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Bilayer graphene can become a fractional metal
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In a metal, electron interactions can cause a perfect spin polarization of the Fermi surface. For such a phase,
only half of the noninteracting Fermi surface is available, and thus this state is commonly referred to as a “half
metal.” Here we argue that in multiband electronic systems with nesting, further “fractionalization” of the Fermi
surface is possible. Taking the AA bilayer graphene as a convenient test case, we demonstrate that under suitable
conditions imposed on the electron interactions, doped AA bilayer graphene can host a “quarter-metal” phase. Its
Fermi surface (Fermi contour) is simultaneously polarized relative to spin-related and valley-related operators.
The resultant state is nematic and possesses peculiar transport properties: the electric current carries both valley-
related and spin-related quanta. In addition, since the two polarizations can be controlled independently of each
other, the quarter metal is a promising candidate for spintronics and valleytronics applications. Other types of
Fermi-surface fractionalization are also discussed.

DOI: 10.1103/PhysRevB.103.L081106

I. INTRODUCTION

In usual metals, the total spin polarization of the charge
carriers at the Fermi surface is zero. A strong electron-electron
interaction can lift the spin degeneracy and induce spin polar-
ization of the states at the Fermi surface. In the extreme case
of the so-called half metals [1–3], this polarization is perfect:
all states at the Fermi energy have identical spin projection.
Indeed, various rather different systems with transition-metal
atoms are found to be half metals [4–7]. The existence of spin-
polarized currents in these half metals makes them promising
materials for applications in spintronics [3,8]. Several pa-
pers [9–13] predict half metallicity in carbon-based systems.
The half metals free of heavy atoms could be of interest
for biocompatible applications and carbon-based electronics
[14–19].

In previous works [20,21], we have proposed a mecha-
nism for half metallicity suitable for transition-metals-free
systems. The mechanism requires the existence of two nested
Fermi-surface sheets (these sheets are distinguished below
by their electron or hole “flavor” [22]). The ground state
of the undoped parent system is the spin- or charge-density
wave state. Upon doping, the insulating density wave is re-
placed by a kind of half-metallic phase. In a multiband system
with nesting, besides spin, the valley quantum number ξ

emerges, enumerating pairs (valleys) of nested Fermi-surface
sheets. One may also wonder if half metals with a nested
Fermi surface can be polarized in valley space. The sta-
bility of this peculiar conducting phase, which below we
call “fractional metal” (FraM), is the main topic of this
paper.

If the valleys are connected by a rotation, the polarization
with respect to ξ implies that the resultant state is nematic.
The electronic nematicity is one of the central issues in recent

fundamental condensed-matter research. Several actively
studied materials demonstrate [23–30] this curious feature.
From the viewpoint of possible applications, generalizing the
celebrated concept of the ferromagnetic memory cell, one can
envision a spin-valleytronic counterpart, which stores data
using both valley-related and spin-related degrees of freedom
coexisting on a single chip.

It follows from the FraM definition that only a material
with a complex multisheet nested Fermi surface might host
a FraM. This requirement makes AA bilayer graphene (AA-
BG) a promising candidate. The AA-BG is less studied than
the AB bilayer graphene. Yet, AA-BG samples have been
manufactured [31–34]. Moreover, progress in van der Waals
heterostructure fabrication [35] allows one to hope that more
efforts will be undertaken in the direction of producing high-
quality AA-BG samples.

As in other graphene structures, the low-energy states of
the AA-BG can be classified by their proximity to either the
K1 or K2 Dirac point. A given Dirac point is encircled by
an electron Fermi-surface sheet and a hole sheet; altogether,
there are four Fermi-surface sheets in the whole Brillouin
zone. We argue that for such a degenerate Fermi-surface
structure and under rather common assumptions about the
electron-electron coupling, doped AA-BG could enter the
FraM phase. We investigate the stability of this phase and
also briefly discuss its most immediate properties, such as its
nematicity, transport of spin, and valley quanta, and peculiar
features of superconductivity.

