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Below we show the study of the stability of the quarter-metal against the umklapp interaction
term.

S-1. BASIC EQUATIONS

For reader’s convenience, let us recall several basic equations and facts from the main text.

A. Definitions

The interaction Hamiltonian is

Ĥint = Ĥ(1) + Ĥ(2) + Ĥ(3) + Ĥ(4), where (S1)

Ĥ(1) = − 1

Nc

∑
kpσ

V
(1)
k,p

[
(γ†k1σγk4σ̄)(γ†p4σ̄γp1σ) + (γ†k3σ̄γk2σ)(γ†p2σγp3σ̄)

]
, (S2)

Ĥ(2) = − 1

2Nc

∑
kpσ

V
(2)
k,p

[
(γ†k1σγk4σ̄)(γ†p1σ̄γp4σ) + (γ†k2σγk3σ̄)(γ†p2σ̄γp3σ) + H.c.

]
, (S3)

Ĥ(3) = − 1

Nc

∑
kpσ

V
(3)
k,p

[
(γ†k1σγk4σ̄)(γ†p3σ̄γp2σ) + (γ†k2σγk3σ̄)(γ†p4σ̄γp1σ)

]
, (S4)

Ĥ(4) = − 1

2Nc

∑
kpσ

V
(4)
k,p

[
(γ†k1σγk4σ̄)(γ†p2σ̄γp3σ) + (γ†k2σγk3σ̄)(γ†p1σ̄γp4σ) + H.c.

]
, (S5)

with the coupling constants V
(1,2,3,4)
k,p defined as

V
(1,3)
k,p =

1

8

[
V 00
AA+V 10

AA±
(
V 00
AB+V 10

AB

)
e−i∆ϕ+C.c.

]
, (S6)

V
(2,4)
k,p =

1

8

[
V 00
AA−V 10

AA∓
(
V 00
AB−V 10

AB

)
e−i∆ϕ+C.c.

]
. (S7)

Our first-step approximation is

V
(1,3)
k,p ≈ 1

2
VC(k− p) [1± cos(∆ϕk,p)] , V

(2,4)
k,p ≈ 0. (S8)

The interaction can be approximated as Ĥint ≈ Ĥ(1) + Ĥ(3).

B. Mean field approximation

The mean field version of Ĥint is

ĤMF
int =

1

Nc
(B↑+B↓)−

∑
pσ

(
∆̃pσγ

†
p4σ̄γp1σ+∆pσγ

†
p3σ̄γp2σ+H.c.

)
, (S9)
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where

∆kσ =
1

Nc

∑
p

[
V

(1)
p,k〈γ

†
p2σγp3σ̄〉+V (3)

p,k〈γ
†
p1σγp4σ̄〉

]
, (S10)

∆̃kσ =
1

Nc

∑
p

[
V

(1)
p,k〈γ

†
p1σγp4σ̄〉+V (3)

p,k〈γ
†
p2σγp3σ̄〉

]
, (S11)

Bσ =
1

Nc

∑
k

[
∆kσ〈γ†k3σ̄γk2σ〉+∆̃kσ〈γ†k4σ̄γk1σ〉

]
. (S12)

The spectrum of the mean-field Hamiltonian can be easily derived

E
(2,3)
kσ = ∓Em

kσ, E
(1,4)
kσ = ∓Eh

kσ, (S13)

where

Em
kσ=

√
|∆kσ|2+(t0−tζk)2, Eh

kσ=

√
|∆̃kσ|2+(t0+tζk)2.

