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Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices
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We study interaction-induced Mott insulators, and their topological properties in a one-dimensional non-
Hermitian strongly correlated spinful fermionic superlattice system with either nonreciprocal hopping or
complex-valued interaction. For the nonreciprocal hopping case, the low-energy neutral excitation spectrum
is sensitive to boundary conditions, which is a manifestation of the non-Hermitian skin effect. However, unlike
the single-particle case, particle density of strongly correlated system does not suffer from the non-Hermitian
skin effect due to the Pauli exclusion principle and repulsive interactions. Moreover, the anomalous boundary
effect occurs due to the interplay of nonreciprocal hopping, superlattice potential, and strong correlations, where
some in-gap modes, for both the neutral and charge excitation spectra, show no edge excitations defined via only
the right eigenvectors. We show that these edge excitations of the in-gap states can be correctly characterized
by only biorthogonal eigenvectors. Furthermore, the topological Mott phase, with gapless particle excitations
around boundaries, exists even for the purely imaginary-valued interaction, where the continuous quantum Zeno
effect leads to the effective on-site repulsion between two-component fermions.
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I. INTRODUCTION

Recent years have witnessed considerable interest in ex-
ploring topological phases of non-Hermitian systems [1–59],
which can be realized in classical optical and mechanical
systems with gain and loss [60–75], correlated and disordered
electronic systems with finite quasiparticle lifetimes [76–80],
and open quantum systems with postselection measurements
[81]. Non-Hermitian topological systems exhibit many unique
properties with no counterpart in Hermitian cases, such as:
non-Hermitian skin effect and breakdown of the conventional
bulk-boundary correspondence [17–19], bulk Fermi arcs [12],
and rich Bernard-LeClair symmetry classes beyond the ten-
fold Altland-Zirnbauer ones [24–26]. However, most of these
studies have focused on non-Hermitian topological band the-
ories at the single-particle level, and only very few recent
works [59,82] have studied strongly correlated non-Hermitian
topological phases.

Rather than destroy the topological properties, the strong
correlation can give rise to novel topological phases for
Hermitian systems [83–92]. For example, interactions lead
to fractional Chern insulators with exotic fractional quasi-
particles obeying fractional statistics [83–86]. In addition,
interactions result in topological Mott insulators [88,89]:
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interactions open a nontrivial gap in the bulk, inducing single-
particle gapless excitations around the boundary [93]. Up to
now, studies of strongly correlated topological phases have
been largely restricted to Hermitian systems. It is impor-
tant to explore how topology and interactions interplay with
non-Hermitian effects, leading to novel topological features
without its Hermitian counterpart. In particular, in the single-
particle case, nonreciprocal hopping causes the localization
of eigenstates to the boundaries. This non-Hermitian skin
effect, which leads to the breakdown of the bulk-boundary
correspondence, does not cause the same localization in a
fermionic many-body system [57]. This leads us to ask: Does
nonreciprocal hopping lead to anomalous boundary effects in
a non-Hermitian strongly correlated topological system? In
addition to the nonreciprocal hopping case, can the purely
imaginary-valued interaction drive a topologically trivial sys-
tem into topologically nontrivial regime?

In this paper, we address these important questions by
studying a non-Hermitian strongly correlated system in a
one-dimensional (1D) spin-1/2 fermionic superlattice system.
The non-Hermitian Hamiltonian is constructed by introducing
either nonreciprocal hopping or complex-valued interactions.
For both cases, the interaction can drive the trivial non-
Hermitian system into the topological Mott phase, and there
exist both gapless neutral and charge excitations localized at
the edges. For the nonreciprocal hopping case, the low-energy
neutral excitation spectrum is sensitive to the boundary con-
ditions, where the in-gap states emerge in the open chain in
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spite of the absence of gap in the periodic chain. This shows
the impact of the non-Hermitian skin effect. However, unlike
the single-particle case, the non-Hermitian skin effect plays
no role in particle density due to the Pauli exclusion principle
and repulsive interactions. We also found that some in-gap
states, for both neutral and charge excitation spectra, show no
edge excitations defined via only the right eigenvectors. This
anomalous boundary effect results from the interplay of non-
reciprocal hopping, superlattice potential, and interactions.
We show that these edge excitations can be correctly charac-
terized by using biorthogonal eigenvectors. Furthermore, the
purely imaginary-valued interaction can also drive the trivial
system to topological Mott insulator, where the effective re-
pulsion is created by the continuous quantum Zeno effect.

The rest of this paper is organized as follows. In Sec. II,
we consider the non-Hermitian Fermi-Hubbard model in the
presence of superlattice modulation and nonreciprocal hop-
ping, and discuss the edge neutral and charge excitations.
In Sec. III, we investigate the topological Mott phase driven
by complex-valued interactions. We conclude this work in
Sec. IV.

