
PEρ

io
E

]
ρ̂

io,o
S

}
,

(B38)

which, by direct comparison with Eq. (1.8)), allows us to write
the reduced density matrix as Eq. (1.15) which reads

ρS =
∑

i

TrE
[
ρ i

E

]
ρ̂ i,e

S + TrE
[
PEρ i

E

]
ρ̂ i,o

S

=
∑

ie

TrE
[
ρ

ie
E

]
ρ̂

ie,e
S + TrE

[
PEρ

ie
E

]
ρ̂

ie,o
S

+
∑

io

TrE
[
ρ

io
E

]
ρ̂

io,e
S + TrE

[
PEρ

io
E

]
ρ̂

io,o
S . (B39)

At this point, it is relevant to observe that Eq. (B39) relies
on an even/odd decomposition of the system operators ρ̂

io
S

and ρ̂
ie
S defined in Eq. (B35). In principle, despite the index

notation used, the parity of ρ̂
ie/o
S depends on the order n [so that

they have the same parity as ρ̂e/o
S (0) for n even and opposite

for n odd]. Explicitly, we have

ρ̂
ie/o,e/o
S = ρ̂

ie/o
S for n even

= 0 for n odd,

ρ̂
ie/o,o/e
S = 0 for n even

= ρ̂
ie/o
S for n odd.

With this in mind, in Eq. (B39) only the first and fourth terms
survive for n even and only the second and the third survive
for n odd, to get

ρS =
∑

n=even

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

) ∑
qn,λn···q1,λ1

{
C′λn···λ1

qn···q1
T̂S

[ ˆ̂Sλ̄n
qn

· · · ˆ̂Sλ̄1
q1

]
ρ̂e

S (0) + D′λn···λ1
qn···q1

T̂S
[ ˆ̂S′λ̄n

qn
· · · ˆ̂S′λ̄1

q1

]
ρ̂o

S (0)
}

+
∑

n=odd

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

) ∑
qn,λn···q1,λ1

{
C̃′λn···λ1

qn···q1
T̂S

[ ˆ̂Sλ̄n
qn

· · · ˆ̂Sλ̄1
q1

]
ρ̂e

S (0) + D̃′λn···λ1
qn···q1

T̂S
[ ˆ̂S′λ̄n

qn
· · · ˆ̂S′λ̄1

q1

]
ρ̂o

S (0)
}
,

where

C′λn···λ1
qn···q1

= TrE T̂E
[ ˆ̂B′λn

qn
· · · ˆ̂B′λ1

q1

][
ρ

eq
E

]
, D′λn···λ1

qn···q1
= TrE T̂E

[
PE

ˆ̂B′λn
qn

· · · ˆ̂B′λ1
q1

][
ρ

eq
E PE

]
, (B40)

and

C̃′λn···λ1
qn···q1

= TrE T̂E
[
PE

ˆ̂B′λn
qn

· · · ˆ̂B′λ1
q1

][
ρ

eq
E

]
, D̃′λn···λ1

qn···q1
= TrE T̂E

[ ˆ̂B′λn
qn

· · · ˆ̂B′λ1
q1

][
ρ

eq
E PE

]
.

For n odd, the correlation functions are zero as they contain an odd number of creation/annihilation operators for fermions and
the equilibrium state is a thermal state (hence, even). As a consequence, we can write

ρS =
∞∑

n=0

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

) ∑
qn,λn···q1,λ1

{
C′λn···λ1

qn···q1
T̂S

[ ˆ̂Sλ̄n
qn

· · · ˆ̂Sλ̄1
q1

]
ρ̂e

S (0) + D′λn···λ1
qn···q1

T̂S
[ ˆ̂S′λ̄n

qn
· · · ˆ̂S′λ̄1

q1

]
ρ̂o

S (0)
}
. (B41)
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It is interesting to realize how the two PE operators explicitly
appearing (other PE operators are implicit in the definition
of the fields B) in the correlation functions D′λn···λ1

qn···q1
given

in Eq. (C40) have different origin. The PE multiplying ρ
eq
E

ultimately originates from the decomposition of the system
initial condition in Eq. (1.12). The remaining PE originates
from the properties of the partial trace for fermions, i.e., from
Eq. (1.15).

As a final step, we point out that the operators PE implicitly
present in the correlation functions in Eq. (C40) through the
definition of the superoperators ˆ̂B in Eq. (B27) always appear
on the left of the operators B (here we do not consider the
operators PE originating from ˆ̂PE ). As a consequence, using
the cyclic property of the trace, environmental correlations
will always involve terms in the form Tr[PE Bλ1 · · · PE Bλnρ

eq
E ]

apart from the possible presence of an extra PE from ˆ̂PE .
Since each field B has parity one, and since only correlation
functions for even n contribute, we can always anticommute
the PE with the fields and remove them using P2

E = 1 (the

presence of the extra PE from ˆ̂PE is irrelevant for this line
of thought). This corresponds to effectively removing all the
original PE in front of the fields B in Eq. (B27), by adding an
extra (−i)n factor. This leads to

ρS =
∞∑

n=0

(−1)n

n!

∫ t

0

(
n∏

i=1

dti

)
[ ∑

qn,λn···q1,λ1

Cλn···λ1
qn···q1

T̂S

[
ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

]
ρ̂e

S (0)

+
∑

qn,λn···q1,λ1

Dλn···λ1
qn···q1

T̂S
[ ˆ̂S′λ̄n

qn
· · · ˆ̂S′λ̄1

q1

]
ρ̂o

S (0)

]
, (B42)

where

Cλn···λ1
qn···q1

= TrE T̂E
[ ˆ̂Bλn

qn
· · · ˆ̂Bλ1

q1

][
ρ

eq
E

]
,

(B43)

Dλn···λ1
qn···q1

= TrE T̂E
[
PE

ˆ̂Bλn
qn

· · · ˆ̂Bλ1
q1

][
ρ

eq
E PE

]
,

with
ˆ̂B1

1(t )[·] = B†(t )[·],
ˆ̂B−1

1 (t )[·] = B(t )[·],
ˆ̂B1
−1(t )[·] = ˆ̂PE [[·]B†(t )],

ˆ̂B−1
−1(t )[·] = ˆ̂PE [[·]B(t )]. (B44)

It is actually possible to simplify this expression even further.
To achieve this, we analyze the correlations Dλn···λ1

qn···q1
. Our goal

is to remove the two PE explicitly appearing in Eq. (B43). We
begin by observing that, if the fields ˆ̂B were normal opera-
tors (i.e., not superoperators), we could simply use the cyclic
property of the trace and conclude that the presence of the
PE is irrelevant. However, this reasoning does not hold with
superoperators because the operators they introduce might act
either on the left or on the right of the density matrix, changing
the relative position of the two PE .

Nevertheless, we can imagine moving the PE (which mul-
tiplies ρ

eq
E ) on the left, until it gets next to the remaining PE .

As we do this, we get an extra minus sign each time one of
the subscript indexes of the ˆ̂B is +1; i.e., it acts on the left
of the density matrix (hence it is “in between” the first and
the second PE ). However, the subscript indexes q1, . . . , qn

also label the system superoperators ˆ̂S. As a consequence,
the two PE can be effectively dropped by adding a minus
sign each time a −1 appears in the subscript indexes of the
superoperators ˆ̂S. This is, for us, extremely convenient as such
a minus sign is exactly what differentiates the operators ˆ̂S′

from ˆ̂S; see Eq. (B28) and Eq. (B29). This last consideration
allows us to write the reduced density matrix in a form which
does not need to explicitly distinguish which parity sector we
are acting upon, i.e.,

ρS =
∞∑

n=0

(−1)n

n!

∫ t

0

(
n∏

i=1

dti

)
[ ∑

qn,λn···q1,λ1

Cλn···λ1
qn···q1

T̂S
[ ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

]
ρ̂e

S (0)

+
∑

qn,λn···q1,λ1

Cλn···λ1
qn···q1

T̂S
[ ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

]
ρ̂o

S (0)

]

=
∞∑

n=0

(−1)n

n!

∫ t

0

(
n∏

i=1

dti

)

×
∑

qn,λn···q1,λ1

Cλn···λ1
qn···q1

T̂S
[ ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

]
ρ̂S (0), (B45)

which is Eq. (2.18) in the main text.

3. Wick’s theorem

In this section we review the proof of the Wick’s theorem
for superoperators in [65] and analyze the time-ordered case.

a. Wick’s theorem for superoperators

To keep this article self-contained, to adapt the notation,
and to highlight its elegance, in this section we briefly review
the proof of the Wick’s theorem for Fermionic superoperators
developed by Saptsov and Wegewijs in [65].

The main objects of study are correlations of the form

Sn = Tr
(

ˆ̂cpn
qn

· · · ˆ̂cp1
q1

ρ
eq
E

)
, (B46)

where ρ
eq
E = exp[−β

∑
k (ωk − μ)c†

kck]/Zeq
E , with Zeq

E =∏
k{1 + exp[−β(ωk − μ)]}, and where p = (λ, k) is a

multi-index so that λ = ±1 defines the presence (λ = +1)
or absence (λ = −1) of a dagger and k is an external index
labeling the fermions of the bath. The index q = ±1 specifies
whether the operator acts on the left (q = 1) or right q = −1.
Explicitly, we have

ˆ̂cp
q[·] = ˆ̂cλ,k

q [·]
= δq,+1cp[·] + δq,−1[·]cp, (B47)

where

cp = c(λ,k) = (δλ,1c†
k + δλ,−1ck ). (B48)
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Using this notation, the usual Fermionic anticommutation
rules read

{cp, cp′ } = δp,p̄′ , (B49)

where p = (λ, k) and p̄ ≡ (λ̄, k) with λ̄ = −λ.
The main issue to prove a Wick’s theorem for superopera-

tors is that no definite commutation or anticommutation rules
hold for superoperators. We can see this explicitly as

{
ˆ̂cp1
q1

, ˆ̂cp2
q2

}
(·) = δq1,+1δq2,+1δp1,p̄2 (·) + 2δq1,+1δq2,−1cp1 (·)cp2

+ 2δq1,−1δq2,+1cp2 (·)cp1 + δq1,−1δq2,−1δp1,p̄2 (·)
= δp1,p̄2 (δq1,+1δq2,+1 + δq1,−1δq2,−1)

+ 2δq1,+1δq2,−1cp1 (·)cp2+2δq1,−1δq2,+1cp2 (·)cp1 .