II. MODEL

The electronic properties of AA-BG are described by the
Hamiltonian Ĥ = Ĥ0 + Ĥint, where Ĥ0 is the single-electron
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part and Ĥint corresponds to the interaction between quasipar-
ticles. For AA-BG [19],

Ĥ0 =−t
∑

〈mn〉lσ
d†

ml0σ
dnl1σ

−t0
∑
naσ

d†
n0aσ dn1aσ + H.c. − μn. (1)

Here, d†
mlaσ

(dmlaσ
) is the creation (annihilation) operator of

an electron with spin projection σ in layer l [l = 0 (l = 1) cor-
responds to upper (lower) layer] on sublattice a [a = 0 (a =
1) represents sublattice A (B)] at the position m. Also, n =∑

mlaσ d†
mlaσ

dmlaσ
is the total charge density, μ is the chem-

ical potential, and 〈·〉 denotes nearest-neighbor pairs. The
amplitude t = 2.57 eV (t0 = 0.36 eV) describes the in-plane
(interplane) nearest-neighbor hopping. Ĥ0 can be readily diag-
onalized in a new basis γk�σ

: Ĥ0 = ∑
k�σ (ε(�)

0k − μ)γ †
k�σ γk�σ

,
where � = 1, . . . , 4 is the band index, and k is the momentum;
the eigenenergies and eigenoperators are

ε
(1)
0k =−t0 − tζk, ε

(2)
0k = −t0 + tζk,

ε
(3)
0k =+t0 − tζk, ε

(4)
0k = +t0 + tζk, (2)

dklaσ = exp (−aiϕk )[γk1σ + (−1)aγk2σ

+(−1)lγk3σ + (−1)a+lγk4σ ]/2. (3)

In Eq. (3), ϕk = arg( fk ), ζk = | fk|, where

fk = 1 + 2 exp (3ikxa0/2) cos (
√

3kya0/2), (4)

and a0 = 1.42 Å is the in-plane carbon-carbon distance. The
band � = 2 (band � = 3) crosses the Fermi level and forms
two electron (two hole) Fermi-surface sheets, i.e., one cen-
tered at the Dirac point K1 = 2π (

√
3, 1)/3

√
3a0 and another

at K2 = 2π (
√

3,−1)/3
√

3a0. To distinguish electron and
hole Fermi-surface sheets, we introduce the charge flavor in-
dex ν = (−1)�: it equals ν = 1 (ν = −1) for electrons (holes).
If we label the graphene valley K1 (valley K2) by ξ = +1 (by
ξ = −1), any sheet can be uniquely identified by values of ν

and ξ (see Ref. [22] on the usage of the term “valley”). Since
all sheets are circles of identical radius, kF0 = 2t0/3ta0, we
have two nesting vectors: 0 and Q0 = K1 − K2.

The Coulomb interaction between the electrons is

Ĥint = 1

2Nc

∑
kk′qla
l′a′σσ ′

V ll ′
aa′ (q)d†

klaσ
dk+qlaσ

d†
k′l ′a′σ ′dk′−ql ′a′σ ′ , (5)

where Nc is the number of elementary cells in the sample and
V ll ′

aa′ (q) is the Fourier transform of

V ll ′
aa′ (r) = VC

(√
[r + (a − a′)δ1]2 + (l − l ′)2D2

)
. (6)

Here, VC(|r|) is the screened Coulomb potential, δ1 = (a0, 0),
and D = 3.3 Å is the interlayer distance. The dependence of
the interaction on various indices accounts for different dis-
tances between electrons at different sublattices and/or layers.

III. MEAN-FIELD APPROACH

Theory predicts [36–39] that the electron repulsion con-
verts the electronic liquid of the AA-BG into a spin-density-
wave (SDW) insulator. The SDW order is characterized by
nonzero values of 〈γ †

k2σ γk3σ̄
〉 and 〈γ †

k1σ γk4σ̄
〉, which describe

excitonic pairs with vanishing total momentum. It is possible

to define a different order parameter oscillating in space with
the wave vector Q0, e.g., 〈γ †

k+Q02σ γk3σ̄ 〉. However, the oscillat-
ing order parameter cannot interact with another order param-
eter unless they have opposite wave vectors. This condition
strongly reduces the effective coupling constant. As a result,
such a phase has higher energy and we will not consider it
here. Switching to band operators γ and neglecting the terms
irrelevant to the mean-field approximation, we transform
Eq. (5) and write Ĥint = Ĥ (1) + Ĥ (2) + Ĥ (3) + Ĥ (4), where