II. NON-HERMITIAN MODEL WITH
NONRECIPROCAL HOPPING

A. Model

We consider a 1D model of spin-1/2 ultracold fermionic
atoms loaded in a bichromatic optical lattice (see Appendix A
for details), described by

H = − t
∑
j,σ

(eαc†
j+1,σ c j,σ + e−αc†

j,σ c j+1,σ ) +
∑
j,σ

Vjn j,σ

+ U
∑

j

c†
j,↑c†

j,↓c j,↓c j,↑, (1)

where Vj = V0 cos(2π j/q + φ) denotes a commensurate su-
perlattice potential with the modulation period determined by
q and phase φ, c†

j,σ is the fermionic creation operator with

spin σ , n j,σ = c†
j,σ c j,σ is the on-site particle number opera-

tor, U denotes the on-site interaction strength, and α induces
nonreciprocal hopping.

In the absence of on-site interactions (see Appendix B),
the single-particle energy spectrum of a 1D superlattice is
split into q sub-bands, and the insulator with the fully filled
sub-band exhibits a topological phase characterized by the
Chern number when φ is taken as an additional dimension
[94]. Moreover, the Hermitian superlattice system supports
topological Mott phases under the strong interaction for both
fermions and bosons [95–98]. In this paper, we discuss the
strongly correlated topological phases in the non-Hermitian
case.

We consider a spin-1/2 fermionic chain of L sites, with
fractional filling factors vσ = Nσ /Ncell = 1/2. Here Nσ is
the number of fermions with spin σ , and Ncell = L/q is the
number of primitive cells. Due to half-filling at the lowest sub-
band, the system is topologically trivial at the single-particle
level. When the on-site interaction is introduced, we compute
the real and imaginary parts of the eigenenergies of ground
states as a function of the on-site interaction strength for filling
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FIG. 1. (a) Real (blue dots) and imaginary (red dots) parts of
ground states versus the interaction strength for the periodic bound-
ary condition. As the on-site energy increases, the real parts of the
eigenenergies first rises, and then tend to a finite value. (b) Charge
gap �c and spin gap �s versus the interaction strength U for periodic
boundary. A nonzero charge gap indicates the Mott phase driven by
the interactions. The parameters used are: L = 12, N↑ = 2, N↓ = 2,
t = 1, V0 = 1.5, q = 3, φ = 2π/3, and α = 0.4.

factors vσ = 1/2, as shown in Fig. 1(a). Here, as a natural
extension of the Hermitian systems, the ground state of the
many-body spectrum is defined as the state with minimum
real part of the eigenenergies. According to Fig. 1(a), the
real part of the eigenenergies of the many-body spectrum
first increases, and then tends to a finite value, as the on-site
interaction strength rises.

In the presence of the on-site interactions, we calculate
both the charge gap �c and spin gap �s, which are defined as

�c = 1
2 [E0(N↑, N↓ + 1) + E0(N↑, N↓ − 1)]

− E0(N↑, N↓), (2)

�s = 1
2 [E0(N↑ − 1, N↓ + 1) + E0(N↑ + 1, N↓ − 1)]

− 2E0(N↑, N↓), (3)

where E0 is the ground-state energy, defined as the minimum
real part of the many-body energy spectrum [82,99].

Figure 1(b) plots the charge and spin gaps versus the on-
site interaction strength U . In the noninteracting limit, the
lowest subband is only partially filled for vσ = 1/2; therefore,
the charge gap is zero. Once the interaction is introduced,
the repulsion between the two spin components forces the
fermions with different spins to occupy the individual en-
ergy level of the lowest sub-band. Consequently, a charge
gap is opened, and the non-Hermitian metallic system be-
comes a Mott insulator. In contrast, the spin modes are always
gapless.
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FIG. 2. Low-energy spectra versus the modulation phase φ for: (a), (b) U = 1, (c), (d) U = 10, and (e), (f) U = 100. The spectra in (a),
(c), (e) are for periodic boundary, and (b), (d), (f) for open boundaries. In the strong interaction limit, gapless neutral excitations emerge for
open boundaries, while no gap is opened for periodic boundaries. This indicates that the spectrum of the non-Hermitian correlated system with
nonreciprocal hopping is sensitive to the boundary conditions, which is a manifestation of the non-Hermitian skin effect. The parameters used
here are: L = 12, N↑ = 2, N↓ = 2, t = 1, V0 = 1.5, q = 3, and α = 0.4.

Moreover, the charge gap is opened even for a very small
value of U , as the similar case for the Hubbard model without
the superlattice potential [100]. The charge gap rises rapidly
as U increases, and eventually tends to a finite value. For the
Hermitian case, the charge gap tends to �b/2 for large U [96],
where �b is the single-particle gap at the 1/3 particle filling;
while the saturated charge gap in the non-Hermitian case is
well below this value (�b/2 = 0.54) due to the nonreciprocal
hopping.