(B50)

The factor 2 in the second line appears as a consequence of the
fact that ˆ̂cp

1 and ˆ̂cp′
−1 commute, i.e., [ ˆ̂cp

1,
ˆ̂cp′
−1] = 0. The elegant

consideration presented in [65] is to consider the modified
fields

ˆ̂J p
q = δq,+1 ˆ̂cp

q + δq,−1
ˆ̂PE ˆ̂cp

q, (B51)

where ˆ̂PE [·] = PE · PE . This “harmless” (see [65], page 5)
definition has profound effects as, now,

{ ˆ̂J p1
q1

, ˆ̂J p2
q2

}
(·)

= δq1,+1δq2,+1δp1,p̄2{cp1 , cp̄1}(·)
+ δq1,+1δq2,−1[cp1 PE (·)cp2 PE + PE cp1 (·)cp2 PE ]

+ δq1,−1δq2,+1[PE cp2 (·)cp1 PE + cp2 PE (·)cp1 PE ]

+ δq1,−1δq2,−1δp1,p̄2 P2
E (·)(cp2 PE cp̄1 PE + cp1 PE cp̄2 PE )

= δq1,+1δq2,+1δp1,p̄2 (·) + q1δq1,−1δq2,−1δp1,p̄2 (·)
= q1δp1,p̄2δq1,q2 , (B52)

which starts to resemble the Fermionic anticommutation rules.
To complete the mapping, it is possible [65] to introduce

ˆ̂J p
q = 1√

2

(
δq,+1

∑
q′

q′ ˆ̂J p
q′ + δq,−1

∑
q′

ˆ̂J p
q′

)

=
[
δq,+1

(
ˆ̂cp
1 − ˆ̂PE ˆ̂cp

−1

) + δq,−1
(

ˆ̂cp
1 + ˆ̂PE ˆ̂cp

−1

)]
√

2
. (B53)

For future reference, these expressions can be inverted to
obtain the Fermionic operators as

ˆ̂cp
1 = 1√

2

( ˆ̂J p
−1 + ˆ̂J p

+1

)
,

ˆ̂PE ˆ̂cp
−1 = 1√

2

( ˆ̂J p
−1 − ˆ̂J p

+1

)
. (B54)

We now have, defining q̄ = −q,

{ ˆ̂J p1
q1

, ˆ̂J p2
q2

} = 1

2
δq1,+1δq2,+1

{∑
q

q ˆ̂J p1
q ,

∑
q

q ˆ̂J p2
q

}

+ 1

2
δq1,+1δq2,−1

{∑
q

q ˆ̂J p1
q ,

∑
q

ˆ̂J p2
q

}

+ 1

2
δq1,−1δq2,+1

{∑
q

ˆ̂J p1
q ,

∑
q

q ˆ̂J p2
q

}

+ 1

2
δq1,−1δq2,−1

{∑
q

ˆ̂J p1
q ,

∑
q

ˆ̂J p2
q

}

= 1

2
δq1,+1δq2,+1

∑
q

∑
q′

qq′{ ˆ̂J p1
q , ˆ̂J p2

q′
}

+ 1

2
δq1,+1δq2,−1

∑
q

∑
q′

{ ˆ̂J p1
q , ˆ̂J p2

q′
}

+ 1

2
δq1,−1δq2,+1

∑
q

∑
q′

q′{ ˆ̂J p1
q , ˆ̂J p2

q′
}

+ 1

2
δq1,−1δq2,−1

∑
q

∑
q′

{ ˆ̂J p1
q , ˆ̂J p2

q′
}

= 1

2
δq1,+1δq2,+1δp1,p̄2

∑
q

qqq

+ 1

2
δq1,+1δq2,−1δp1,p̄2

∑
q

qq

+ 1

2
δq1,−1δq2,+1δp1,p̄2

∑
q

qq

+ 1

2
δq1,−1δq2,−1δp1,p̄2

∑
q

q

= δq1,+1δq2,−1δp1,p̄2 + δq1,−1δq2,+1δp1,p̄2

= δq1,q̄2δp1,p̄2 , (B55)

which elegantly resembles the Fermionic anticommutation
rules. But this is not all, as other important relations hold. One
is the fluctuation-dissipation-like relation

ˆ̂J p
±1

(
ρ

eq
E

) = (
ˆ̂cp
1 ∓ ˆ̂PE ˆ̂cp

−1

)(
ρ

eq
E

)
= cλ

k ρ
eq
E ∓ PEρ

eq
E cλ

k PE

= (eλβ(ωk−μ) ± 1)ρeq
E cλ

k , (B56)

where we have used Eq. (B72) and the fact that ρ
eq
E is even in

the number of Fermionic operators. We then have

ˆ̂J p
−1

(
ρ

eq
E

) = (eλβ(ωk−μ) − 1)

(eλβ(ωk−μ) + 1)
ˆ̂J p
+1

(
ρ

eq
E

)
= tanh[λβ(ωk − μ)/2] ˆ̂J p

+1

(
ρ

eq
E

)
. (B57)

Another important relation is the “closure”

Tr
[ ˆ̂Jq

+1 · ] = 0, (B58)
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which is proved by using the cyclic property of the trace as

Tr
[ ˆ̂J p

+1 · ] = Tr
[(

ˆ̂cp
1 − ˆ̂PE ˆ̂cp

−1

) · ]
= Tr

[
cλ

k · −PE · cλ
k PE

]
= Tr

[
cλ

k · −cλ
k · ]

= 0. (B59)

Everything is now ready to prove Wick’s theorem. We
consider

Sn = Tr
[
J p1

q1
· · · J pn

qn
ρ

eq
E

]
, (B60)

which is nonzero only for even n. In this case, if qn = +1,
we can anticommute it on the left and then use the closure
property to derive

Sn =
n−1∑
i=1

(−1)#Pi,n Tr

⎡
⎣{

J pn
qn

, J pi
qi

}
J p1

q1
· · ·︸︷︷︸
i,n

J pn
qn

ρβ

⎤
⎦

=
n−1∑
i=1

(−1)#Pi,n Tr
[{

J pi
qi

, J pn
qn

}
ρ

eq
E

]
Si,n

n−2

=
n−1∑
i=1

(−1)#Pi,n
〈
J pi

qi
J pn

qn

〉
E Si,n

n−2, (B61)

where the underbrace indicates the indexes labeling the miss-
ing operators, and where we use Eq. (B55) in the second step
and we use the closure property Eq. (B58) in the last step. We
also define Si,n

n−2 = Tr[J p1
q1 · · ·︸︷︷︸

i,n

J pn
qn ρ

eq
E ] and 〈·〉E = Tr[·ρeq

E ].

Here, #Pi,n is the number of transpositions needed to bring
J pn

qn and J pi
qi adjacent [65].

If qn = −1, we cannot apply the closure relation directly.
However, we can first use the fluctuation-dissipation relation
Eq. (B57) to obtain

Sn = tn

n−1∑
i=1

(−1)#Pi,n Tr
[{

J pn
q̄n

, J pi
qi

}
ρβ

]
Si,n

n−2

= tn

n−1∑
i=1

(−1)#Pi,n Tr
[
J pi

qi
J pn

q̄n
ρE

]
Si,n

n−2

=
n−1∑
i=1

(−1)#Pi,n Tr
[
J pi

qi
J pn

qn
ρE

]
Si,n

n−2

=
n−1∑
i=1

(−1)#Pi,n
〈
J pi

qi
J pn

qn

〉
E Si,n

n−2, (B62)

where qn = (λn, kn) is a multi-index, and define tn ≡
tanh[λnβ(ωkn − μ)/2]. In order to derive the second line we
use the closure property Eq. (B58), and to obtain the third line
we use the fluctuation-dissipation relation Eq. (B57) again.

Proceeding this way iteratively, we prove

Tr
[
J p1

q1
· · · J pn

qn
ρ

eq
E

] =
∑
c∈Cn

(−1)#c
∏

(i, j)∈c

〈
J pi

qi
J

p j
q j

〉
E . (B63)

Here, each full contraction c ∈ Cn is one of the possible sets
of ordered pairs (or just, contractions) (ic, jc), ic < jc, over

the set Nn = {1, . . . , n}. We further denote by #c the parity of
the contraction c, i.e., the parity of the permutation needed to
order the set Nn, such that all pairs in c are adjacent.

To conclude, we observe that, in order to use this form
of Wick’s theorem, the superoperators have to be written in
terms of ˆ̂cp

1 and ˆ̂PE ˆ̂cp
−1 defined in Eq. (B54). Using B(t ) =∑

k gkcke−iωkt , we can write the superoperators ˆ̂B defined in
Eq. (2.20) as

ˆ̂Bλ
1 (t ) =

∑
k

gk ˆ̂cp
1e−iωkt ,

ˆ̂Bλ
−1(t ) =

∑
k

gk
ˆ̂PE ˆ̂cp

−1e−iωkt , (B64)

where p = (λ, k). This shows that, as long as the correlations
are written in terms of the superoperators ˆ̂B above, we can
indeed use the Wick’s theorem in Eq. (B63), justifying the
reasoning done in Sec. II C.

b. Time ordering in Wick’s theorem

The form of the Wick’s theorem in Eq. (B63) implies that
if Pa is a single swap between two adjacent superoperators
(let us say between J pa

qa and J pa+1
qa+1 ), the parity #c of each full

contraction c will provide an extra minus sign unless (a, a +
1) ∈ c. In fact, the parity of the permutation needed to order
the set (after applying Pa) such that all pairs are adjacent is
−(#c) when (a, a + 1) /∈ c.