Ĥ (1) = − 1

Nc

∑
kpσ

V (1)
kp [(γ †

k1σ γk4σ̄ )(γ †
p4σ̄ γp1σ )

+ (γ †
k3σ̄

γk2σ
)(γ †

p2σ γp3σ̄ )], (7)

Ĥ (2) = − 1

2Nc

∑
kpσ

V (2)
kp [(γ †

k1σ γk4σ̄
)(γ †

p1σ̄ γp4σ )

+ (γ †
k2σ γk3σ̄

)(γ †
p2σ̄ γp3σ ) + H.c.], (8)

Ĥ (3) = − 1

Nc

∑
kpσ

V (3)
kp [(γ †

k1σ γk4σ̄
)(γ †

p3σ̄ γp2σ )

+ (γ †
k2σ

γk3σ̄
)(γ †

p4σ̄ γp1σ )], (9)

Ĥ (4) = − 1

2Nc

∑
kpσ

V (4)
kp [(γ †

k1σ γk4σ̄
)(γ †

p2σ̄ γp3σ )

+ (γ †
k2σ γk3σ̄ )(γ †

p1σ̄ γp4σ ) + H.c.], (10)

with the coupling constants V (1,2,3,4)
kp defined by

V (1,3)
kp = 1

8

[
V 00

AA + V 10
AA ± (

V 00
AB + V 10

AB

)
e−i�ϕ + c.c.

]
, (11)

V (2,4)
kp = 1

8

[
V 00

AA − V 10
AA ∓ (

V 00
AB − V 10

AB

)
e−i�ϕ + c.c.

]
. (12)

Here, V ll ′
aa′ = V ll ′

aa′ (k − p) = V ll ′
a′a(p − k) and �ϕ = �ϕkp =

ϕk − ϕp. One can assume [40,41] that intralayer and interlayer
interactions in a graphene bilayer are approximately equal (at
small momentum): V 00

aa′ ≈ V 10
aa′ . In such a limit, we have, in

the first approximation,

V (1,3)
kp ≈ 1

2VC(k − p)[1 ± cos(�ϕkp)], V (2,4)
kp ≈ 0. (13)

Thus, the interaction can be approximated as Ĥint ≈
Ĥ (1) + Ĥ (3). We analyze this Hamiltonian using mean-field
theory, and the terms Ĥ (2,4) will be taken into account
perturbatively. The mean-field version of Ĥint is

ĤMF
int = −

∑
pσ

(
�̃pσ γ

†
p4σ̄ γp1σ + �pσ γ

†
p3σ̄ γp2σ + H.c.

) + B,

(14)

where

�kσ = 1

Nc

∑
p

[
V (1)∗

pk 〈γ †
p2σ γp3σ̄ 〉 + V (3)

pk 〈γ †
p1σ γp4σ̄ 〉],

�̃kσ = 1

Nc

∑
p

[
V (1)

pk 〈γ †
p1σ γp4σ̄ 〉 + V (3)

pk 〈γ †
p2σ γp3σ̄ 〉],

B =
∑
pσ

[
�pσ 〈γ †

p3σ̄ γp2σ 〉 + �̃pσ 〈γ †
p4σ̄ γp1σ 〉]. (15)
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The spectrum of the mean-field Hamiltonian can be easily
derived:

E (2,3)
kσ

= ∓Em
kσ , E (1,4)

kσ
= ∓Eh

kσ ,

Em
kσ =

√
|�kσ |2 + (t0 − tζk )2,

Eh
kσ =

√
|�̃kσ |2 + (t0 + tζk )2. (16)

The grand potential of the system is equal to

� =
4∑

v=1

∑
kσ

(
E (v)

kσ − μ
)


(
μ − E (v)

kσ

) + B, (17)

where (E ) is the step function. Minimization of � with
respect to 〈γ †

p3σ̄ γp2σ 〉 and 〈γ †
p4σ̄ γp1σ 〉 gives us the system of

equations for �̃kσ and �kσ :