B. Many-body spectrum

To address whether the non-Hermitian Mott insulator is
topologically nontrivial, we calculate the low-energy spec-
tra of neutral excitations in the many-excitation subspace
considering both periodic and open boundaries, as summa-

rized in Fig. 2. For the weak repulsive interaction, e.g., U = 1,
there are no gaps for both periodic [see Fig. 2(a)] and open
[see Fig. 2(b)] boundaries, and no gapless neutral excitations
are thus observed. However, in the strong repulsive limit, e.g.,
U = 10 and U = 100, the lower-energy sector and higher-
excited levels cross at φ = 2π/3 in the bulk gap regime, and
gapless neutral excitations emerge for open boundaries [see
Figs. 2(d) and 2(f)]. Note that the lower-energy sector contains
six energy levels (i.e., six kinds of spin configurations) and
will become degenerate in the infinite-U limit. Its degener-
acy is lifted for a finite value due to spin fluctuations. For
periodic-system energy spectra in Figs. 2(c) and 2(e) even in
the large-U limit, no gap is opened between the lower-energy
sector and higher-excited levels, due to the strong nonrecipro-
cal hopping with α = 0.4 [see also the eigenenergies on the
complex plane in Fig. 3(a)]. This indicates that the energy
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FIG. 3. Few lowest eigenenergies in the complex plane using
periodic boundary, for (a) α = 0.4, and (b) α = 0.2. The parameters
used here are: L = 12, N↑ = 2, N↓ = 2, t = 1, V0 = 1.5, q = 3,
and U = 100. For the weak nonreciprocal hopping (i.e., α = 0.2),
the many-body spectrum shows a band gap, while, in the strong
nonreciprocal hopping (i.e., α = 0.4), no gap is opened for periodic
boundaries.

spectrum of the non-Hermitian interacting system is sensitive
to the boundary conditions, which is a manifestation of the
non-Hermitian skin effect.

In contrast to the case of the strong nonreciprocal hopping,
the periodic-system energy spectrum is gapped for the weak
nonreciprocal hopping with α = 0.2, as shown in Figs. 3(b)
and 4. This results from the interplay of non-Hermiticity and
superlattice potential (see also the single-particle spectra in
Appendix B). In addition, the energy spectrum is always real
for open boundaries. This can be seen via the similarity trans-
formations

c j,σ → e jαc j,σ , c†
j,σ → e− jαc†

j,σ , (4)
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FIG. 4. Low-energy spectra versus the modulation phase φ for
α = 0.2, and U = 100. The spectrum of (a) is for periodic boundary,
and (b) for open boundaries. In contrast to the case of the strong
nonreciprocal hopping, the energy spectra with weak nonreciprocal
hopping are gaped. The parameters used here are: L = 12, N↑ = 2,
N↓ = 2, t = 1, V0 = 1.5, and q = 3.

which map the non-Hermitian Hamiltonian H in Eq. (1) onto
the Hermitian one.

To explore the edge localization of the gapless neutral ex-
citation, we calculate its spatial charge and spin distributions.
Note that the non-Hermitian Hamiltonian holds different
left and right eigenvectors, which are defined as H†|�〉L =
E∗|�〉L, and H|�〉R = E |�〉R. They satisfy the biorthogonal
normalization condition L〈�||�〉R = 1. As such, the spatial
charge and spin distributions can be calculated via either
biorthogonal eigenvectors or only right eigenvectors. In order
to detect the non-Hermitian skin effect, as observed in the
single-particle model, we adopt the right eigenvectors, where
the spatial charge and spin distributions are defined as

�nne
RR, j = R〈�1(N↑, N↓)|n j |�1(N↑, N↓)〉R

R〈�1(N↑, N↓)||�1(N↑, N↓)〉R

− R〈�0(N↑, N↓)|n j |�0(N↑, N↓)〉R

R〈�0(N↑, N↓)||�0(N↑, N↓)〉R
, (5)

�Sne
RR, j = R〈�1(N↑, N↓)|S j |�1(N↑, N↓)〉R

R〈�1(N↑, N↓)||�1(N↑, N↓)〉R

− R〈�0(N↑, N↓)|S j |�0(N↑, N↓)〉R

R〈�0(N↑, N↓)||�0(N↑, N↓)〉R
, (6)

where n j = n j,↑ + n j,↓, S j = (n j,↑ − n j,↓)/2, the superscript
“ne” refers to neutral, and |�0(N↑, N↓)〉R [|�1(N↑, N↓)〉R] is
the right lowest (higher) energy state.

Equations (5) and (6) provide the differences of density and
magnetization distributions of two in-gap modes in the upper
and lower branches. We plot the edge excitations and ground-
state population distributions of the neutral excitations for
U = 100 in Fig. 5. According to Figs. 5(a) and 5(b) the gap-
less neutral excitation only carries a charge degree of freedom
at the edges. Moreover, only the in-gap states with φ < 2π/3
exhibit edge excitations for α = 0.4 and V0 = 1.5, as shown in
Fig. 5(a). In contrast, for α = −0.4, edge excitations emerge
only if φ > 2π/3, as shown in Fig. 5(c). Note that the absence
of edge excitations also appears for the weak interaction limit,
e.g., for U = 10 in Appendix C. Therefore, the charge distri-
butions calculated by only the right eigenvectors indicate that
the non-Hermitian interacting system shows the anomalous
boundary effect, where some in-gap states exhibit no edge
excitations in the open chain. However, this phenomenon
is absent for the non-Hermitian single-particle case (see
Appendix B).