When (a, a + 1) ∈ c, there is no extra sign as a and a + 1,
even if swapped, are already adjacent. This slight imperfection
with respect to total antisymmetry implies that special care
needs to be taken with respect to the order in which the
original sequence appears inside the correlation. However,
total antisymmetry can be restored by simply considering
Fermionic time ordering of the original sequence. In this case,
supposing tn � · · · � t1, we have

Tr
[ ˆ̂T

[
J pP(1)

qP(1) · · · J pP(n)
qP(n)

]
ρ

eq
E

] = (−1)#PW
[
J pn

qn
· · · J p1

q1

]
, (B65)

where P is a generic permutation and where

W
[pn

qn
· · · J p1

q1

] =
∑
c∈C̄n

(−1)#c
∏
i, j∈c

〈
J pi

qi
J

p j
q j

〉
E . (B66)

Here, C̄n is the set of contractions over the set N̄n =
{n, . . . , 1}. Importantly, since i, j are ordered as in the se-
quence given to W , we can always include an additional time
ordering in the definition to obtain

Tr
[ ˆ̂T

[
J pP(1)

qP(1) · · · J pP(n)
qP(n)

]
ρ

eq
E

] = (−1)#PWT
[
J pn

qn
· · · J p1

q1

]
, (B67)

where

WT
[
J p1

q1
· · · J pn

qn

] =
∑
c∈C̄n

(−1)#c
∏
i, j∈c

〈 ˆ̂T
[
J pi

qi
J

p j
q j

]〉
E , (B68)

which fulfills

WT
[
Pa

[
J pn

qn
· · · J p1

q1

]] = −WT
[
J pn

qn
· · · J p1

q1

]
. (B69)
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In fact,

WT
[
Pa

[
J pn

qn
· · · J p1

q1

]] = −
∑
c∈Cn

(−1)#c
∏

(i, j)∈c,(a,b)�∈c

〈 ˆ̂T
[
J pi

qi
J

p j
q j

]〉
E

+
∑
c∈Cn

(−1)#c
∏

(i, j)∈c,(a,b)∈c

〈 ˆ̂T
[
Pa[J pi

qi
J

p j
q j

]]〉
E

= −
∑
c∈Cn

(−1)#c
∏

(i, j)∈c,(a,b)�∈c

〈 ˆ̂T
[
J pi

qi
J

p j
q j

]〉
E

−
∑
c∈Cn

(−1)#c
∏

(i, j)∈c,(a,b)∈c

〈 ˆ̂T
[
J pi

qi
J

p j
q j

]〉
E

= −
∑
c∈Cn

(−1)#c
∏

(i, j)∈c

〈 ˆ̂T
[
J pi

qi
J

p j
q j

]〉
E .

(B70)

Since we can always decompose the generic permutation P
appearing in Eq. (B67) in terms of transpositions Pa, by repet-
itive application of Eq. (B69) we obtain

Tr
[ ˆ̂T

[
J pP(1)

qP(1) · · · J pP(n)
qP(n)

]
ρ

eq
E

] = WT
[
J pP(1)

qP(1) · · · J pP(n)
qP(n)

]
. (B71)

This is a rather convenient result as we can apply the Wick’s
operator W directly to the original sequence, independently
from its order.

c. Commutation relations with equilibrium distribution

In this subsection we prove the relation

cλ
k ρ

eq
E = eλβ(ωk−μ)ρ

eq
E cλ

k , (B72)

where λ = ±1 and where ρ
eq
E = exp[−β

∑
k (ωk −

μ)c†
kck]/Zeq

E with Zeq
E = ∏

k{1 + exp[−β(ωk − μ)]}. To
start we have

ckρ
eq
E = cke−β(ωk−μ)c†

k ck e−β
∑

j �=k (ω j−μ)c†
j c j /Zeq

E

= ck[1 + (e−β(ωk−μ) − 1)c†
kck]

× e−β
∑

j �=k (ω j−μ)c†
j c j /Zeq

E

= e−β(ωk−μ)cke−β
∑

j �=k (ω j−μ)c†
j c j /Zeq

E . (B73)

We also have

ρ
eq
E ck = e−β(ωk−μ)c†

k ck cke−β
∑

j �=k (ω j−μ)c†
j c j /Zeq

E

= [1 + (e−β(ωk−μ) − 1)c†
kck]

× cke−β
∑

j �=k (ω j−μ)c†
j c j /Zeq

E

= cke−β
∑

j �=k (ω j−μ)c†
j c j /Zeq

E , (B74)

so that, by comparison, we obtain

ckρ
eq
E = e−β(ωk−μ)ρ

eq
E ck . (B75)

Similarly,

c†
kρ

eq
E = c†

ke−β(ωk−μ)c†
k ck e−β

∑
j �=k (ω j−μ)c†

j c j /Zeq
E

= c†
k [1 + (e−β(ωk−μ) − 1)c†

kck]

× e−β
∑

j �=k (ω j−μ)c†
j c j /Zeq

E

= c†
ke−β

∑
j �=k (ω j−μ)c†

j c j /Zeq
E , (B76)

and

ρ
eq
E c†

k = e−β(ωk−μ)c†
k ck c†

ke−β
∑

j �=k (ω j−μ)c†
j c j /Zeq

E

= [1 + (e−β(ωk−μ) − 1)c†
kck]

× c†
ke−β

∑
j �=k (ω j−μ)c†

j c j /Zeq
E

= e−β(ωk−μ)c†
ke−β

∑
j �=k (ω j−μ)c†

j c j /Zeq
E , (B77)

so that

c†
kρ

eq
E = eβ(ωk−μ)ρ

eq
E c†

k . (B78)

Together, Eq. (B75) and Eq. (B78) prove Eq. (B72).

4. Influence superoperator

In this section we explicitly derive the expression for the

influence superoperator ˆ̂F (t ) in Eq. (2.29) and for the super-
operator ˆ̂W in Eq. (2.26). We also provide a relation between
the factorial and the double factorial which is used to re-sum
the reduced Dyson series.

a. Expression for the influence superoperator

Given the arguments in the main text, from Eq. (2.23) we
find that the reduced density matrix depends on the quantity

ˆ̂TS

∫ t

0
dt2dt1

ˆ̂W (t2, t1). (B79)

To proceed, note the following symmetry,

ˆ̂TS
ˆ̂W (t2, t1) = ˆ̂TS

ˆ̂W (t1, t2). (B80)

In fact,

ˆ̂TSW (t1, t2) =
∑

q1,q2,λ1,λ2

Cλ2,λ1
q2,q1

(t1, t2) ˆ̂TS
ˆ̂Sλ̄2

q2
(t1) ˆ̂Sλ̄1

q1
(t2)

= −
∑

q1,q2,λ1,λ2

Cλ1,λ2
q1,q2

(t2, t1) ˆ̂TS
ˆ̂Sλ̄2

q2
(t1) ˆ̂Sλ̄1

q1
(t2)

=
∑

q1,q2,λ1,λ2

Cλ1,λ2
q1,q2

(t2, t1) ˆ̂TS
ˆ̂Sλ̄1

q1
(t2) ˆ̂Sλ̄2

q2
(t1)

= ˆ̂TSW (t2, t1), (B81)

where we use the fact that

Cλ2,λ1
q2,q1

(t1, t2) = TrE
[ ˆ̂TE

ˆ̂Bλ2
q2

(t1) ˆ̂Bλ1
q1

(t2)[ρE (0)]
]

= −TrE
[ ˆ̂TE

ˆ̂Bλ1
q1

(t2) ˆ̂Bλ2
q2

(t1)[ρE (0)]
]

= −Cλ1,λ2
q1,q2

(t2, t1). (B82)

In turn, this means that

ˆ̂TS

∫ t

0
dt2dt1

ˆ̂W (t2, t1)

= ˆ̂TS

∫ t

0
dt2

∫ t

0
dt1[θ (t2 − t1) + θ (t1 − t2)] ˆ̂W (t2, t1)

=
(∫ t

0
dt2

∫ t2

0
dt1 +

∫ t

0
dt1

∫ t1

0
dt2

)
ˆ̂TS

ˆ̂W (t2, t1)

= 2 ˆ̂TS

∫ t

0
dt2

∫ t2

0
dt1

ˆ̂W (t2, t1), (B83)
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where, in the last step, we use Eq. (B80). The expression
above allows us to write Eq. (2.24).

b. Expression for the superoperator ˆ̂W

We start from the expression of the superoperator ˆ̂W de-
fined in Eq. (2.25) which reads