The total energy of the system is

E =

4∑
ν=1

∑
kσ

(E
(ν)
kσ − µ) Θ(µ− E(ν)

kσ ), (S14)

where Θ(E) is the step-function. Using the Hellmann-Feynman theorem, we obtain

〈γ†k3σ̄γk2σ〉 =
∆kσ

2Em
kσ

[Θ(µ+ Em
kσ)−Θ(µ− Em

kσ)] ,

〈γ†k4σ̄γk1σ〉 =
∆̃kσ

2Eh
kσ

[
Θ(µ+ Eh

kσ)−Θ(µ− Eh
kσ)
]
. (S15)

Formally, the summation in Eq. (S10) covers the whole Brillouin zone. However, the interaction V
(1,3)
p,k is the strongest

when p ≈ k, and decays for larger |p− k|. In the limit of vanishing backscattering

V
(1,3)
bs ≡ V (1,3)

K1,K2
≈ 0, (S16)

it is possible to define order parameters localized near a specific Dirac point Kξ: ∆kσξ = ∆kσ, when k ≈ Kξ.
Combining Eqs. (S10) and (S15), we obtain the self-consistent equations in the form

∆kσξ =
1

Nc

∑
p∈Kξ

{
V

(1)
p,k∆pσξ

2Em
pσ

[
Θ(µ+ Em

pσ)−Θ(µ− Em
pσ)
]

+
V

(3)
p,k∆̃pσξ

2Eh
pσ

[
Θ(µ+ Eh

pσ)−Θ(µ− Eh
pσ)
]}

, (S17)

∆̃kσξ =
1

Nc

∑
p∈Kξ

{
V (1)∆̃pσξ

2Eh
pσ

[
Θ(µ+ Eh

pσ)−Θ(µ− Eh
pσ)
]

+
V (3)∆pσξ

2Em
pσ

[
Θ(µ+ Em

pσ)−Θ(µ− Em
pσ)
]}

. (S18)

Simplifying the latter equations in the regime µ > 0, we derive

∆kσξ =
1

Nc

∑
p∈Kξ

{
V

(1)
p,k∆pσξ

2Em
pσ

Θ(Em
pσ − µ) +

V
(3)
p,k∆̃pσξ

2Eh
pσ

Θ(Eh
pσ − µ)

}
, (S19)

∆̃kσξ =
1

Nc

∑
p∈Kξ

{
V (1)∆̃pσξ

2Eh
pσ

Θ(Eh
pσ − µ) +

V (3)∆pσξ

2Em
pσ

Θ(Em
pσ − µ)

}
. (S20)

We see that, within our approximations, the electronic states and the order parameters can be split into four inde-
pendent sectors, which can be labeled by the multi-index s = (σ, ξ). Our derivation implies that the sectors are not
entirely independent: neglected contributions proportional to Vbs and V (2,4) couple them. Due to the smallness of
these couplings, they can be treated perturbatively.
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We add and subtract Eqs. (S19) and (S20), use Eqs. (S8), and change the summation over momentum by an

integration. We also assume that both ∆ and ∆̃ only depend on |k|. Finally, using the symmetry of our theory with
respect to the sign of µ, we derive for 0 < µ < t0

∆ks + ∆̃ks =

∫
p

V̄
(0)
Q

[
∆ps

2Em
ps

Θ(Em
ps − µ) +

∆̃ps

2Eh
ps

]
,

∆ks − ∆̃ks =

∫
p

V̄
(1)
Q

[
∆ps

2Em
ps

Θ(Em
ps − µ)− ∆̃ps

2Eh
ps

]
, (S21)

where the integration symbol stands for
∫
p
. . . = (2πp/vBZ)

∫
dp . . ., and the volume (area) of the Brillouin zone is

vBZ = 8π2/(3
√

3a2). In Eqs. (S21), the averaged coupling constants are

V̄
(0)
Q (k, p) =

∫
dφ

2π
VC(

√
k2 + p2 + 2kp cosφ), (S22)

V̄
(1)
Q (k, p) =

∫
dφ

2π
VC(

√
k2 + p2 + 2kp cosφ) cosφ,

and the spectrum (S13) in sector s = (σ, ξ) can be approximated as

Em
ps ≈

√
|∆s|2 + t20(1− p/kF0)2, (S23)