Moreover, such an anomalous boundary effect disappears
for weak nonreciprocal hopping, i.e., α = 0.2, as shown in
Fig. 5(d), or large modulation amplitude, i.e., V0 = 4 in
Fig. 5(e). These indicate that the anomalous boundary ef-
fect results from the combined effects of the nonreciprocal
hopping, superlattice potential, and interactions. The inter-
actions drive the metallic phase into a topological insulator,
the superlattice potential forces particles to occupy the site
with lower potential in the ground state, and the nonreciprocal
hopping pushes particles accumulated towards one of two
ends in the higher-excited state. These lead to the absence of
neutral excitations at the edges for certain values of φ. Fur-
thermore, unlike the single-particle model (see Appendix B),
the nonreciprocal hopping here does not cause bulk charges
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FIG. 5. Spatial distributions of the (a), (c), (d), (e) charge and (b) spin for the neutral excitation modes, calculated via only the right
eigenvectors, for different modulation phases φ. The spatial distributions are calculated for: (a), (b) α = 0.4, V0 = 1.5; (c) α = −0.4, V0 = 1.5;
(d) α = 0.2, V0 = 1.5; and (e) α = 0.4, V0 = 4. (f) Spin-resolved charge densities of the ground state for φ = 2π/5, α = 0.4, and V0 = 1.5.
The parameters used here are: L = 12, N↑ = 2, N↓ = 2, t = 1, U = 100, and q = 3.

to accumulate near the boundaries due to the Pauli exclusion
principle and interactions [see Fig. 5(f)].

To explain the anomalous boundary effect, we plot the
spin-resolved charge densities calculated by only the right
eigenvectors, as shown in Fig. 6. The charge densities in

the first row are calculated with the higher-excited state
|�1(N↑, N↓)〉R, and the second row with the ground state
|�0(N↑, N↓)〉R for α = 0.4 and α = 0. Their difference de-
fines the corresponding charge distributions of the neutral
excitations [see Eq. (5)]. The black dotted line indicates the

0
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FIG. 6. Spin-resolved charge densities, calculated via only the right eigenvectors, of the ground state |�0(N↑, N↓)〉R (the second row) and
the higher-energy state |�1(N↑, N↓)〉R (the first row) for (a), (b) α = 0.4, and (c), (d) α = 0 using the open boundaries. The black dotted line
indicates the superlattice potential Vj = V0 cos(2π j/q + φ). The parameters used here are: L = 12, N↑ = 2, N↓ = 2, t = 1, q = 3, V0 = 1.5,
and U = 100.
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superlattice potential Vj = V0 cos(2π j/q + φ) for φ = 2π/5
and φ = 4π/5.

For the Hermitian case with α = 0, due to the spatial
modulations of the superlattice potential, the charge densi-
ties in the bulk exhibit periodic oscillations, and the neutral
excitations are localized at the ends, for both φ = 2π/5 and
φ = 4π/5, as indicated in Figs. 6(c) and 6(d).

For the non-Hermitian case with α = 0.4, the charge den-
sities are also periodically modulated by the superlattice
potential. The particles in the bulk do not accumulate to-
wards the right end, in spite of the stronger forward-hopping
amplitude, due to the Pauli exclusion principle and on-site
interactions. In order to minimize the energy in the ground
state |�0(N↑, N↓)〉R (the second row), the site where the su-
perlattice potential Vj is lower is occupied by more charges.
As shown in Figs. 6(a) and 6(c) and Figs. 6(b) and 6(d) to
minimize the ground-state energy, the left end is occupied
by more particles than the right end for φ = 2π/5; while
the right end is occupied by more particles than the left end
for φ = 4π/5. In the excited state |�1(N↑, N↓)〉R (the first
row), the nonreciprocal hopping somehow pushes the particles
towards the right end both for φ = 2π/5 and φ = 4π/5, as
shown in Figs. 6(a) and 6(b). As a result, the neutral excitation
is still localized at the ends for φ = 2π/5 and α = 0.4, but the
edge neutral excitations disappear for φ = 4π/5 and α = 0.4.

Moreover, when the modulation potential increases from
the V0 = 1.5 to V0 = 4 [see Fig. 5(e)], the nonreciprocal hop-
ping is weakened by the potential barrier for the higher-energy
states; therefore, the neutral excitation is localized at ends for
φ = 4π/5 and V0 = 4. Therefore, the anomalous boundary
effect of the neutral excitation results from the combined
effects of nonreciprocal hopping, superlattice modulation, and
interactions.

The charge distributions computed by only the right eigen-
vectors lead to the absences of edge excitations for some
in-gap states due to the intrinsic non-Hermitian skin effect,
as discussed above. To correctly characterize the edge ex-
citations, we resort to the biorthogonal formula. The charge
distribution in biorthogonal eigenvectors is calculated as

�nne
LR, j = L〈�1(N↑, N↓)|n j |�1(N↑, N↓)〉R

− L〈�0(N↑, N↓)|n j |�0(N↑, N↓)〉R. (7)

As shown in Fig. 7, all the in-gap states of the neutral ex-
citations are localized at the edges. In addition, the charge
distributions with α = 0.4 [see Fig. 7(a)] are the same as
the ones with α = −0.4 [see Fig. 7(b)], indicating that they
are insensitive to the nonreciprocal hopping based on the
biorthogonal formula.