W (t2, t1) =
∑

q1,q2,λ1,λ2

Cλ2,λ1
q2,q1

(t2, t1) ˆ̂Sλ̄2
q2

(t2) ˆ̂Sλ̄1
q1

(t1), (B84)

where the two-point correlations can be written as, see
Eq. (2.22),

Cλ2,λ1
q2,q1

(t2, t1) = TrE
[ ˆ̂TE

ˆ̂Bλ2
q2

(t2) ˆ̂Bλ1
q1

(t1)[ρE (0)]
]
, (B85)

along with Eq. (2.20) which describes the superoperators ˆ̂B
and ˆ̂S,

ˆ̂B1
1[·] = B†[·], ˆ̂S−1

1 [·] = ŝ[·],
ˆ̂B−1

1 [·] = B[·], ˆ̂S1
1[·] = −ŝ†[·],

ˆ̂B1
−1[·] = ˆ̂PE [·B†], ˆ̂S−1

−1[·] = − ˆ̂PS[·ŝ],

ˆ̂B−1
−1[·] = ˆ̂PE [·B], ˆ̂S1

−1[·] = ˆ̂PS[·ŝ†]. (B86)
Explicitly, the superoperators ˆ̂B read

ˆ̂B1
1(t )[·] =

∑
k

gkc†
k (t )[·], (B87)

ˆ̂B−1
1 (t )[·] =

∑
k

gkck (t )[·], (B88)

ˆ̂B1
−1(t )[·] =

∑
k

gk
ˆ̂PE [[·]c†

k (t )], (B89)

ˆ̂B−1
−1(t )[·] =

∑
k

gkck
ˆ̂PE [[·]ck (t )]. (B90)

Note that among the 16 terms in Eq. (B84), only 8 are non-
trivial. This is due to the fact that, since ρE (0) is even, the
extra constraint δλ2,λ̄1

appears (indexes λ = ±1 correspond
to creation/annihilation operators). The nonzero contributions
are, for t2 � t1,

TrE
( ˆ̂B1

1(t2) ˆ̂B−1
1 (t1)ρE (0)

) ˆ̂S−1
1 (t2) ˆ̂S1

1 (t1)[·] = TrE (B†(t2)B(t1)[ρE (0)]) ˆ̂S−1
1 (t2) ˆ̂S1

1 (t1)[·],
TrE

( ˆ̂B1
−1(t2) ˆ̂B−1

1 (t1)ρE (0)
) ˆ̂S−1

−1 (t2) ˆ̂S1
1 (t1)[·] = TrE (PE B(t1)[ρE (0)]B†(t2)PE ) ˆ̂S−1

−1 (t2) ˆ̂S1
1 (t1)[·],

TrE
( ˆ̂B−1

1 (t2) ˆ̂B1
1(t1)ρE (0)

) ˆ̂S1
1 (t2) ˆ̂S−1

1 (t1)[·] = TrE (B(t2)B†(t1)[ρE (0)]) ˆ̂S1
1 (t2) ˆ̂S−1

1 (t1)[·],
TrE

( ˆ̂B−1
−1(t2) ˆ̂B1

1(t1)ρE (0)
) ˆ̂S1

−1(t2) ˆ̂S−1
1 (t1)[·] = TrE (PE B†(t1)[ρE (0)]B(t2)PE ) ˆ̂S1

−1(t2) ˆ̂S−1
1 (t1)[·],

TrE
( ˆ̂B1

1(t2) ˆ̂B−1
−1(t1)ρE (0)

) ˆ̂S−1
1 (t2) ˆ̂S1

−1(t1)[·] = TrE (B†(t2)PE [ρE (0)]B(t1)PE ) ˆ̂S−1
1 (t2) ˆ̂S1

−1(t1)[·],
TrE

( ˆ̂B1
−1(t2) ˆ̂B−1

−1(t1)ρE (0)
) ˆ̂S−1

−1 (t2) ˆ̂S1
−1(t1)[·] = TrE (PE PE [ρE (0)]B(t1)PE B†(t2)PE ) ˆ̂S−1

−1 (t2) ˆ̂S1
−1(t1)[·],

TrE
( ˆ̂B−1

1 (t2) ˆ̂B1
−1(t1)ρE (0)

) ˆ̂S1
1 (t2) ˆ̂S−1

−1 (t1)[·] = TrE (B(t2)PE [ρE (0)]B†(t1)PE ) ˆ̂S1
1 (t2) ˆ̂S−1

−1 (t1)[·],
TrE

( ˆ̂B−1
−1(t2) ˆ̂B1

−1(t1)ρE (0)
) ˆ̂S1

−1(t2) ˆ̂S−1
−1 (t1)[·] = TrE (PE PE [ρE (0)]B†(t1)PE B(t2)PE ) ˆ̂S1

−1(t2) ˆ̂S−1
−1 (t1)[·]. (B91)

Above, we kept the superoperators acting on the system as the time ordering acts at the superoperator level. We can then write

W (t2, t1) = Cσ=1(t2, t1)
[ ˆ̂S−1

1 (t2) ˆ̂S1
1 (t1) + ˆ̂S−1

−1 (t2) ˆ̂S1
1 (t1)

]
+ Cσ=−1(t2, t1)

[ ˆ̂S1
1 (t2) ˆ̂S−1

1 (t1) + ˆ̂S1
−1(t2) ˆ̂S−1

1 (t1)
]

+ Cσ=−1(t1, t2)
[ − ˆ̂S−1

1 (t2) ˆ̂S1
−1(t1) − ˆ̂S−1

−1 (t2) ˆ̂S1
−1(t1)

]
+ Cσ=1(t1, t2)

[ − ˆ̂S1
1 (t2) ˆ̂S−1

−1 (t1) − ˆ̂S1
−1(t2) ˆ̂S−1

−1 (t1)
]
, (B92)

where we define

Cσ=1(t2, t1) = TrE
[
B†(t2)B(t1)ρE (0)

]
,

Cσ=−1(t2, t1) = TrE
[
B(t2)B†(t1)ρE (0)

]
. (B93)

We can group the terms to obtain Eq. (2.26) in the main text as

W (t2, t1) = ˆ̂S−1
1 (t2)

[
Cσ=1(t2, t1) ˆ̂S1

1 (t1) − Cσ=−1(t1, t2) ˆ̂S1
−1(t1)

] + ˆ̂S−1
−1 (t2)

[
Cσ=1(t2, t1) ˆ̂S1

1 (t1) − Cσ=−1(t1, t2) ˆ̂S1
−1(t1)

]
+ ˆ̂S1

1 (t2)
[ − Cσ=1(t1, t2) ˆ̂S−1

−1 (t1) + Cσ=−1(t2, t1) ˆ̂S−1
1 (t1)

] + ˆ̂S1
−1(t2)

[ − Cσ=1(t1, t2) ˆ̂S−1
−1 (t1) + Cσ=−1(t2, t1) ˆ̂S−1

1 (t1)
]

= [ ˆ̂S−1
1 (t2) + ˆ̂S−1

−1 (t2)
][

Cσ=1(t2, t1) ˆ̂S1
1 (t1) − Cσ=−1(t1, t2) ˆ̂S1

−1(t1)
]

− [ ˆ̂S1
−1(t2) + ˆ̂S1

1 (t2)
][

Cσ=1(t1, t2) ˆ̂S−1
−1 (t1) − Cσ=−1(t2, t1) ˆ̂S−1

1 (t1)
]

=
∑
σ=±

Aσ (t2)Bσ (t2, t1), (B94)
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where

Aσ (t ) = σ
( ˆ̂S−σ

σ (t ) + ˆ̂S−σ
−σ (t )

) = ŝσ̄ (t )[·] − ˆ̂PS[[·]ŝσ̄ (t )],

Bσ=1(t2, t1) = Cσ=1(t2, t1) ˆ̂S1
1 (t1) − Cσ=−1(t1, t2) ˆ̂S1

−1(t1) = −Cσ=1(t2, t1)ŝ†(t1)[·] − Cσ=−1(t1, t2)PS[[·]ŝ†(t1)],

Bσ=−1(t2, t1) = Cσ=1(t1, t2) ˆ̂S−1
−1 (t1) − Cσ=−1(t2, t1) ˆ̂S−1

1 (t1) = −Cσ=1(t1, t2)PS[[·]ŝ(t1)] − Cσ=−1(t2, t1)ŝ(t1)[·]. (B95)

It is further possible to derive the more compact notation

Bσ (t2, t1)

= −{Cσ (t2, t1)ŝσ (t1)[·] + Cσ̄ (t1, t2)PS[[·]ŝσ (t1)]}
= −{Cσ (t2, t1)ŝσ (t1)[·] + C̄σ̄ (t2, t1)PS[[·]ŝσ (t1)]}, (B96)

where we use Eq. (D8).

c. Proof of Eq. (2.31)

The starting point of this section is Eq. (2.25) which de-
scribes the influence superoperator as

ˆ̂F (t ) =
∫ t

0
dt2

∫ t2

0
dt1

ˆ̂W (t2, t1), (B97)

where

ˆ̂W (t2, t1)[·] =
∑
σ=±

ˆ̂Aσ (t2) ˆ̂Bσ (t2, t1)[·]

= −C(1)s2s†
1[·] + C(1) ˆ̂PS[s†

1 · s2]

− C̄(−1)s2
ˆ̂PS[·s†

1] + C̄(−1) ˆ̂PS[ ˆ̂PS[·s†
1]s2]

− C(−1)s†
2s1[·] + C(−1) ˆ̂PS[s1 · s†

2]

− C̄(1)s†
2

ˆ̂PS[·s1] + C̄(1) ˆ̂PS[ ˆ̂PS[·s1]s†
2], (B98)

where we use the shorthand C(1) = Cσ=1(t2, t1), C(−1) =
Cσ=−1(t2, t1), sσ

1 = sσ (t1), and sσ
2 = sσ (t2). We now define

ˆ̂W±(t2, t1) as the composition of ˆ̂W with the projectors ˆ̂Pe/o
S

onto the even/odd sector, i.e.,

ˆ̂W±(t2, t1)[·] = ˆ̂W (t2, t1)
[ ˆ̂Pe/o

S [·]]

= −C(1)s2s†
1 · ±C(1)s†

1 · s2

± C̄(−1)s2 · s†
1 − C̄(−1) · s†

1s2

− C(−1)s†
2s1 · ±C(−1)s1 · s†

2

± C̄(1)s†
2 · s1 − C̄(1) · s1s†

2

= −C(1)[s2, s†
1·]∓ − C̄(−1)[·s†

1, s2]∓

− C(−1)[s†
2, s1·]∓ − C̄(1)[·s1, s†

2]∓. (B99)

Using Cσ (t2, t1) = C̄σ (t1, t2), we can write

ˆ̂W±(t2, t1)[·] = −
∑
σ=±

Cσ (t2, t1)[sσ̄ (t2), sσ (t1)·]∓

−
∑
σ=±

Cσ (t1, t2)[·sσ̄ (t1), sσ (t2)]∓, (B100)

which proves Eq. (2.31) in the main text.

d. A relation between factorial and double factorial

The double factorial of an integer n is defined as

n!! = n(n − 2) · · · 2 for n even,

n!! = n(n − 2) · · · 1 for n odd. (B101)

We can see that if we multiply the double factorials of two
consecutive numbers, we can “fill the gaps” with respect to
the definition of the factorial. Explicitly,

n!!(n − 1)!! = n!. (B102)

Another interesting connection between double and single
factorials is

(2n)!! = 2n(2n − 2) · · · 2 = 2nn!. (B103)

Using Eq. (B102) and Eq. (B103) we have

(2n − 1)!! = (2n)!

