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Below we show the study of the stability of the quarter-metal against the umklapp interaction

term.

S-1. BASIC EQUATIONS

For reader’s convenience, let us recall several basic equations and facts from the main text.

A. Definitions

The interaction Hamiltonian is
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with the coupling constants Vk(11;2’3’4) defined as
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Our first-step approximation is
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The interaction can be approximated as Hyw ~ HO + A®).

B. Mean field approximation

The mean field version of ﬁint is
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The spectrum of the mean-field Hamiltonian can be easily derived
BoY =FEL, By =FE,, (813)

where
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The total energy of the system is

E=Y"3(BY - we(u-EY), (S14)

where ©(F) is the step-function. Using the Hellmann-Feynman theorem, we obtain
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Formally, the summation in Eq. (S10|) covers the whole Brillouin zone. However, the interaction Vp(llf) is the strongest
when p ~ k, and decays for larger |p — k|. In the limit of vanishing backscattering

Vi = Viglk, 2 0, (S16)

it is possible to define order parameters localized near a specific Dirac point K¢: Agoe = Ak, when k =~ Kg.
Combining Egs. (S10)) and (S15)), we obtain the self-consistent equations in the form
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We see that, within our approximations, the electronic states and the order parameters can be split into four inde-
pendent sectors, which can be labeled by the multi-index s = (0, £). Our derivation implies that the sectors are not
entirely independent: neglected contributions proportional to Vis and V(24 couple them. Due to the smallness of
these couplings, they can be treated perturbatively.



We add and subtract Egs. (S19) and (S20]), use Egs. , and change the summation over momentum by an
integration. We also assume that both A and A only depend on [k|. Finally, using the symmetry of our theory with
respect to the sign of u, we derive for 0 < p < tg
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where the integration symbol stands for fp ... = (2mp/upz) [dp..., and the volume (area) of the Brillouin zone is
vpz = 872/(3v/3a?). In Eqs. (S21)), the averaged coupling constants are

Vi (k,p) = / %VC(\/H + p2 + 2kpcos ¢), (522)
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and the spectrum (S13)) in sector s = (0, ) can be approximated as
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where p = |p — K¢|.
To solve the integral equations (S21)) we use the simple BCS-like ansatz

Au(q) = AO(A — g~ kpol) and  Ago(q) = AsO(A — |g — kpol) (524)

for the order parameters (the cutoff momentum A satisfies A < @), and assume that VD are constants independent

of k and p. This allows us to convert the integral equations into non-linear algebraic equations
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where the energy scale is E* = 2tgA/kpg, and the coupling constants are
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C. Solutions of the mean field equations

At zero doping, which corresponds to the case p = Ay, the order parameters are
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This mean-field solution is valid in the weak-coupling limit, that is, when g is small, and, consequently, Ay and Ag
are much less than tg. The doped state is characterized by u > A;. To describe the solution of Eq. in such a
regime, let us define the partial doping x, for the concentration of electrons residing in sector s. It is known that a
finite x, decreases the order parameter A,:
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where z¢g = Agto/ (W\/§t2). It is easy to check that Eqs. 1' indeed guarantee that y exceeds Ay, making it possible
to dope sector s. At zero temperature, the partial free energy (per unit cell) associated with doping becomes

AF,(z4) = 4 /0 " i) do = 40, (x _ f) . (529)

As in the main text, the factor 4 accounts for the four carbon atoms in a single unit cell.

S-2. STABILITY AGAINST THE UMKLAPP INTERACTION

A. Self-consistent equations

The next step is to add the inter-sector interaction. We will use H?) as an example of the inter-sector interaction.

The other example is the backscattering Vb(s1 3 The term H® is a type of umklapp scattering: such term is non-zero

only when the nesting vector is either zero or half of the elementary reciprocal lattice vector. If we average H® we
obtain
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where Vi, is the averaged value of Vk(iz.

operator averages, Eq. (S10)), we derive

Using the definition of the order parameter in terms of the anomalous
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This suggests that the self—consistent equations for s = (1,¢) and s’ = ({,£) become coupled. To account for this, we
take the first of the two equations and add a term V( )<’YZ’Y<7> to its right-hand side
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where we discarded the term with bands 1 and 4. Finally, using Eq. (S15)), we derive
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To describe two remaining sectors, (1,€) and (], €), the identical set of equations should be used. In Egs. (S33)
and (S34), the quantity M (u,A) effectively functions as the low-energy cutoff: if in a given sector A > pu, this
sector remains undoped, and M (u, A) = A; when a sector accommodates finite doping g > A, in such a situation

M(p, A) = p+ /p? — A2, Formally, this can be expressed as

M, A) = (n+ V12 — A2)0(u— A) + AO(A — p). (S35)

Note also that in Egs. and - we used the simplified notation Ay = A4 and Ay = Aje. The coupling
constant is gum = SVamV(er), where v(ep) is the density of states, and § is a numerical coefficient of order unity.