C. Quasiparticle spectrum

To further explore the topological properties of the Mott
insulator, we proceed to calculate the quasiparticle energy
spectrum, or charge excitation spectrum, defined as

�Ec(N↑, N↓) = E0(N↑, N↓ + 1) − E0(N↑, N↓). (8)

-0.8

0

0.6(a)

(b)

 = 2 /5
 = 4 /5

LR
,j

nne

 = 0.4 

-0.8

0

0.6

1 3 5 7 9 11
j 

 = 2 /5
 = 4 /5

 = 0.4 _

LR
,j

nne
FIG. 7. Spatial charge distributions, calculated via biorthogonal

eigenvectors, of the neutral excitations for (a) α = 0.4 and (b) α =
−0.4. The absence of edge excitations calculated by only the right
eigenvectors is restored by the biorthogonal formula. The parameters
used here are: L = 12, N↑ = 2, N↓ = 2, t = 1, V0 = 1.5, and q = 3.

The corresponding spatial charge distribution, calculated
by both only the right eigenvectors and biorthogonal
eigenvectors, are

�nc
RR, j = R〈�0(N↑, N↓ + 1)|n j |�0(N↑, N↓ + 1)〉R

R〈�0(N↑, N↓ + 1)||�0(N↑, N↓ + 1)〉R

− R〈�0(N↑, N↓)|n j |�0(N↑, N↓)〉R

R〈�0(N↑, N↓)||�0(N↑, N↓)〉R
, (9)

�nc
LR, j = L〈�0(N↑, N↓ + 1)|n j |�0(N↑, N↓ + 1)〉R

− L〈�0(N↑, N↓)|n j |�0(N↑, N↓)〉R. (10)

Figures 8(a) and 8(b) plot the charge excitation spec-
tra versus the modulation phase φ under both periodic and
open boundaries for �Ec(N↑ = 2, N↓ = 2) and �Ec(N↑ = 2,

N↓ = 1). For periodic boundary, the charge excitation spec-
trum is gapped. Once the boundary is opened, the in-gap
modes appear.

To explore the non-Hermitian skin effect on edge charge
excitations, Figures 8(c)–8(e) show the spatial charge distri-
butions calculated using only the right eigenvector. As the
same case of neutral excitations, only the in-gap modes of the
charge excitations with φ < 2π/3 are localized at the edges
for the strong nonreciprocal hopping, i.e., α = 0.4 in Fig. 8(c),
while the edge charge excitations disappears for φ > 2π/3.
When the amplitude of the nonreciprocal hopping α is reduced
[see Fig. 8(d)], or the modulation intensity V0 is increased
[see Fig. 8(e)], the edge excitations of the in-gap modes for
both φ < 2π/3 and φ > 2π/3 are observed. This anomalous
boundary effect for the edge charge excitations is due to
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FIG. 8. Charge excitation spectra �Ec(2, 2) and �Ec(2, 1) versus the modulation phase φ for (a) periodic and (b) open boundaries. Spatial
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the combined results of nonreciprocal hopping, superlattice
potential, and interactions.

To explain such an anomalous boundary effect for the edge
charge excitations, we plot the charge densities of the ground
state |�0(N↑, N↓)〉R (the first row) and |�0(N↑, N↓ + 1)〉R (the
second row), as shown in Fig. 9. Their difference defines the
corresponding charge distributions of the charge excitations
[see Eq. (9)]. Due to the spatial modulations of the superlattice
potential, the charge densities in the bulk exhibit periodic
oscillations. To minimize the system energy in the ground

state, the site where the superlattice potential Vj is lower is
occupied by more charges. Therefore, in the ground state
|�0(N↑, N↓)〉R (the first row in Fig. 9), the left end is occupied
by more particles than the right end for φ = 2π/5, while the
right end is occupied by more particles than the left end for
φ = 4π/5. When an extra particle is added, in the ground
state |�0(N↑, N↓ + 1)〉R (the second row in Fig. 9), it tends to
occupy the right end for α = 0.4 due to the stronger forward
hopping. This leads to the absence of the charge excitations
for φ = 4π/5 and α = 0.4.
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FIG. 9. Spin-resolved charge densities, calculated via only the right eigenvectors, of the ground states |�0(N↑, N↓)〉R (the first row) and
|�0(N↑, N↓ + 1)〉R (the second row) for (a), (b) α = 0.4, and (c), (d) α = 0 using the open boundaries. The black dotted line indicates the
superlattice potential Vj = V0 cos(2π j/q + φ). The parameters used here are: L = 12, N↑ = 2, N↓ = 2, t = 1, q = 3, V0 = 1.5, and U = 100.
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FIG. 10. Chern number C versus U , with parameters L = 18,
N↑ = 3, N↓ = 3, t = 1, V0 = 1.5, q = 3, φ = 2π/3, and α = 0.

To fully characterize boundary charge excitations, we can
implement biorthogonal eigenvectors, where all the in-gap
modes show edge excitations, as shown in Fig. 8(f).