(2n)!!
= (2n)!

2nn!
. (B104)

APPENDIX C: APPLICATIONS

Here, we provide details on the derivations of the results
presented in Sec. III.

1. Markovian regime

In Sec. III A we analyzed the idealized conditions under
which the correlations characterizing the environment take the
form in Eq. (3.4), i.e.,

Cσ (t2, t1) = �σ δ(t2 − t1), (C1)

where

�σ = �(1 − σ + 2σn0). (C2)

This Markovian regime leads to drastic simplifications in
Eq. (2.29). In fact, all superoperators present in ˆ̂W are eval-
uated at the same point in time making the time-ordering
procedure much easier to handle. Specifically, using Eq. (C1)
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in Eq. (2.25), we have

ˆ̂F (t )[·] = −1

2

∫ t

0
dt ′ ∑

σ

(sσ̄ (t ′)[·] − ˆ̂PS[[·]sσ̄ (t ′)])

× (�σ sσ (t ′)[·] + �̄σ̄ ˆ̂PS[[·]sσ (t ′)]), (C3)

where we use
∫ t2

0 dt1δ(t2 − t1) = 1/2 (see Eq. (5.3.12)
in [50]). Using Eq. (C53), this also means that, in the
Schrödinger picture,

ρ̇Schr
S (t ) = −i

[
HS, ρ

Schr
S (t )

] + L
[
ρSchr

S (t )
]
, (C4)

where

L[·] = U (t )
d ˆ̂F (t )

dt
U †(t )[·], (C5)

with U (t ) = exp(−iHSt ). For clarity of notation, from now on
we will omit the label “Schr”. Using the definition of operators
in the interaction frame, sσ (t ) = U †(t )sσU (t ), and taking the
derivative of Eq. (C3), we find

L[·] = −(s · − ˆ̂PS[·s])(�σ=1s† · +�̄σ=−1 ˆ̂PS[·s†])/2

− (s† · − ˆ̂PS[·s†])(�σ=−1s · +�̄σ=1 ˆ̂PS[·s])/2. (C6)

Note that L[·] preserves the parity of its argument; i.e., it
maps even (odd) operators into even (odd) operators. Using
the decomposition

ρS (t ) = ρe
S (t ) + ρo

S (t ), (C7)

we can write the action of the superoperators ˆ̂PS to write

ρ̇S (t ) = −i[HS, ρS (t )] + Le
[
ρe

S (t )
] + Lo

[
ρo

S (t )
]
, (C8)

where

ρe/o
S = ˆ̂Pe/o[ρS], (C9)

in terms of
ˆ̂Pe = Pe · Pe + Po · Po,

(C10)
ˆ̂Po = Pe · Po + Po · Pe,

with

Pe = (PS + 1)/2,

Po = (1 − PS )/2. (C11)

The even/odd dissipators in Eq. (C8) are defined as

Le[·] = −(�σ=1ss† · +�̄σ=−1 · s†s

− �̄σ=−1s · s† − �σ=1s† · s)/2

− (�σ=−1s†s · +�̄σ=1 · ss†

− �̄σ=1s† · s − �σ=−1s · s†)/2

= (�σ=1[2s† · s − ss† · − · ss†]

+ �σ=−1[2s · s† − s†s · − · s†s])/2. (C12)

When the argument is odd, terms involving one and only one
ˆ̂PS change sign with respect to the even case. This leads to

Lo[·] = (
�σ=1[−2s† · s − ss† · − · ss†]

+ �σ=−1[−2s · s† + s†s · + · s†s]
)
/2. (C13)

Using Eq. (C2) in Eq. (C8) we obtain the following explicit
Lindblad equation in the Schrödinger picture,

ρ̇S (t ) = −i[HS, ρS (t )]

+ �(1 − n0)Ds
[
ρe

S (t )
] + �n0Ds†

[
ρe

S (t )
]

+ �(1 − n0)D′
s

[
ρo

S (t )
] + �n0D′

s†

[
ρo

S (t )
]
, (C14)

where Ds[·]=2s[·]s†−s†(t )s[·]−[·]s†s, Ds†=2s†(t )[·]s(t ) −
ss†[·] − [·]ss†, D′

s[·] = −2s[·]s† − s†(t )s[·] − [·]s†s, D′
s† =

−2s†(t )[·]s(t ) − ss†[·] − [·]ss†. In a more compact form, this
equation becomes Eq. (3.5).

2. Hierarchical equations of motion

Here, we provide the details of the derivation of the hierar-
chical equations of motion.

a. An expression for the influence superoperator

Here, we explicitly derive Eq. (3.7), i.e., the expression for
the influence superoperator when the correlations in Eq. (2.28)
are given by the ansatz in Eq. (3.6). In fact, using such an
ansatz, the superoperator ˆ̂W in Eq. (2.26) reads

ˆ̂W (t2, t1)[·] =
∑

σ

ˆ̂Aσ (t2) ˆ̂Bσ (t2, t1)[·]

= −
∑

σ

ˆ̂Aσ (t2){Cσ (t2, t1)ŝσ (t1)[·]

+ C̄σ̄ (t2, t1) ˆ̂PS[[·]ŝσ (t1)]}

= −
∑
n,σ

ˆ̂Aσ (t2)
{
aσ

n e−bσ
n (t2,t1 )ŝσ (t1)[·]

+ āσ̄
n e−b̄σ̄

n (t2,t1 ) ˆ̂PS[[·]ŝσ (t1)]
}

= −
∑
n,σ

ˆ̂Aσ (t2)e−bσ
n (t2,t1 )

× {
aσ

n ŝσ (t1)[·] + āσ̄
n

ˆ̂PS[[·]ŝσ (t1)]
}
, (C15)

where in the last step we use the very convenient Eq. (D14).
Using the definition in Eq. (3.8), i.e.,

ˆ̂Bσ
n (t )[·] = −{aσ

n ŝσ (t )[·] + āσ̄
n PS[[·]ŝσ (t )]}, (C16)

we can write

ˆ̂W (t2, t1)[·] =
∑
n,σ

ˆ̂Aσ (t2)e−bσ
n (t2,t1 ) ˆ̂Bσ

n (t1), (C17)

which, using Eq. (2.25), immediately leads to Eq. (3.7) in the
main text, i.e.,

ˆ̂F (t ) =
∫ t

0
dt2

∫ t2

0
dt1

∑
n,σ

Aσ (t2)e−bσ
n (t2−t1 ) ˆ̂Bσ

n (t1). (C18)

b. HEOM

Here, we present all details to derive a generalized version
of the HEOM valid in both even- and odd-parity sectors which
contains the usual expression for the HEOM in the even-parity
sector. The starting point is the expression for the nth auxiliary
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density matrix defined in Eq. (3.13) which, omitting the time
dependence for the density matrices, reads as

ρ
(n)
jn··· j1

(t ) = αn ˆ̂TS
ˆ̂
 jn (t ) · · · ˆ̂
 j1 (t )ρ (0)(t ), (C19)

with ρ (0)(t ) ≡ ρS (t ). The superoperators ˆ̂
 are defined as

ˆ̂
 j (t ) ≡ ˆ̂
σ
m(t ) =

∫ t

0
dτe−b j (t−τ ) ˆ̂B j (τ ), (C20)

where we defined the multi-index j = (m, σ ) and, consis-

tently, b j ≡ bσ
m and ˆ̂B j ≡ ˆ̂Bσ

m. The derivative of ˆ̂
 is given by

d

dt
ˆ̂
 j (t ) = −bσ

m
ˆ̂
 j (t ) + ˆ̂B j (τ ). (C21)

In order to compute the derivative of the previous auxiliary
density matrices, we further need the derivative of ρ (0)(t ) =
ρS (t ). Using Eq. (C51),

d

dt
ρS (t ) = ˆ̂TS

(
d

dt
ˆ̂F (t )

)
ρS (t ). (C22)

From Eq. (3.7), the time derivative of ˆ̂F (t ) is simply given by

d

dt
ˆ̂F (t ) =

∑
n,σ

ˆ̂Aσ (t )
∫ t

0
dτe−bσ

m (t−τ ) ˆ̂Bσ
m(τ )

=
∑
m,σ

ˆ̂Aσ (t ) ˆ̂
σ
n (t )