Eh
ps ≈

√
|∆̃s|2 + t20(1 + p/kF0)2 ≈ t0(1 + p/kF0),

where p = |p−Kξ|.
To solve the integral equations (S21) we use the simple BCS-like ansatz

∆a(q) = ∆sΘ(Λ− |q − kF0|) and ∆̃ξσ(q) = ∆̃sΘ(Λ− |q − kF0|) (S24)

for the order parameters (the cutoff momentum Λ satisfies Λ� Q0), and assume that V̄
(0,1)
Q are constants independent

of k and p. This allows us to convert the integral equations into non-linear algebraic equations

∆s + ∆̃s = g∆s ln

(
E∗

µ+
√
µ2 −∆2

s

)
+ g̃∆̃s, (S25)

∆s − ∆̃s =
g

α
∆s ln

(
E∗

µ+
√
µ2 −∆2

s

)
− g̃

α
∆̃s,

where the energy scale is E∗ = 2t0Λ/kF0, and the coupling constants are

g =
t0√
3πt2

V̄ (0), g̃ =
Λ

2kF0
g, α =

V̄ (0)

V̄ (1)
> 1. (S26)

C. Solutions of the mean field equations

At zero doping, which corresponds to the case µ = ∆s, the order parameters are

∆s = ∆0 = E∗ exp

[
−1

g

2α− g̃(1 + α)

1 + α− 2g̃

]
, ∆̃s =

α− 1

α+ 1− 2g̃
∆s. (S27)

This mean-field solution is valid in the weak-coupling limit, that is, when g is small, and, consequently, ∆0 and ∆̃0

are much less than t0. The doped state is characterized by µ > ∆s. To describe the solution of Eq. (S25) in such a
regime, let us define the partial doping xs for the concentration of electrons residing in sector s. It is known that a
finite xs decreases the order parameter ∆s:

∆s(xs) = ∆0

√
1− 4xs

x0
, µ = ∆0

(
1− 2xs

x0

)
, (S28)
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where x0 = ∆0t0/(π
√

3t2). It is easy to check that Eqs. (S28) indeed guarantee that µ exceeds ∆s, making it possible
to dope sector s. At zero temperature, the partial free energy (per unit cell) associated with doping becomes

∆Fs(xs) = 4

∫ xs

0

µ(x) dx = 4∆0

(
xs −

x2
s

x0

)
. (S29)

As in the main text, the factor 4 accounts for the four carbon atoms in a single unit cell.

S-2. STABILITY AGAINST THE UMKLAPP INTERACTION

A. Self-consistent equations

The next step is to add the inter-sector interaction. We will use H(2) as an example of the inter-sector interaction.

The other example is the backscattering V
(1,3)
bs . The term H(2) is a type of umklapp scattering: such term is non-zero

only when the nesting vector is either zero or half of the elementary reciprocal lattice vector. If we average H(2) we
obtain

〈Ĥ(2)〉 = − 1

2Nc

∑
kpσ

V
(2)
k,p

[
〈γ†k1σγk4σ̄〉〈γ†p1σ̄γp4σ〉+ 〈γ†k2σγk3σ̄〉〈γ†p2σ̄γp3σ〉+ C.c.

]
(S30)

≈ − 1

2Nc

∑
kpσ

V
(2)
k,p

[
〈γ†k2σγk3σ̄〉〈γ†p2σ̄γp3σ〉+ C.c.

]
≈ − V̄um

2Nc

∑
kpσ

[
〈γ†k2σγk3σ̄〉〈γ†p2σ̄γp3σ〉+ C.c.