D. Topological invariant

To characterize the topological feature of the system con-
sidered, we compute the many-body Chern number, which is
defined as:

C = 1

2π

∫ π

−π

dθ

∫ π

−π

dφ(∂θAφ − ∂φAθ ), (11)

where the Berry connection Aμ = iL〈
g|∂μ|
g〉R (μ = θ, φ).
|
g〉R (|
g〉L) is the many-body right (left) ground state un-
der the twist boundary conditions c j+L,σ = eiθ c j,σ , with twist
angle θ . Since the low-energy spectrum of the neutral exci-
tation is gapless even for a strong repulsive limit due to the
nonreciprocal hopping, the Chern number based on the Hamil-
tonian H in Eq. (1) fails to characterize the bulk-boundary
correspondence due to the sensitivity of many-body spectra to
boundary conditions. We note that the non-Hermitian Hamil-
tonian H can be mapped onto a Hermitian one via a similarity
transformation, and they share the same quasiparticle bands
for open boundaries. Thus, we can restore the bulk-boundary
correspondence by computing the Chern number of the corre-
sponding Hermitian Hamiltonian under its twisted boundary
condition. Figure 10 plots the topological phase diagram with
α = 0, where C = −1 even for very small U , because an arbi-
trary small repulsive interaction [see also Fig. 1(b)] can drive
the Hubbard system into topological Mott phases [96,100].

III. NON-HERMITIAN MODEL WITH
COMPLEX-VALUED INTERACTION

A. Effective Hamiltonian

We now discuss the strongly correlated topologi-
cal phases with complex-valued interactions. We con-
sider 1D spin-1/2 ultracold fermionic atoms loaded in a
bichromatic optical lattice, described by H = H0 + Hint

with

H0 = −t
∑
j,σ

(c†
j,σ c j+1,σ + c†

j+1,σ c j,σ ) +
∑
j,σ

Vjn j,σ , (12)

Hint = U
∑

j

c†
j,↑c†

j,↓c j,↓c j,↑, (13)

where Vj = V0 cos(2πβ j + φ).
Now we consider two-body inelastic collisions between

ultracold atoms, which leads to losses of atoms [101]. The dis-
sipative dynamics of the system is described by the following
quantum master equation [102]:

dρ

dt
= − i[H, ρ] − γ

2

∑
j

(L†
j L jρ + ρL†

j L j − 2LjρL†
j )

= − i[Heff, ρ] + γ
∑

j

L jρL†
j , (14)

where ρ is the density matrix of the ultracold atoms, and the
Lindblad operator Lj = c j,↓c j,↑ describes a two-particle loss
at site j with rate γ . According to the quantum-trajectory
theory [103–105], the dynamics of the dissipative quantum
system described by the first line in Eq. (14) can be decom-
posed into two processes: a nonunitary Schrödinger evolution
described by the effective non-Hermitian Hamiltonian Heff =
H − iγ /2

∑
j L†

j L j , and stochastic quantum jumps, described
by the second term in the second line of Eq. (14), which leads
to atomic losses. Therefore, when projecting out the quan-
tum jumps (by continuously monitoring the particle number
[99,106]), the system is governed by the following effective
non-Hermitian Hamiltonian with a complex-valued on-site
interaction:

Heff = H0 + (U − iγ /2)
∑

j

c†
j,↑c†

j,↓c j,↓c j,↑. (15)

B. Low-energy spectra of neutral and charge excitations

To address whether the complex-valued interaction can
drive the metallic phases into topologically nontrivial insula-
tors, we calculate the low-energy spectra of neutral excitations
for the purely imaginary-valued interactions using both pe-
riodic and open boundary conditions, as shown in Fig. 11.
For a small absolute value of the interaction strength, e.g.,
γ = 5, there exist no gaps using both periodic [Fig. 11(a)]
and open [Fig. 11(b)] boundary conditions. However, for large
absolute values of the interaction strengths, e.g., γ = 10 and
γ = 100, the energy gaps are opened for periodic bound-
ary condition, as shown in Figs. 11(c) and 11(e). The gap
opening indicates that the purely imaginary-valued on-site
interaction here plays the role of the effective repulsion be-
tween the two-component fermions, which can be attributed
to a phenomenon similar to the continuous quantum Zeno
effect [101,107–109]. The strong two-body inelastic collision,
acting as the strong measurement, effectively suppresses the
coherent tunneling, thereby preventing double occupancies of
fermions with opposite spin components. When the system
goes from periodic to open boundaries, the in-gap modes,
which connect the lower-energy and higher-excited sectors,
appear, as shown in Figs. 11(d) and 11(f). The gapless modes
here closely resemble the appearance of edge states in the
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FIG. 11. Low-energy spectrum versus the modulation phase φ for: (a), (b) γ = 5; (c), (d) γ = 10; and (e), (f) γ = 100. The spectra in
(a,c,e) are for periodic boundary, and in (b), (d), (f) using open boundaries. The parameters used here are: L = 12, N↑ = 2, N↓ = 2, t = 1,
V0 = 1.5, q = 3, and U = 0.

single-particle spectrum. In contrast to the nonreciprocal case,
the many-body spectrum is complex. Note that the lower-
energy sector become broader for smaller interaction strengths
due to spin fluctuations.