≡
∑

j

ˆ̂Aj (t ) ˆ̂
 j (t ), (C23)

where ˆ̂Aj (t ) ≡ ˆ̂Aσ (t ) which, redundantly, makes ˆ̂A also a (triv-
ial) function of n. Inserting the equation above in Eq. (C22),
we find

d

dt
ρS (t ) = ˆ̂TS

∑
m,σ

ˆ̂Aσ (t ) ˆ̂
σ
m(t )ρS (t )

=
∑

σ

ˆ̂Aσ (t ) ˆ̂TS

∑
m

ˆ̂
σ
m(t )ρS (t )

≡
∑

j

ˆ̂Aj (t ) ˆ̂TS
ˆ̂
 j (t )ρS (t ). (C24)

Using Eq. (C21) and Eq. (C24) we can write the derivative of
the auxiliary density matrices in Eq. (C19) as

ρ̇
(n)
jn··· j1

(t ) = αn ˆ̂TS

n∑
k=1

ˆ̂
 jn (t ) · · · [−b jk
ˆ̂
 jk (t ) + ˆ̂B jk (t )] · · · ˆ̂
 j1 (t )ρ (0)(t )

+ αn ˆ̂TS
ˆ̂
 jn (t ) · · · ˆ̂
 j1 (t )

∑
jn+1

ˆ̂Ajn+1 (t ) ˆ̂
 jn+1 (t )ρ (0)(t )

=
n∑

k=1

(−b jk )ρ (n)
jn··· j1

+ α

n∑
k=1

(−1)n−k ˆ̂B jk (t )ρ (n−1)
jn··· jk+1 jk−1··· j1

+ α−1
∑
jn+1

ˆ̂Ajn+1 (t )ρ (n+1)
jn+1··· j1

, (C25)

where the superoperators ˆ̂A and ˆ̂B are given by Eq. (2.27) and
Eq. (3.8), i.e.,

ˆ̂Aj (t ) ≡ ˆ̂Aσ (t ) = ŝσ̄ (t )[·] − ˆ̂PS[[·]ŝσ̄ (t )],

ˆ̂B j (t ) ≡ ˆ̂Bσ
m(t ) = −{aσ

mŝσ (t )[·] + āσ̄
mPS[[·]ŝσ (t )]}. (C26)

In the last step of Eq. (C25), we accounted for the minus

signs originating when moving the superoperators ˆ̂B jk (t ) on

the very left (a sign appears each time ˆ̂B moves across a ˆ̂
).
On the contrary, signs appearing when moving the superoper-
ators ˆ̂Ajn+1 (t ) on the very left are always compensated by the

ones appearing when moving ˆ̂
 jn+1 (t ) which also needs to be
brought on the left in order to be able to use Eq. (C19).

We can now go back to the Schrödinger picture by
multiplying each iteration of the HEOM by U · U † where
U = exp(−iHSt ) is the free evolution of the system. Using

Ud/dt (Ô)U † = d/dt (UÔU †) − LÔ, where ˆ̂L = −i[HS, ·],

we derive the generalized hierarchical equations of motion,

ρ̇
Schr,(n)
jn··· j1

=
(

ˆ̂L −
n∑

k=1

b jk

)
ρ

Schr,(n)
jn··· j1

+ α

n∑
k=1

(−1)n−k ˆ̂B jk ρ
Schr,(n−1)
jn··· jk+1 jk−1··· j1

+ α−1
∑
jn+1

ˆ̂Ajn+1ρ
Schr,(n+1)
jn+1··· j1

. (C27)

Here, the adjective “generalized” is motivated by the fact
that the previous expression can be applied to both even-
and odd-parity sectors. If we now assume ρ (0)(t ) to have a
definite parity symmetry, then the parity superoperators inside
the definitions in Eq. (C26) translate into signs dependent on
the iteration index n. For example, assuming ρ (0)(t ) to be
physical, hence even, when Aσ acts on ρ (0), the parity operator
adds a minus sign (note that ˆ̂PS acts on the density matrix
multiplied by the odd operator ŝ), while when it acts on ρ (n),
the parity operator is trivial. We can then write, omitting the
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label Schr,

ρ̇
(n)
jn··· j1

=
(

ˆ̂L −
n∑

k=1

b jk

)
ρ

(n)
jn··· j1

−α

n∑
k=1

(−1)n−k ˆ̂C jk
n ρ

(n−1)
jn··· jk+1 jk−1··· j1

+α−1
∑
jn+1

ˆ̂Aσn+1
n ρ

(n+1)
jn+1··· j1

,

where
ˆ̂A j

n[·] ≡ ŝσ̄ [·] + (−1)n[·]ŝσ̄ ,
(C28)

ˆ̂C j
n[·] ≡ aσ

n ŝσ [·] − (−1)nāσ̄
n [·]ŝσ ,

where the notation is slightly redundant as it implies a trivial

dependence of ˆ̂A on the index m, originating from the expan-
sion of the correlation in Eq. (3.6). For the specific choice

α = i, we obtain

ρ̇
(n)
jn··· j1

=
(

ˆ̂L −
n∑

k=1

b jk

)
ρn

jn··· j1 − i
∑
jn+1

ˆ̂A jn+1
n ρ

(n+1)
jn+1··· j1

− i
n∑

k=1

(−1)n−k ˆ̂C jk
n ρ

(n−1)
jn··· jk+1 jk−1··· j1

, (C29)

which represents one of the standard expressions for the
HEOM; see, for example, Eq. (38) in [75]. In the Appendix
C 2 c we give an explicit derivation of these equations up to
order 2.

c. Explicit calculation up to order 2

Here, we more explicitly compute the HEOM up to order 2.
We start by taking the derivative of the quantity in Eq. (3.12),
which is done using Eq. (3.10) and Eq. (3.9) to obtain (omit-
ting the time dependence for the density matrices)

ρ̇σ1
m1

= d

dt

[
α ˆ̂TS


σ1
m1

(t )ρS
]

= α ˆ̂TS
[−bσ1

m1

σ1

m1
(t ) + Bσ1

m1
(t )

]
ρS + α ˆ̂TS


σ1
m1

(t )α−1
∑
m2,σ2

Aσ2 (t )ρσ2
m2

= −bσ1
m1

ρσ1
m1

+ αBσ1
m1

(t )ρS + ˆ̂TS

σ1
m1

(t )
∑
m2,σ2

Aσ2 (t )α ˆ̂TS

σ2
m2

ρS

= −bσ1
m1

ρσ1
m1

+ αBσ1
m1

(t )ρS + α−1
∑
m2,σ2

Aσ2 (t )ρσ2,σ1
m2,m2

, (C30)

where we define

ρσ2,σ1
m2,m2

= α2 ˆ̂TS

σ2
m2


σ2
m2

(t )ρS. (C31)

We move the operator 
σ2
m2

across Aσ2 and 
σ1
m1

resulting in a + sign. We then further move Aσ2 across the two 
 operators, again
resulting in a + sign. Similarly, we can proceed onto the next order to obtain

ρ̇σ2,σ1
m2,m1

= α2 d

dt

[ ˆ̂TS

σ2
m2

(t )
σ1
m1

(t )ρS
]

= α2 ˆ̂TS
[−bσ2

m2

σ2

m2
(t ) + Bσ2

m2
(t )

]

σ1

m1
(t )ρS + α2 ˆ̂TS


σ2
m2

(t )
[−bσ1

m1

σ1

m1
(t )+ Bσ1

m1
(t )

]
ρS+α2 ˆ̂TS


σ2
m2

(t )
σ1
m1

(t )α−1
∑
n3,σ3

Aσ3 (t )ρσ3
n3

= −bσ2
m2

ρσ2,σ1
m2,m1

+ αBσ2
m2

(t )ρσ1
m1

− bσ1
m1

ρσ2,σ1
m2,m1

− αBσ1
m1

(t )ρσ2
m2

+ α2 ˆ̂TS

σ2
m2

(t )
σ1
m1

(t )α−1
∑
n3,σ3

Aσ3 (t )α ˆ̂TS

σ3
m2

(t )ρS

= −bσ2
m2

ρσ2,σ1
m2,m1

+ αBσ2
m2

(t )ρσ1
m1

− bσ1
m1

ρσ2,σ1
m2,m1

− αBσ1
m1

(t )ρσ2
m2

+ α2
∑
n3,σ3

Aσ3 (t ) ˆ̂TS

σ3
m2

(t )
σ2
m2

(t )
σ1
m1

(t )ρS

= −bσ2
m2

ρσ2,σ1
m2,m1

+ αBσ2
m2

(t )ρσ1
m1

− bσ1
m1

ρσ2,σ1
m2,m1

− αBσ1
m1

(t )ρσ2
m2

+ α−1
∑
n3,σ3

Aσ3 (t )ρσ3,σ2,σ1
n3,m2,m1

= ( − bσ1
m1

− bσ2
m2

)
ρσ2,σ1

m2,m1
+ α

2∑
j=1

(−1)2− jB
σ j
n j (t )ρσ3− j

n3− j + α−1
∑
m2,σ3

Aσ3 (t )ρσ3,σ2,σ1
m3,m2,m1

, (C32)

where

ρσ3,σ2,σ1
n3,m2,m1

(t ) = α3 ˆ̂TS

σ3
m2

(t )
σ2
m2

(t )
σ1
m1

(t )ρ. (C33)

Minus signs appear when the operators 
 cross each other or
other operators.

3. Computing system correlation functions

Here, we show how the correlations at thermal equilibrium
in Eq. (3.20), i.e.,

Cth
XY (t ) = TrSE [XS (0)U (t2 − t1)YS (0)ρ thU †(t2 − t1)], (C34)
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can be computed using the HEOM in Eq. (3.14). Our starting
point is Eq. (3.21) which writes the correlation as

Cth
XY (t ) = TrSE [XS (0)ρY (t )], (C35)

where

ρY (t ) = U (t )YS (0)U (T )ρ(−T )U †(T )U †(t ), (C36)

in terms of a separable state ρ(−T ) and a time T such that
ρ th = U (T )ρ(−T )U †(T ).