]
,

where V̄um is the averaged value of V
(2)
k,p. Using the definition of the order parameter in terms of the anomalous

operator averages, Eq. (S10), we derive

〈Ĥ(2)〉 ≈ −Nc
V̄um

V̄ 2
1

∆↑ξ ∆↓ξ + C.c. (S31)

This suggests that the self-consistent equations for s = (↑, ξ) and s′ = (↓, ξ) become coupled. To account for this, we

take the first of the two equations (S10) and add a term V
(2)
p,k〈γ

†
σ̄γσ〉 to its right-hand side

∆kσ =
1

Nc

∑
p

[
V

(1)
p,k〈γ

†
p2σγp3σ̄〉+V (2)

p,k〈γ
†
p2σ̄γp3σ〉

]
, (S32)

where we discarded the term with bands 1 and 4. Finally, using Eq. (S15), we derive

∆↑ = g∆↑ ln

[
E∗

M(µ,∆↑)

]
+ gum∆↓ ln

[
E∗

M(µ,∆↓)

]
, (S33)

∆↓ = g∆↓ ln

[
E∗

M(µ,∆↓)

]
+ gum∆↑ ln

[
E∗

M(µ,∆↑)

]
. (S34)

To describe two remaining sectors, (↑, ξ̄) and (↓, ξ̄), the identical set of equations should be used. In Eqs. (S33)
and (S34), the quantity M(µ,∆) effectively functions as the low-energy cutoff: if in a given sector ∆ > µ, this
sector remains undoped, and M(µ,∆) = ∆; when a sector accommodates finite doping µ > ∆, in such a situation

M(µ,∆) = µ+
√
µ2 −∆2. Formally, this can be expressed as

M(µ,∆) = (µ+
√
µ2 −∆2)Θ(µ−∆) + ∆Θ(∆− µ). (S35)

Note also that in Eqs. (S33) and (S34) we used the simplified notation ∆↑ ≡ ∆↑ξ and ∆↓ ≡ ∆↓ξ. The coupling
constant is gum = βV̄umν(εF), where ν(εF) is the density of states, and β is a numerical coefficient of order unity.

When the system is undoped, we can introduce ∆0 as follows µ = ∆↑ = ∆↓ ≡ ∆0 [note that this is a redefinition
of ∆0 initially given by Eq. (S27)]. In such a limit, both equations become identical

∆0 = g(1 + γ)∆0 ln

(
E∗

∆0

)
, where γ =

gum

g
. (S36)

This equation has one non-zero solution

∆0 = E∗ exp

(
− 1

g(1 + γ)

)
. (S37)

We can see that the umklapp coupling increases ∆0.
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B. Doped state

Now we discuss the doped system. Below we will consider two possibilities: (i) all four sectors are doped equally,
and (ii) three sectors remain undoped, and all doping only enters a single sector. Let us start with (i). In such a
situation µ > ∆s = ∆(x) for all four s. Equations (S33) and (S34) become identical

∆ = g(1 + γ)∆ ln

(
E∗

µ+
√
µ2 −∆2

)
, (S38)

valid in all four sectors. The solution to this equation is similar to Eq. (S28)

∆(x) = ∆0

√
1− x

x0
, µ = ∆0

(
1− x

2x0

)
, (S39)

where we took into account that partial dopings equal to half of the total doping: xs = x/4. The expression for µ(x)
allows us to calculate ∆F (x)

∆F (x) = 4

∫ x

0

µ(x) dx = 4∆0 x−∆0
x2

x0
. (S40)

This free energy is denoted as ∆Fe in the main text.
For case (ii), the calculations are more complicated. We define δσ(x) as follows ∆σ(x) = ∆0[1 − δσ(x)]. For

definiteness, we assume that the sector s = (↑, ξ) is undoped, while s = (↓, ξ) is doped. This means that ∆↑ > µ > ∆↓.
Two other sectors, (↑, ξ̄) and (↓, ξ̄), are undoped, and decoupled from s and s′. Therefore, they are characterized by
the order parameter ∆0, given by Eq. (S37)

0 < δ↑ < m < δ↓, where m =
∆0 − µ

∆0
. (S41)