�kσ =
∑

p

{
V (1)∗

pk �pσ

2NcEm
pσ

[


(
μ + Em

pσ

) − 
(
μ − Em

pσ

)]

+V (3)
pk �̃pσ

2NcEh
pσ

[


(
μ + Eh

pσ

) − 
(
μ − Eh

pσ

)]}
, (18)

�̃kσ =
∑

p

{
V (1)

pk �̃pσ

2NcEh
pσ

[


(
μ + Eh

pσ

) − 
(
μ − Eh

pσ

)]

+V (3)
pk �pσ

2NcEm
pσ

[


(
μ + Em

pσ

) − 
(
μ − Em

pσ

)]}
. (19)

The summation in Eqs. (18) and (19) covers the whole Bril-
louin zone. However, the interaction V (1,3)

pk is strongest when
p ≈ k and decays for larger |p − k|. In the limit of vanishing
backscattering,

V (1,3)
bs ≡ V (1,3)

K1,K2
≈ 0, (20)

it is possible to define order parameters localized near the spe-
cific Dirac point Kξ : �kσ = �kξσ , when k ≈ Kξ . We see that
within our approximations, the electronic states and the order
parameters can be split into four independent sectors, labeled
by the multi-index s = (σ, ξ ). A sector with label s = (σ, ξ )
contains electron states with spin σ from valley ξ , and hole
states with spin −σ from the same valley. This definition
implies that all states within a sector have an identical value of
the product σν. The sectors are weakly coupled by neglected
contributions proportional to Vbs and V (2,4). These corrections
will be studied perturbatively.

We add and subtract Eqs. (18) and (19), use Eqs. (13), and
change the summation by integration over the momentum near
the Dirac point Kξ . We also assume that both � and �̃ depend
on |k| only. Finally, using the symmetry of our theory with
respect to the sign of μ, we derive, for 0 < μ < t0,

�ks + �̃ks =
∫

p
V (k, p)

[
�ps

2Em
ps


(
Em

ps − μ
) + �̃ps

2Eh
ps

]
,

�ks − �̃ks =
∫

p
U (k, p)

[
�ps

2Em
ps


(
Em

ps − μ
) − �̃ps

2Eh
ps

]
, (21)

where
∫

p . . . = (2π/vBZ)
∫

pd p . . ., and the volume (area) of

the Brillouin zone is vBZ = 8π2/(3
√

3a2
0). In Eqs. (21), the

averaged coupling constants are

V (k, p) =
∫

dφ

2π
VC(

√
k2 + p2 − 2kp cos φ),

U (k, p) =
∫

dφ

2π
VC(

√
k2 + p2 − 2kp cos φ) cos φ, (22)

and the spectrum (16) in sector s = (σ, ξ ) can be approxi-
mated as

Em
ps

∼=
√

|�s|2 + t2
0 (1 − p/kF0)2,

Eh
ps

∼=
√

|�̃s|2 + t2
0 (1 + p/kF0)2 ∼= t0(1 + p/kF0), (23)

where p = |p − Kξ |.

IV. BCS-LIKE APPROXIMATION

In general, we can choose some model for VC(q) and
solve Eqs. (21) numerically. However, modeling the effec-
tive Coulomb interaction in graphene bilayers is notoriously
difficult, and no universal and compact answer is known.
Indeed, to study the effects of the Coulomb interaction
in graphene-based systems, the Hartree-Fock approximation
[42], renormalization group [43,44], and the random phase
approximation [38] were used. Unfortunately, a rigorous the-
oretical attempt to account for the Coulomb interaction may
produce nonuniversal and difficult-to-interpret results; see, for
example, Fig. 3 in Ref. [44]. In this situation, finding an
accurate numerical solution to the integral equations (21) is
impractical. Instead, we use the simple BCS-like ansatz,

�s(q) = �s(� − |q − kF0|), (24)

�̃s(q) = �̃s(� − |q − kF0|), (25)

for the order parameters (the cutoff momentum � satisfies
� < kF0), and assume that V and U are constants independent
of k and p. We believe that this ansatz, despite its simplicity,
captures all the necessary physics. Now the integral equations
become nonlinear algebraic equations,