In addition to the neutral excitations, we present the
low-energy spectra of charge excitations for the purely
imaginary-valued interactions using both periodic and open
boundary conditions, as shown in Fig. 12. When the 1D chain
is under the periodic boundary, the spectrum of charge ex-
citation is gaped for large absolute values of the interaction
strengths, e.g., γ = 100 in Fig. 12(a). Once its boundary is
opened, the gapless edge excitations emerge, as shown in
Fig. 12(b).

Both neutral and charge excitation spectra support in-gap
modes. Their spatial charge distributions calculated by right
eigenvectors are plotted in Figs. 13(a) and 13(b). For both
cases, the in-gap modes are well localized at the edges. Note
that these exhibit the same spatial distributions calculated by
biorthogonal eigenvectors, for the neutral and charge excita-
tions, as the one using only right eigenvectors. No anoma-
lous boundary effect occurs for purely imaginary-valued
interactions.

IV. SUMMARY AND DISCUSSION

We have discussed topological properties of an interaction-
induced topological Mott insulator in a 1D non-Hermitian
spinful fermionic superlattice system. We analyzed its low-
energy neutral and charge excitations spectra in the presence
of nonreciprocal hopping, where in-gap modes appear. We
found that the nonreciprocal hopping makes the neutral ex-
citation spectrum sensitive to the boundary conditions, which
is a manifestation of the non-Hermitian skin effect. However,
the unique non-Hermitian skin effect on particle density, as
shown at the single-particle case, is absent due to the Pauli
exclusion principle. The interplay of nonreciprocal hopping,
superlattice potential, and interactions leads to the absence
of edge excitations, defined by only the right eigenvectors,
of some in-gap modes appearing in both the neutral and
charge excitation spectra. Moreover, these edge excitations
can be characterized by using biorthogonal eigenvectors. Fur-
thermore, the topological Mott insulator induced by purely
imaginary-valued interaction can be interpreted by the con-
tinuous quantum Zeno effect.

The non-Hermitian skin effect has been shown to cause
unusual properties in fermionic many-body systems, i.e., a
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Fermi surface in real space [110]. Our findings indicate
that the non-Hermitian skin effect, in combination with a
periodic modulation and interactions, can lead to unconven-
tional topological features without Hermitian counterparts,
which is worth further exploration. Possible future research
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FIG. 13. Spatial charge distributions for the (a) neutral excitation
and (b) charge excitation modes for different modulation phases φ.
The parameters used here are: γ = 100, L = 12, N↑ = 2, N↓ = 2,
t = 1, V0 = 1.5, q = 3, and U = 0.

directions include non-Hermitian fractional quantum Hall ef-
fect [111], fractional charge pumping [112], and an extension
to higher-dimensional systems [113]. Meanwhile, we hope
that our studies inspire further future explorations of the role
of the non-Hermitian skin effect and searching for novel
topological features in non-Hermitian interacting fermionic
systems.

Note added. Recently, we became aware of two related
works [114,115], which discuss non-Hermitian topological
Mott insulators of interacting bosons. Unlike the fermionic
model considered here, the nonreciprocal bosonic model ex-
hibits the accumulation of particle density at the edges, and no
anomalous boundary effect is reported [114].
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APPENDIX A: EXPERIMENTAL REALIZATION OF
FERMI-HUBBARD MODEL WITH NONRECIPROCAL

HOPPING

To experimentally realize the non-Hermitian Fermi-
Hubbard model with asymmetric hopping in the ultracold
atom systems, we can employ reservoir engineering [15]. We
rewrite the system Hamiltonian Eq. (1) into Hermitian H1 =
(H + H†)/2, and anti-Hermitian H2 = (H − H†)/2 parts:

H1 = − t (eα + e−α )

2

∑
j,σ

(c†
j+1,σ c j,σ + c†

j,σ c j+1,σ )

+
∑
j,σ

Vjn j,σ + U
∑

j

c†
j,↑c†

j,↓c j,↓c j,↑, (A1)

H2 = − t (eα − e−α )

2

∑
j,σ

(c†
j+1,σ c j,σ − c†

j,σ c j+1,σ ). (A2)

To engineer this anti-Hermitian part H2, we follow the method
developed in Ref. [15] to dissipatively engineer the following
jump operators that describe the collective loss of two nearest-
neighbor sites:

Lj =
√

t (eα − e−α )sgn(α)[c j,σ + isgn(α)c j+1,σ ], (A3)

where sgn refers to ± signs. Then, the open quantum system
dynamics with postselection measurements is determined by
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the non-Hermitian effective Hamiltonian:

Heff = H − i

2

∑
j

L†
j L j

= H − i
t (eα − e−α )sgn(α)

2

∑
j

c†
j,σ c j,σ , (A4)

which differs from the Hamiltonian Eq. (1) only by a back-
ground loss term.

