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Effect of disorder on the transverse magnetoresistance of Weyl semimetals
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We study the effect of random potentials created by different types of impurities on the transverse mag-
netoresistance of Weyl semimetals. We show that the magnetic field and temperature dependence of the
magnetoresistance is strongly affected by the type of impurity potential. We analyze in detail two limiting cases:
(i) the ultraquantum limit, when the applied magnetic field is so high that only the zeroth and first Landau levels
contribute to the magnetotransport, and (ii) the semiclassical situation, for which a large number of Landau
levels come into play. A formal diagrammatic approach allowed us to obtain expressions for the components of
the electrical conductivity tensor in both limits. In contrast to the oversimplified case of the δ-correlated disorder,
the long-range impurity potential (including that of Coulomb impurities) introduces an additional length scale,
which changes the geometry and physics of the problem. We show that the magnetoresistance can deviate from
the linear behavior as a function of magnetic field for a certain class of impurity potentials.
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I. INTRODUCTION

In recent years, problems related to quantum transport in
materials with the Dirac spectrum of charge carries, in partic-
ular in Weyl semimetals, have attracted considerable interest
[1,2]. Much effort was focused on the longitudinal magne-
toresistance, where the negative contribution associated with
the so-called chiral anomaly arising due the transfer of charge
carriers between Weyl points with opposite chiralities plays a
dominant role [3–8].

At low magnetic fields, rather nontrivial manifestations of
the weak localization and antilocalization effects have also
been addressed [9,10]. No less interesting is the behavior
of the transverse magnetoresistance, where a nonsaturating
linear magnetic field dependence is observed at high fields
[11–14]. The nature of such unusual behavior has been widely
discussed.

The main physical mechanisms in the ultraquantum regime
were revealed in the seminal work of Abrikosov [15]. He con-
sidered a gapless semiconductor with a linear dispersion law
near the chemical potential. The electron density was chosen
in such a way that only the zeroth Landau level took part in
the charge transport and the charge carriers were scattered by
impurities characterized by the screened Coulomb potential.

This problem was generalized in the detailed studies pre-
sented in Refs. [16,17], which were stimulated by numerous
experimental observations of the linear magnetoresistance. In
these papers, the transverse magnetoconductivity and Hall
conductivity were obtained in both ultraquantum and so-
called semiclassical limits (the latter is characterized by the
contribution of many Landau levels into the charge transport).

However, their main emphasis was on the case of pointlike im-
purities, i.e., the disorder correlation length was much smaller
than the charge-carrier wavelength and the magnetic length.
Even the case of Coulomb disorder was treated in the frame-
work of modified δ-correlated disorder.

A rigorous study of long-range disorder in Weyl semimet-
als was undertaken in Ref. [18], where the perturbed Keldysh
model was employed. The main focus of Ref. [18] was on
the density of states of charge carriers, but the authors also
addressed the magnetoconductivity with the Coulomb disor-
der. However, their usage of Drude-type expression for the
conductivity was never derived diagrammatically, and, as a
result, their answers were of a qualitative nature. A different
approach to tackle the magnetoconductivity in metals with the
long-range disorder was used in Ref. [19]. Although that ap-
proach lacks some rigor, it appeals to an intuitively transparent
semiclassical picture involving the concept of guiding centers.
It is also worth mentioning the numerical analysis undertaken
in Ref. [20], where the magnetoconductivity was treated in
the framework of the self-consistent Born approximation in
the case of Coulomb impurities at an arbitrary position of the
chemical potential. Finally, for the screened Coulomb poten-
tial of impurities, the electron transport was also analyzed in
the case of a gapped Dirac spectrum [21,22].

This way, the analytical results for the magnetoconductiv-
ity with long-range impurity potentials have so far been either
of qualitative nature or lacked rigor, which only a diagram-
matic or kinetic-equation approach can provide.

The primary goal of this paper is obtaining analytical
results for the magnetoconductivity for a general type of
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long-range disorder through the use of a consistent dia-
grammatic approach. We employ the Kubo-Středa formalism
and use the diagrammatics to implement the averaging for
obtaining the corresponding results for the transverse magne-
toconductivity and Hall conductivity.

In this work, we consider a disorder potential of quite a
general form and characterize it by its short-range asymp-
totics, which we assume to be of a power-law type:

u(r) ∼ r−1−γ , r � r0, (1)

where r0 is a characteristic radius of the disorder potential.
The characteristic scale can be understood as the screen-
ing radius of the potential. We find that depending on the
exponent γ , the transverse magnetoconductivity exhibits dif-
ferent scaling with magnetic field in the ultraquantum limit
(max{μ, T } � �)

σxx =

⎧⎪⎪⎨
⎪⎪⎩

e2v2

r4
0

g1(c/eH ) ∼ H−1, −1 < γ < 0,

e2v2α2 ln(1/α)(c/eH ) ∼ H−1, γ = 0,

e2v2nimpu2
0

(
eHr2

0
c

)γ

(c/eH ) ∼ Hγ−1, 0 < γ < 1,

(2)

where μ, T are chemical potential and temperature, respec-
tively, e is the electron charge, v is the Fermi velocity, c is the
velocity of light, H is the applied magnetic field,

� = v
√

2eH/c (3)

is the energy scale associated with the magnetic field (the
distance between the zeroth and first Landau levels), g1 is a
numerical constant dependent on the type of the potential, nimp

is the concentration of impurities, and u0 is the characteristic
amplitude of the impurity potential in the coordinate space.