To start, using the same definitions which lead to
Eq. (2.16), we can write

ρY (t ) =
∞∑

n=0

(−i)n

n!
ˆ̂T b ˆ̂YS (0)

∫ t

−T

[
n∏

i=1

dti
ˆ̂H×

I (ti )

]
ρ(−T ),

(C37)

where we define ˆ̂YS (0)[·] = YS (0)[·] as the superoperator
version of YS (0) and use the (Bosonic) time ordering to
reposition it outside the integral. By using the decompo-
sition in Eq. (1.9), we can write ˆ̂YS (0)[·] = ˆ̂Y e

S (0) + ˆ̂Y o
S (0)

where ˆ̂Y e
S (0)[·] = Ŷ e

S (0)[·] and ˆ̂Y o
S (0)[·] = ˆ̂P′

E (0)Ŷ o
S (0)[·] with

ˆ̂P′
E [·] = PE [·].

Due to the presence of ˆ̂YS (0), in order to make progress in evaluating Eq. (C37), we need to adapt the reasoning done to
deduce Eq. (B33) from Eq. (B22). We can write

ρY (t ) =
∞∑

n=0

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

) ∑
qn,λn,··· ,q1,λ1

× {[ ˆ̂TE
ˆ̂B′λn

qn
(tn) · · · ˆ̂B′λ1

q1
(t1)

[
ρ

eq
E

]] ˆ̂TS
[ ˆ̂Y e

S (0) ˆ̂Sλ̄n
qn

(tn) · · · ˆ̂Sλ̄1
q1

(t1)
][

ρ̂e
S (−T )

]
+ [ ˆ̂TE

ˆ̂P′
E (0) ˆ̂B′λn

qn
(tn) · · · ˆ̂B′λ1

q1
(t1)

[
ρ

eq
E

]] ˆ̂TS
[ ˆ̂Y o

S (0) ˆ̂S′λ̄n
qn

(tn) · · · ˆ̂S′λ̄1
q1

(t1)
][

ρ̂e
S (−T )

]
+ [ ˆ̂TE

ˆ̂B′λn
qn

(tn) · · · ˆ̂B′λ1
q1

(t1)
[
ρ

eq
E PE

]] ˆ̂TS
[ ˆ̂Y e

S (0) ˆ̂S′λ̄n
qn

(tn) · · · ˆ̂S′λ̄1
q1

(t1)
][

ρ̂o
S (−T )

]
+ [ ˆ̂TE

ˆ̂P′
E (0) ˆ̂B′λn

qn
(tn · · · ˆ̂B′λ1

q1
(t1)

[
ρ

eq
E PE

]] ˆ̂TS
[ ˆ̂Y o

S (0) ˆ̂Sλ̄n
qn

(tn) · · · ˆ̂Sλ̄1
q1

(t1)
][

ρ̂o
S (−T )

]}
. (C38)

Here, it is important to keep the time dependence for all superoperators [including ˆ̂P′
E (0)] to allow for the action of time ordering.

As we defined in Sec. II B, the time orderings ˆ̂TS and ˆ̂TB are Fermionic when acting on the fields ˆ̂B′ and ˆ̂S. This definition is
possible because the ordering of the fields ˆ̂B inside ˆ̂TB mirrors that of the fields ˆ̂S inside ˆ̂TS . On the other hand, the current
situation involving the operator ˆ̂YS is not as symmetrical. For this reason, we consider the field ˆ̂YS and ˆ̂P′

E to be commuted under

the action of ˆ̂TS and ˆ̂TE other than anticommuted.
We are now ready to take the partial trace which leads to

ρY
S (t ) =

∑
n=even

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

) ∑
qn,λn···q1,λ1

{
C′λn···λ1

qn···q1
T̂S

[ ˆ̂Y e
S (0) ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

]
ρ̂e

S (0) + C′′λn···λ1
qn···q1

T̂S
[ ˆ̂Y o

S (0) ˆ̂S′λ̄n
qn

· · · ˆ̂S′λ̄1
q1

]
ρ̂e

S (0)

+ D′λn···λ1
qn···q1

T̂S
[ ˆ̂Y e

S (0) ˆ̂S′λ̄n
qn

· · · ˆ̂S′λ̄1
q1

]
ρ̂o

S (0) + D′′λn···λ1
qn···q1

T̂S
[ ˆ̂Y o

S (0) ˆ̂Sλ̄n
qn

· · · ˆ̂Sλ̄1
q1

]
ρ̂o

S (0)
}
, (C39)

where, since the operator ˆ̂Y o
S (0) changes the parity of the state,

the correlations take the form

C′λn···λ1
qn···q1

= TrE T̂E
[ ˆ̂B′λn

qn
· · · ˆ̂B′λ1

q1

][
ρ

eq
E

]
,

C′′λn···λ1
qn···q1

= TrE T̂E
[
PE

ˆ̂P′
E (0) ˆ̂B′λn

qn
· · · ˆ̂B′λ1

q1

][
ρ

eq
E

]
,

D′λn···λ1
qn···q1

= TrE T̂E
[
PE

ˆ̂B′λn
qn

· · · ˆ̂B′λ1
q1

][
ρ

eq
E PE

]
,

D′′λn···λ1
qn···q1

= TrE T̂E
[ ˆ̂P′

E (0) ˆ̂B′λn
qn

· · · ˆ̂B′λ1
q1

][
ρ

eq
E PE

]
. (C40)

Now, we notice that the difference between the fields ˆ̂S and
ˆ̂S′ is, ultimately, just a sign when the subscript indexes are

negative; see Eq. (B28) and Eq. (B29). The same sign can be
implemented in the bath correlations by adding two extra PE ;
i.e., we can consider Eq. (C43) with the substitutions ˆ̂S′λ

q →
ˆ̂Sλ

q and

C′′λn···λ1
qn···q1

→ TrE T̂E
[
P2

E
ˆ̂P′
E (0) ˆ̂B′λn

qn
· · · ˆ̂B′λ1

q1

][
ρ

eq
E PE

] = D′′λn···λ1
qn···q1

,

D′λn···λ1
qn···q1

→ TrE T̂E
[
P2

E
ˆ̂B′λn

qn
· · · ˆ̂B′λ1

q1

][
ρ

eq
E P2

E

] = C′λn···λ1
qn···q1

,

(C41)
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which leads to

ρY
S (t ) =

∑
n=even

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

) ∑
qn,λn···q1,λ1

{
C′λn···λ1

qn···q1
T̂S

[ ˆ̂Y e
S (0) ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

][
ρ̂e

S (0) + ρ̂o
S (0)

]
+ D′′λn···λ1

qn···q1
T̂S

[ ˆ̂Y o
S (0) ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

][
ρ̂e

S (0) + ρ̂o
S (0)

]}
. (C42)

It is not possible to further reduce D′′ because of the presence of ˆ̂P′
E (0) whose action adds a sign corresponding to the number of

times the fields ˆ̂Bλ j
q j appear with q j = 1 and t j < 0. However, the same sign can be introduced on the system variables to write

ρY
S (t ) =

∑
n=even

(−i)n

n!

∫ t

0

(
n∏

i=1

dti

) ∑
qn,λn···q1,λ1

{
C′λn···λ1

qn···q1
T̂S

[ ˆ̂Y e
S (0) ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

][
ρ̂e

S (0) + ρ̂o
S (0)

]
+ C′λn···λ1

qn···q1
T̂S

[ ˆ̂Y o
S (0) ˆ̂PS (0) ˆ̂Sλ̄n

qn
· · · ˆ̂Sλ̄1

q1

]
PS

(
ρ̂e

S (0) + ρ̂o
S (0)

)}
. (C43)

It is now possible to keep YS (0) “factorized” on the left and
follow all the reasoning which allowed us to deduce Eq. (2.29)
from Eq. (B41) to get

ρY
S (t ) = ˆ̂TS

ˆ̂Y e
S (0)e

ˆ̂FT (t )ρY
S (−T )

+ ˆ̂TS
ˆ̂Y o
S (0) ˆ̂PS (0)e

ˆ̂FT (t )PSρ
Y
S (−T )

= ˆ̂TSe
ˆ̂FT (t )

[ ˆ̂Y e
S (0) + ˆ̂Y o

S (0) ˆ̂PS (0)PS
]
ρY

S (−T ), (C44)

which is valid for t � 0 and where

ˆ̂FT (t ) =
∫ t

−T
dt2

∫ t2

−T
dt1

ˆ̂W (t2, t1). (C45)

Interestingly, despite the presence of the operator ˆ̂Y , the for-
mal time derivative of the density matrix ρY

S (t ) has the same
form as Eq. (3.9), i.e.,

ρ̇Y
S (t ) =

∑
j

ˆ̂Aj (t ) ˆ̂TS
ˆ̂
 j (t )ρY

S (t ). (C46)

However, the presence of ˆ̂Y gives rise to a different boundary
condition which reads

ρY
S (0) = ˆ̂TSe

ˆ̂FT (0)[ ˆ̂Y e
S (0) + ˆ̂Y o

S (0) ˆ̂PS (0)PS
]
ρY

S (−T )

= YS
ˆ̂TSe

ˆ̂FT (0)ρY
S (−T ), (C47)

where we used that all superoperators in ˆ̂F (0) are evaluated
at times t < 0 and their number is even.