When the system is undoped, we can introduce Aq as follows p = Ay = Ay = Ag [note that this is a redefinition
of A initially given by Eq. ] In such a limit, both equations become identical

E* um
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This equation has one non-zero solution
1
Ag = E* exp (—) . S37
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We can see that the umklapp coupling increases Ag.



B. Doped state

Now we discuss the doped system. Below we will consider two possibilities: (i) all four sectors are doped equally,
and (ii) three sectors remain undoped, and all doping only enters a single sector. Let us start with (i). In such a
situation p > A; = A(x) for all four s. Equations (S33) and (S34) become identical

A=g(1+7)An ( ($38)
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valid in all four sectors. The solution to this equation is similar to Eq. (S28)
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where we took into account that partial dopings equal to half of the total doping: x5 = /4. The expression for pu(z)
allows us to calculate AF(x)
x .%'2
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This free energy is denoted as AF, in the main text.

For case (ii), the calculations are more complicated. We define 0, (z) as follows A,(x) = Ap[l — ds(x)]. For
definiteness, we assume that the sector s = (7, &) is undoped, while s = (], ) is doped. This means that Ay > > Ay,
Two other sectors, (1,€) and ({,&), are undoped, and decoupled from s and s’. Therefore, they are characterized by
the order parameter Ay, given by Eq. (S37))
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Let us introduce yet another quantity, 4.5, as follows
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The parameters d,, 65, and m are small in the limit of small doping x. However, they have different degrees of
smallness. Indeed, as we will see later
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These relations become important when we solve the self-consistent equations in the limit of small doping.
Our goal is to solve the following equations
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to find d, as a function of m, and then determine m versus x. In the limit of small z, we expand the self-consistent
equations and, keeping in mind Eq. (S44), we derive
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Next step:
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Let us express 0.5 in the limit of small doping
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Let us check the consistency of these relations with known results in the a = 0 limit. In this case
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which coincides with Eq. (S61J).
The final step is to add doping into the formalism. To this end, we write
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FIG. S1: The function a(v) for g = 0.1 is shown by the blue curve. The straight (red) line is v/g.

where 4z is the doping per unit cell, vp = to/(v/37t2) is the density of states per unit cell for each single Fermi surface
sheet (there are four Fermi surface sheets),
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where g = vpAyg. It is possible to show that
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Deriving the latter relation we used Eq. (S60), which, among other things, demonstrates that d, —m = O(m?).
Equation (S66) allows us to establish the following connection between doping and the chemical potential
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Integrating p(z), we obtain
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In the limit & — 0 we recover the expression for AFy,, given in the main text [see after Eq. (30)]. The free energy (S68))
must be compared against the free energy given by Eq. (S40). We see that the quarter-metal is stable if (1+a)~ > 1/4.
Equivalently,

quarter-metal is stable when «(y) < 3. (S569)

To understand what the latter requirement entails, let us examine Fig. which shows «(v) for g = 0.1. We see that
a < 3 aslong as v = gum/g < 6.8. That is, for g = 0.1, the umklapp satisfying

Gum < 0.68, (S70)

does not violate the stability of the quarter-metal.

We note that Eq. is not the absolute stability criterion, rather it describes the stability of the quarter-metal
against the transition into an ordinary metal, when all four sectors are doped equally. A comprehensive investigation
of the stability goes well beyond the present study, and, most likely, requires input from experiments.

It is interesting to note that perturbation theory in powers of small v strongly underestimates the stability range
of the quarter-metal. To demonstrate this, we expand the expression for AFym in powers of «
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Since at v — 0, the following holds o & /g = gum/g?, the expression for AF,, can be approximated as
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If we use this expression, instead of the more accurate Eq. (S68)), we could (erroneously) conclude that the quarter-
metal is stable when (1 — gum/g?) > 1/4. This inequality can be transformed to

3 2
< S gum < 2 (S73)
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In Fig. we can see the low-y approximation a(y) ~ /g as a (red) straight line. We see that, at low g, this
approximation works only at very small y; while for larger v (larger gum) it is completely useless. Thus, we conclude
that the replacement [1+ a(y)]~! — (1 —+/g) artificially shrinks the stability range of the quarter-metal. Indeed, the
requirement is very strict: at ¢ = 0.1, as in Fig. Eq. demand that g, < 0.0075, cf. Eq. . This is
the origin of the serious disparity between the stability condition derived in the main text using simple perturbation
theory and more the sophisticated criterion .
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