Let us introduce yet another quantity, δS, as follows

µ+
√
µ2 −∆2

↓ = ∆0

[
1−m+

√
(1−m)2 − (1− δ↓)2

]
= ∆0(1 + δS), (S42)

δS =
√

(1−m)2 − (1− δ↓)2 −m. (S43)

The parameters δσ, δS, and m are small in the limit of small doping x. However, they have different degrees of
smallness. Indeed, as we will see later

δσ = O(m), δS = O(m1/2). (S44)

These relations become important when we solve the self-consistent equations in the limit of small doping.
Our goal is to solve the following equations

(1− δ↑) = g(1− δ↑)
[

1

g(1 + γ)
− ln (1− δ↑)

]
+ γg(1− δ↓)

[
1

g(1 + γ)
− ln(1 + δS)

]
, (S45)

(1− δ↓) = g(1− δ↓)
[

1

g(1 + γ)
− ln (1 + δS)

]
+ γg(1− δ↑)

[
1

g(1 + γ)
− ln(1− δ↑)

]
, (S46)

to find δσ as a function of m, and then determine m versus x. In the limit of small x, we expand the self-consistent
equations and, keeping in mind Eq. (S44), we derive

(1− δ↑) = g(1− δ↑)
[

1

g(1 + γ)
+ δ↑

]
+ γg(1− δ↓)

[
1

g(1 + γ)
− δS +

δS2

2

]
+O(m3/2), (S47)

(1− δ↓) = g(1− δ↓)
[

1

g(1 + γ)
− δS +

δS2

2

]
+ γg(1− δ↑)

[
1

g(1 + γ)
+ δ↑

]
+O(m3/2). (S48)

Simplifying, we obtain

δ↑ ≈
[

δ↑
1 + γ

− gδ↑
]

+ γ

[
1

1 + γ
δ↓ + g

(
δS − δS2

2

)]
, (S49)

δ↓ ≈
[

δ↓
1 + γ

+ g

(
δS − δS2

2

)]
+ γ

[
1

1 + γ
δ↑ − gδ↑

]
, (S50)
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Next step: (
γ

1 + γ
+ g

)
δ↑ =

γ

1 + γ
δ↓ + gγ

(
δS − δS2

2

)
, (S51)(

γ

1 + γ
− gγ

)
δ↑ =

γ

1 + γ
δ↓ − g

(
δS − δS2

2

)
. (S52)

Subtracting these two equations we derive

g(1 + γ)δ↑ = g(1 + γ)

(
δS − δS2

2

)
⇔ δ↑ = δS − δS2

2
. (S53)

Now δ↑ can be eliminated [
γ

1 + γ
+ g(1− γ)

](
δS − δS2

2

)
=

γ

1 + γ
δ↓. (S54)

This relation is equivalent to

δS − δS2

2
= αδ↓, where α =

[
1 + g(γ−1 − γ)

]−1
. (S55)

Let us express δS in the limit of small doping

δS =
√

(1−m)2 − (1− δ↓)2 −m =
√

(2−m− δ↓)(δ↓ −m)−m =
√

2(δ↓ −m)−m+O(m3/2), (S56)

δS2 = 2(δ↓ −m) +O(m3/2). (S57)

Therefore

δS − δS2

2
=
√

2(δ↓ −m)− δ↓ +O(m3/2). (S58)

The self-consistent equation becomes

αδ↓ =
√

2(δ↓ −m)− δ↓ +O(m3/2). (S59)

Its solution is

δ↓ ≈ m+
(1 + α)2

2
m2, δ↑ = αδ↓ ≈ αm+

α(1 + α)2

2
m2. (S60)

Let us check the consistency of these relations with known results in the α = 0 limit. In this case

δ↓ ≈ m+
1

2
m2, δ↑ = 0. (S61)

At the same time, Eqs. (S28) in the regime of small x can be written as

m =
x

2x0
, δ↓(x) =

∆0 −∆(x)