The Hermitian part H1 in Eq. (A1) with the superlat-
tice structure can be constructed by loading the ultracold
fermionic atoms in the lowest band of a bichromatic optical
lattice [98,116–120], and such a Hamiltonian has been exper-
imentally realized [120]. The bichromatic potential resulting
from the superposition of two lattices [a main optical lattice
V1(x) and a secondary weak one V2(x)] can be written as
[98,116,117]:

V (x) = V1(x) + V2(x)

= V1 cos2(k1x) + V2 cos2(k2x + φ), (A5)

where ki = 2π/λi (i = 1, 2) are the lattice wave numbers, λi

the wavelength of the lasers, which are utilized to form the
optical lattices, and Vi are the depth of the lattices with V1 �
V2. The period of the superlattice potential V (x) is determined
by the ratio q = k1/k2.

In the strong potential V1 limit, which is much larger
than the recoil energy Er = h̄k2

1/2M with the atomic mass M
[98,116,117], we can only consider the lowest Bloch band.
Then, the ultracold fermionic atoms in the bichromatic lat-
tices, in the tight-binding limit, can be mapped onto the
Hamiltonian H1 in Eq. (A1).

APPENDIX B: SINGLE-PARTICLE SPECTRUM

In the absence of interactions, we consider the following
single-particle non-Hermitian Hamiltonian with a superlattice
potential:

Hs = − t
∑

j

(eαc†
j+1c j + e−αc†

j c j+1)

+ V0

∑
j

cos(2π j/q + φ)nj . (B1)

The periodic modulation [i.e., the last term in Eq. (B1)]
introduces a superlattice structure, where each lattice site
of the 1D chain can be now represented by two quan-
tities: xm denoting the position of the supercell, and β

indexing the lattices inside the supercell. For a periodic sys-
tem, we can transform the real-space Hamiltonian Hs to
the momentum-space one Hs(k) by the following Fourier
transformation:

cβ,m = 1√
Ncell

∑
k

cβ,ke−ikxm , (B2)

where β = 1, 2, . . . , q, Ncell = L/q, m = 1, 2, . . . , Ncell, and
−π/q < k < π/q. Thus, the momentum-space Hamiltonian

is given by

Hs(k) = − t
∑

k

[eα (c†
2,kc1,k + · · · + c†

q,kcq−1,k + c†
1,kcq,keikq )

+ e−α (c†
1,kc2,k + · · · + c†

q−1,kcq,k + c†
q,kc1,ke−ikq )]

+ V0

∑
β,k

cos(2π j/q + φ)nβ,k . (B3)

According to Eq. (B3), the single-particle spectrum is split
into q bands due to the superlattice potential, as shown by the
gapped complex energy spectra for q = 3 using the periodic
boundary condition in Figs. 14(a) and 14(b). The energy spec-
trum is gapped for α = 0.2 at both the 1/3 and 2/3 particle
fillings [see Fig. 14(c)]; while it is gapless for α = 0.4 at the
1/3 particle filling [see Fig. 14(d)] due to the nonreciprocal
hopping, which is different from the Hermitian case [94].

When the single-particle chain is changed from periodic
boundary to the open one, in-gap modes appear for α = 0.2
at both the 1/3 and 2/3 particle fillings [see Figs. 14(e) and
14(f)]. These in-gap modes (there exist two edge modes at a
specific α) can be localized at both the left and right ends of
the chain for the small nonreciprocal hopping factor α = 0.2,
as shown in Figs. 14(g) and 14(h). While, for the strong
nonreciprocal hopping, i.e., α = 0.4, the in-gap modes are
localized only at the right end due to the much larger forward
hopping amplitude than the backward one [see Figs. 14(i) and
14(j)], which is dubbed the non-Hermitian skin effect.

APPENDIX C: NEUTRAL EXCITATIONS FOR U = 10

In this strong interaction limit (e.g., U = 100 in Sec. II),
the interacting system with the nonreciprocal hopping shows
the anomalous boundary effect, where some in-gap states
exhibit no edge excitations in the open chain. Here we present
the results of the edge excitations of the neutral excitation
modes for the weaker interaction U = 10 considering the
open boundary conditions, as shown in Fig. 15. As the same
as the case for the strong interaction U = 100, the gapless
neutral excitation only carries a charge degree of freedom
at the edges for U = 10 [Figs. 15(a) and 15(b)]. Moreover,
the in-gap modes only with φ < 2π/3 (φ > 2π/3) show
edge excitations for α = 0.4 (α = −0.4), and V0 = 1.5 [see
Figs. 15(a), 15(c)]. Therefore, the neutral excitations, cal-
culated by only the right eigenvectors, also show the same
anomalous boundary effect in the weaker interaction U =
10 as that in the strong repulsive limit. Such an anoma-
lous boundary effect disappears for the weak nonreciprocal
hopping, i.e., α = 0.2 as shown in Fig. 15(d), or the large
modulation amplitude, i.e., V0 = 4 in Fig. 15(e). Furthermore,
unlike the single-particle model, the nonreciprocal hopping
here does not cause the charge density of the ground state
to accumulate near the boundaries [see Fig. 15(f)], indicating
that the non-Hermitian skin effect plays no role in the particle
density of the interacting system due to the combined effects
of the Pauli exclusion principle and interaction. By using the
biorthogonal formula, we can have the right edge excitations,
as shown in Figs. 15(g) and 15(h).
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