�s + �̃s = g�s ln

(
E∗

μ + √
μ2 − �2

s

)
+ g̃�̃s,

�s − �̃s = g

α
�s ln

(
E∗

μ + √
μ2 − �2

s

)
− g̃

α
�̃s, (26)

where the energy scale is E∗ = 2t0�/kF0 and the coupling
constants are

g = t0√
3πt2

V , g̃ = �

2kF0
g, α = V /U > 1. (27)

It trivially follows from Eqs. (26) that �̃s = C�s, where C =
(α − 1)/(α + 1 − 2g̃). At zero doping, which corresponds to
the case μ = �s, one finds

�s = �0 = E∗ exp

[
−1

g

2α − g̃(1 + α)

1 + α − 2g̃

]
. (28)

This compact mean-field solution is valid in the small-
coupling limit; that is, when g (and g̃) is small, and,
consequently, �0 and �̃0 are much less than t0.
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The doped state is characterized by μ > �s. To describe
the solution of Eq. (26) in such a regime, let us define the
partial doping xs: the concentration of electrons residing in
sector s, per single carbon atom. It is known [45–48] that a
finite xs acts to decrease the order parameter �s:

�s(xs) = �0

√
1 − 4xs

x0
, μ = �0

(
1 − 2xs

x0

)
, (29)

where x0 = �0t0/(π
√

3t2). It is easy to check that Eqs. (29)
indeed guarantee that μ exceeds �s, making the doping of
sector s possible. At T = 0, the partial free energy (per unit
cell) associated with doping is

�Fs(xs) = 4
∫ xs

0
μ(x)dx = 4�0

(
xs − x2

s

x0

)
. (30)

Since a unit cell contains four carbon atoms, the factor 4 is
required in this formula.

V. FRACTIONAL METAL STATE

The relations (29) and (30) describe a single sector. To
determine the state of the whole system, we must understand
how the total doping x is distributed between the sectors. One
might expect that x is spread evenly: xs = x/4. Yet such an
assumption might not be most advantageous thermodynami-
cally: we demonstrated [20,21], for a two-sector system, that
placing all the extra charge x into a single sector optimizes
the system free energy relative to the state with an even distri-
bution of x. To settle this issue for our four-sector model, we
must minimize the doping-related part of the free energy for
the whole system,

�F =
∑

s

�Fs = 4�0x − 4�0

x0

∑
ξσ

x2
ξσ , (31)

at fixed doping x = ∑
s xs. Simple calculations demonstrate

that for x < x0, the term �F reaches its smallest value,
�Fqm = 4�0(x − x2/x0), when all extra electrons are placed
into a specific sector s, while all other sectors are kept doping
free:

xs = x, xs′ = 0 for s′ �= s. (32)

For example, �Fqm is smaller than �Fe = 4�0x − �0x2/x0,
which is the free energy of the state with xs = x/4 for all four
s. For the distribution (32), the Fermi surface lies entirely in
sector s = (σ, ξ ). Therefore, only electron states (hole states)
with spin σ (spin −σ ) near the Dirac point Kξ reach the
Fermi level. In other words, the Fermi surface is perfectly
polarized in terms of both σν and ξ quantum numbers. Since
the insulating gap persists in three other sectors, the state
described by Eq. (32) may be called a “quarter metal,” a first
example of a series of “fractional metals.” The quarter metal
is nematic. Indeed, valleys K1 and K2 are not equivalent, and
thus the π/3 rotations of the underlying lattice are no longer
symmetries of the ordered state.

As in the case of the half metal in the system with nesting
[20,21], the gap in the first sector closes when increasing
doping. The doped electrons begin to enter the second sector,
then to the third and fourth sectors. As a result, the system

passes, respectively, through the states of a half metal, 3/4
metal, and, finally, the gaps in all sectors close and the system
occurs in the usual metallic phase. We can show that each
transformation is a first-order phase transition. The analysis
of the electronic state’s evolution with doping is quite similar
to the half-metal case [20,21].