The differential equation in Eq. (C46) together with the
initial condition in Eq. (C47) offers a direct way to compute
the correlations in Eq. (C34). To achieve this, it is sufficient
to show that the diagram in Fig. 2 commutes. We prove this
justifying all the down arrows in Fig. 2.

(1) ρS (−T ) is the reduced density matrix of
TrE [ρeqρS (−T )]. This is an immediate consequence of
the identity in Eq. (1.11) and the fact that ρeq has even parity,
leading to TrE [ρeqρS (−T )] = ρS (−T ).

(2) ρ (0)(0) is the reduced density matrix of TrE [ρ th]. This
is a direct consequence of the meaning of the HEOM as given
in Eq. (3.14).

(3) YSρ
(0)(0) is the reduced density matrix of TrE [YSρ

th].
This is a consequence of the definition of partial trace in

Eq. (1.8). In fact, for all system operators AS , we have
TrES[AS (YSρ

th )] = TrES[ASYS (ρ th )] = TrS[ASYSρ
(0)] where in

the last equality we use the second down-arrow from the left.
Since the superoperator associated with YS is evaluated at time
0, Eq. (3.13) implies that also the auxiliary density matrices
ρ

(n)
jn,..., j1

need to be multiplied by YS .
(4) ρY

S (t ) is the reduced density matrix of U (t )YSρ
thU †(t ).

This is a consequence of Eq. (C46) which implies that the
reduced density matrix ρY

S (t ) can be computed using the usual
HEOM equation, given in Eq. (3.14), with initial condition in

Eq. (C47), i.e., ρY
S (0) = YS

ˆ̂TSe
ˆ̂FT (0)ρY

S (−T ). Using the results
above, this initial condition does correspond to the auxiliary
density matrices in the third place of the second row of the
diagram.

Derivative of the reduced density matrix

Here, we derive an expression for the time derivative of
the reduced density matrix. We do this explicitly because the
Fermionic time ordering always requires some extra attention.
The time derivative of the reduced density matrix in Eq. (2.29)
can be written as

d

dt
ρS (t ) = d

dt
ˆ̂TSe

ˆ̂F (t )ρS (0)

= ˆ̂TS

∞∑
n=0

d

dt

ˆ̂F (t )n

n!
ρS (0). (C48)

FIG. 2. Diagram showing how to generate the reduced ρY
S (t )

needed to compute the correlation function Cth
XY (t ). The first row

shows the time evolution in the system+environment while the sec-
ond row the reduced system evolution. Down-arrows refer to the
computation of the reduced density matrices following the definition
in Eq. (1.8).
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Now, the derivative of a single ˆ̂F (t ) is

d

dt
ˆ̂F (t ) = d

dt

∫ t

0
dt2

∫ t2

0
dt1

ˆ̂W (t2, t1)

=
∫ t

0
dt1

ˆ̂W (t, t1)

=
∑
i2,k2

ˆ̂Sk̄2
i2

(t )
∫ t

0
dt1

∑
i1,k1

Ck2,k1
i2,i1

(t, t1) ˆ̂Sk̄1
i1

(t1), (C49)

which, importantly, contains two system superoperators. The

T product of the nth power of ˆ̂F (t ) can be written as

ˆ̂TS
d

dt
ˆ̂Fn(t ) = ˆ̂TS

d

dt
[ ˆ̂F (t ) · · · ˆ̂F (t )]

= ˆ̂TS
d

dt
[ ˆ̂F (t )] · · · ˆ̂F (t ) + · · ·

+ ˆ̂TS
ˆ̂F (t ) · · · d

dt
[ ˆ̂F (t )]

= n ˆ̂TS
d

dt
[ ˆ̂F (t )] ˆ̂F (t ) · · · ˆ̂F (t )︸ ︷︷ ︸

n−1

, (C50)

where, since the derivative of a single ˆ̂F (t ) contains two
system superoperators, we can always move it in front without
“penalty” signs from the Fermionic time ordering. Therefore,

d

dt
ρS (t ) = ˆ̂TS

(
d

dt
ˆ̂F (t )

)
ρS (t ). (C51)

To finish, we change to the Schrödinger frame defined as

ρSchr
S (t ) = U (t )ρS (t )U †(t ), (C52)

where U = e−iHSt , and where HS is the system Hamiltonian.
The time derivative in this frame reads

d

dt
ρSchr

S (t ) = d

dt
U (t )ρS (t )U †(t )

= −i[H, ρS (t )] + U (t )
d

dt
[ρS (t )]U †(t )

= −i[H, ρS (t )]

+ U (t )

[
ˆ̂TS

(
d

dt
ˆ̂F (t )

)
ρS (t )

]
U †(t ). (C53)

APPENDIX D: IDENTITIES FOR THE
CORRELATION FUNCTIONS

In this section, we derive constraints on the correlations
Cσ (t2, t1) defined in Eq. (B93). To do this, we define the
spectral density

J (ω) = π
∑

k

g2
kδ(ω − ωk ), (D1)

which quantifies the strength of the interaction between the
environment and the system. We then have

Cσ=1(t2, t1) = TrE
[
B†(t2)B(t1)ρeq

E

]
=

∑
k

g2
kTrE

[
c†

k (t2)ck (t1)ρeq
E

]

=
∑

k

g2
keiωk (t2−t1 )neq

k

= 1

π

∫
dωJ (ω)eiω(t2−t1 )neq(ω), (D2)

where neq
k = TrE [c†

kckρ
eq
E ]. The equilibrium thermal

state for the environment is the Boltzmann distribution
ρ

eq
E = exp [−β

∑
k (ωk − μ)c†

kck]/Zeq
E = ∏

k e−β(ωk−μ)c†
k ck /

{1 + exp[−β(ωk − μ)]}, where Zeq
E = TrE exp[−β

∑
k (ωk −

μ)c†
kck] = ∏

k{1 + exp[−β(ωk − μ)]}. These definitions
allow us to write the Fermi-Dirac distribution neq

k = exp[−
β(ωk − μ)]/{1 + exp[−β(ωk − μ)]}=1/{exp[β(ωk−μ)]+1}
which, in the continuum version, reads

neq(ω) = 1

exp[β(ω − μ)] + 1
. (D3)

We can also consider

Cσ=−1(t2, t1) = TrE [B(t2)B†(t1)ρ]

=
∑

k

g2
kTrE [ck (t2)c†

k (t1)ρ]

=
∑

k

g2
ke−iωk (t2−t1 )TrE [ckc†

kρ]

=
∑

k

g2
ke−iωk (t2−t1 )

(
1 − neq

k

)

= 1

π

∫
J (ω)e−iω(t2−t1 )[1 − neq(ω)]. (D4)

Both Eq. (D2) and Eq. (D4) can be written together as

Cσ (t2, t1) =
∫

dω

π
J (ω)eiσω(t2−t1 ) 1 − σ + 2σneq(ω)

2
, (D5)

which is Eq. (3.2) in the main article. Alternatively, we can
also write

Cσ=−1(t2, t1) = TrE [B(t2)B†(t1)ρ]

=
∑

k

g2
kTrE [ck (t2)c†

k (t1)ρ]

=
∑

k

g2
ke−iωk (t2−t1 )TrE [ckc†

kρ]

=
∑

k

g2
keβ(ωk−μ)e−iωk (t2−t1 )TrE [c†

kckρ]

= e−βμ
∑

k

g2
ke−iωk [t2−(t1−iβ )]neq

k

= e−βμ

π

∫
dωJ (ω)e−iω[t2−(t1−iβ )]neq(ω), (D6)

where we use Eq. (B72), i.e.,

c†
kρβ = eβ(ωk−μ)ρβc†

k . (D7)

Inspection of Eq. (D2) and Eq. (D6) directly leads to
the following correspondence between time reversal and
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conjugation, i.e.,

C̄σ (t2, t1) = Cσ (t1, t2), (D8)

where the bar denotes complex conjugation and for σ = ±1.
At the same time, by comparing Eq. (D2) and Eq. (D6) we
arrive at the relation

Cσ=−1(t1, t2) = e−βμCσ=1(t2 − iβ, t1). (D9)

Using the ansatz in Eq. (3.6), i.e.,

Cσ (t2, t1) =
∑

m

aσ
me−bσ

m (t2−t1 ), (D10)

together with Eq. (D9) and Eq. (D8) we find

Cσ=−1(t1, t2) = C̄σ=−1(t2, t1) =
∑

m

āσ=−1
m e−b̄σ=−1

m (t2−t1 ),

Cσ=−1(t1, t2) = e−βμ
∑

m

aσ=1
m e−bσ=1

m (t2−t1 )eiβbσ=1
m , (D11)

which implies

āσ=−1
m = e−β(μ−ibσ=1

m )aσ=1
m ,

b̄σ=−1
m = bσ=1

m . (D12)

This allows us to explicitly write

Cσ=1(t2, t1) =
∑

m

aσ=1
m e−bσ=1

m (t2−t1 ),

Cσ=−1(t1, t2) =
∑

m

āσ=−1
m e−b̄σ=−1

m (t2−t1 )

=
∑

m

āσ=−1
m e−bσ=1

m (t2−t1 ),

which shows their similarity in the time dependence in the
exponent. Similarly,

Cσ=1(t1, t2) =
∑

m

āσ=1
m e−b̄σ=1

m (t2−t1 )

=
∑

m

āσ=1
m e−bσ=−1

m (t2−t1 ),

Cσ=−1(t2, t1) =
∑

m

aσ=−1
m e−bσ=−1

m (t2−t1 ). (D13)

Similarly, since Eq. (D12) implies b̄σ̄
m = bσ

m, we have

C̄σ̄ (t2, t1) =
∑

m

āσ̄
me−b̄σ̄

m (t2−t1 )

=
∑

m

āσ̄
me−bσ

m (t2−t1 ). (D14)
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