∆0
≈ x

2x0
+

x2

8x2
0

. (S62)

We can now exclude x to obtain

δ↓(x) ≈ m+
m2

2
, (S63)

which coincides with Eq. (S61).
The final step is to add doping into the formalism. To this end, we write

4x = 2νF

∫ µ

∆↓

dε
ε√

ε2 −∆2
↓

, (S64)
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FIG. S1: The function α(γ) for g = 0.1 is shown by the blue curve. The straight (red) line is γ/g.

where 4x is the doping per unit cell, νF = t0/(
√

3πt2) is the density of states per unit cell for each single Fermi surface
sheet (there are four Fermi surface sheets),

x =
νF
2

√
µ2 −∆2

↓ =
νF∆0

2

√
(1−m)2 − (1− δ↓)2 =

x0

2

√
(1−m)2 − (1− δ↓)2, (S65)

where x0 = νF∆0. It is possible to show that

4x2 = x2
0(δ↓ −m)(2−m− δ↓) ⇒ 4x2 = (1 + α)2x2

0m
2 +O(m3). (S66)

Deriving the latter relation we used Eq. (S60), which, among other things, demonstrates that δ↓ − m = O(m2).
Equation (S66) allows us to establish the following connection between doping and the chemical potential

m =
2x

(1 + α)x0
+O(x2) ⇔ µ = ∆0

(
1− 2x

(1 + α)x0

)
+O(x2). (S67)

Integrating µ(x), we obtain

∆Fqm = 4∆0x−
(

4∆0

1 + α

)
x2

x0
. (S68)

In the limit α→ 0 we recover the expression for ∆Fqm given in the main text [see after Eq. (30)]. The free energy (S68)
must be compared against the free energy given by Eq. (S40). We see that the quarter-metal is stable if (1+α)−1 > 1/4.
Equivalently,

quarter-metal is stable when α(γ) < 3. (S69)

To understand what the latter requirement entails, let us examine Fig. S1, which shows α(γ) for g = 0.1. We see that
α < 3 as long as γ = gum/g < 6.8. That is, for g = 0.1, the umklapp satisfying

gum < 0.68, (S70)

does not violate the stability of the quarter-metal.
We note that Eq. (S69) is not the absolute stability criterion, rather it describes the stability of the quarter-metal

against the transition into an ordinary metal, when all four sectors are doped equally. A comprehensive investigation
of the stability goes well beyond the present study, and, most likely, requires input from experiments.

It is interesting to note that perturbation theory in powers of small γ strongly underestimates the stability range
of the quarter-metal. To demonstrate this, we expand the expression (S68) for ∆Fqm in powers of α

∆Fqm ≈ 4∆0x− 4∆0
x2

x0
+ 4∆0

αx2

x0
. (S71)

Since at γ → 0, the following holds α ≈ γ/g = gum/g
2, the expression for ∆Fqm can be approximated as

∆Fqm ≈ 4∆0x− 4∆0
x2

x0

(
1− gum

g2

)
, (S72)
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If we use this expression, instead of the more accurate Eq. (S68), we could (erroneously) conclude that the quarter-
metal is stable when (1− gum/g

2) > 1/4. This inequality can be transformed to

γ

g
=
gum

g2
<

3

4
⇔ gum <

3g2

4
. (S73)

In Fig. S1 we can see the low-γ approximation α(γ) ≈ γ/g as a (red) straight line. We see that, at low g, this
approximation works only at very small γ; while for larger γ (larger gum) it is completely useless. Thus, we conclude
that the replacement [1 +α(γ)]−1 → (1−γ/g) artificially shrinks the stability range of the quarter-metal. Indeed, the
requirement (S73) is very strict: at g = 0.1, as in Fig. S1, Eq. (S73) demand that gum < 0.0075, cf. Eq. (S70). This is
the origin of the serious disparity between the stability condition derived in the main text using simple perturbation
theory and more the sophisticated criterion (S69).
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