VI. STABILITY OF FRACTIONAL METAL

Above we neglected interactions between electrons in dif-
ferent sectors. Then, treating individual sectors independently,
we derived Eqs. (29) and (30). Now we want to assess the
effects of the neglected terms. There are two types of inter-
action terms: (i) umklapp interaction Ĥ (2,4), given by Eqs. (8)
and (10), which couples sectors with the same ξ but unequal
values of index σ , and (ii) the backscattering amplitude V (1,3)

bs ,
which describes interactions between sectors with the same σ

but different valley ξ , given by Eq. (20). In principle, Ĥ (2,4)

also contain the backscattering V (2)
bs , which is even weaker,

and will be neglected. If the associated coupling constants are
small, we can use perturbation theory. The lowest-order per-
turbative correction Fum to the free energy due to the umklapp
term Ĥ (2) equals 〈Ĥ (2)〉. Thus, neglecting small contributions
due to �̃s, we determine the umklapp correction to the free
energy (per unit cell),

Fum = −F
2

∑
ξ

√(
1 − 4x↑ξ

x0

)(
1 − 4x↓ξ

x0

)
, (33)

where F = 8α2gum�0x0/(1 + α)2g2, and the dimensionless
Fermi-surface-averaged umklapp coupling constant is gum =
t0V um/

√
3πt2. We also used the fact that V (1), upon averaging

over the Fermi surface, becomes equal to g(1 + α)/2α. When
x is low, one has

Fum

F ≈ −1 + x

x0
+

∑
ξ

(x↑ξ − x↓ξ )2

x2
0

, (34)

which is smallest at xs = x/4. A similar result can be derived
for the backscattering interaction. Thus, both the umklapp and
the backscattering favor an even distribution of doping over
the sectors. However, in the limit gum � g2, gbs � g2, their
contributions are small and cannot destroy the fractional metal
phase. The perturbative derivation of the stability criterion
is intuitively clear and transparent. Its primary purpose is to
demonstrate that the fractional metal phase can survive weak
deviations from the highly idealized model neglecting any
couplings between the sectors. On the other hand, this crite-
rion is very stringent and one may wonder if it can be satisfied
in a real material. Fortunately, a more complex nonperturba-
tive approach, which accounts for the intersector couplings at
the mean-field level, allows one to relax it: we demonstrated
(see Supplemental Material [49]) that it is sufficient to have

gbs < g, gum < g (35)

to maintain the stability of the FraM. More detailed stability
analysis will be presented in future studies.
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VII. DISCUSSION

Using AA bilayer graphene as a test example, we argue
that in a system with a nested multisheet Fermi surface, a
peculiar state [which we call fractional metal (FraM)] can
be stabilized. In the FraM phase, part of the Fermi surface
is gapped and charge carriers on the remaining gapless part of
the Fermi surface belong to a specific sector of the low-energy
electronic states. Similar to a half metal, the states at the
Fermi energy can be characterized in terms of polarization;
but, unlike the usual half metals, this is not spin polarization.
Let us introduce the spin-flavor operator,

Ŝf =
∑
σξν

σνN̂σξν, (36)

where N̂σξν is the number operator for fermions with spin σ ,
charge ν, in valley ξ . (In Refs. [20,21], an operator analogous
to Ŝf was called the “spin-valley” operator.) Since doping
enters only in one sector, all states at the Fermi surface have
the same value of σν. Therefore, these states are eigenstates
of Ŝf with identical eigenvalue σν. The same is true for the
valley operator,

Ŝv =
∑
σξν

ξ N̂σξν, (37)

since a given sector is localized entirely in one valley.

Thus, the FraM is the conducting nematic state whose
Fermi surface is polarized in terms of two spinlike operators,
S f and Sv . The electric current though the FraM carries,
in addition to the electric charge, spin-flavor and valley
quanta. Finally, note that if superconductivity arises in a FraM
phase, it should demonstrate rather peculiar properties. The
superconducting order parameter might have a very unusual
symmetry, classified according to a nontrivial spin and valley
structure, and superconducting currents would be spin-flavor
and valley polarized. However, the detailed analysis of this
superconductivity requires the specification of the symmetric
properties of the electron-phonon coupling.
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