Therefore, the scaling of the transverse magnetoresistance
with magnetic field in the ultraquantum regime reveals the in-
formation on the nature of disorder. In the opposite, so-called
semiclassical limit, for which � � max{μ, T }, we obtain
general formula for the transverse magnetoconductivities and
Hall conductivities valid for an arbitrary ratio of μ and T , as
well as for an arbitrary τtr�

2/T ratio, where τtr is the transport
scattering time.

The paper is organized as follows. In Sec. II, we formu-
late the model and introduce all the necessary parameters.
In Sec. III, we analyze the components of the electrical
conductivity tensor and their magnetic field dependence in
the ultraquantum limit, for which the dominant contribution
comes from the zeroth Landau level. In Sec. IV, we consider
the magnetotransport at the semiclassical limit, for which the
temperature is high enough and a large number of Landau
levels come into play. Both in Secs. III and IV, we put the
main emphasis on the magnetotransport in the context of long-
range impurity potentials (the exact conditions are specified in
these sections). In Sec. V, we discuss the obtained results. The
details of our calculations are presented in Appendices A, B,
and C.

II. MODEL AND CHARACTERISTIC PARAMETERS

Our study is aimed at the analysis of the conductivity tensor
of the Weyl semimetal (WSM) with impurities under the effect

FIG. 1. Disorder vertex for the perturbation theory. Here, the
dashed line represents the disorder correlation function, while solid
tails are fermion lines.

of an applied transverse magnetic field (i.e., the magnetic field
direction is perpendicular to that of the electric current). We
start from the low-energy Hamiltonian for the WSM in its
conventional form

H = H0 + Himp,

H0 = v

∫
ψ†(r)σ

(
p − e

c
A
)
ψ (r)dr,

Himp =
∫

ψ†(r)u(r)ψ (r)dr,

(4)

where H0 is the Hamiltonian of noninteracting Weyl fermions
and Himp describes the interactions with the impurity poten-
tial; σ = (σx, σy, σz ) are the Pauli matrices acting in the
pseudospin space of Weyl fermions, p = −i∇r is the momen-
tum operator, v is the Fermi velocity, and u(r) is the impurity
potential.

The specific form of the disorder potential is irrelevant to
us. Its correlation function is assumed to be a smooth function
of coordinates, with power-law ultraviolet asymptotics in the
coordinate space. The exact restrictions are discussed below
(see Sec. III).

Of particular importance to the experiment is the screened
Coulomb impurity potential. As was argued in Ref. [23], there
exists a regime, in which the Coulomb impurity scattering
dominates over the electron-electron interaction (see the cor-
responding discussion in Sec. V).

Throughout the paper, we set h̄ = kB = 1. We also neglect
the influence of different Weyl cones on each other, concen-
trating on the low-energy physics. The vector potential of the
magnetic field H is chosen in the asymmetric gauge

A = (0, Hx, 0). (5)

In this paper, we will use the Kubo-type diagrammatic
approach. The impurity potential thus enters the formalism
in terms of its correlation function averaged over the impurity
positions. The relevant Feynman diagram is shown in Fig. 1.

The disorder correlation function is written in terms of the
dimensionless function g (see its exact definition in Appendix
A), which is introduced in momentum space from the very
beginning. The disorder characteristic momentum is p0. The
p6

0 factor is introduced from dimensional considerations. Mo-
mentum p0 can be identified with inverse correlation length
r−1

0 . Potential amplitude u0 is introduced in Appendix A.
The ultraquantum case corresponds to the limit

max{T, μ} � �. (6)
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In this case, the long-range disorder condition means that its
correlation length satisfies the following inequalities:

lH � r0 � λ, (7)

where

λ = v/ max{T, μ}, lH =
√

c/(eH ) (8)

are the characteristic particle wavelength and the magnetic
length, respectively.

In the opposite semiclassical limit � � max{T, μ}, the
respective condition for the disorder correlation length is
changed as

λ � r0 � lH . (9)

Limit (7) intuitively appeals to the physical picture where the
center of the magnetic orbit moves along the impurity po-
tential line, while limit (9) corresponds to the proper particle
motion along the impurity potential line.

III. MAGNETOTRANSPORT AT max{T, μ} � �

(ULTRAQUANTUM LIMIT)

A. Computation of σxx

This limit means that the first of the Landau levels

εn =
√

n�2 + p2
z (10)

is high enough and only the ground state contributes to the
magnetotransport (actually, the first excited state also con-
tributes to the conductivity due to the long-range nature of
disorder, as we will see below). The xx component of the con-
ductivity tensor is determined by the respective Kubo formula
[16] (see Appendix A for the derivation):

σxx = e2v2
∫

dε dp dx′

(2π )3

df (ε)

dε

×〈ImGR
11(x, x′; ε, p)ImGR

22(x′, x; ε, p)〉, (11)

where angular brackets denote the averaging over disorder, f
is the Fermi distribution function, and the retarded Green’s
functions are defined in the matrix form as follows:

GR(x, x′; ε, p) =
∞∑

n=0

Sn(xpy )G(ε, p)S†
n (x′

py
),

Sn(s) =
(

χn
(
s
)

0
0 χn−1

(
s
)),

G(ε, p) = ε + vσ · pn

(ε + i0)2 − ε2
n

,

xpy = x − pyl2
H . (12)

Here, χn(s) is the normalized oscillator wave function of the
nth state, and

pn = (0,
√

2n/lH , pz ) (13)

is the effective 2D momentum.
We are using perturbation theory and the dimensionless

expansion parameter characterizing the disorder strength is

FIG. 2. Three contributions to the conductivity in first-order per-
turbation theory. The disorder vertices are represented by dashed
lines defined in Fig. 1. The indices i, j become x or y depending
on the type of conductivity which is calculated.

assumed to be small:

1

ετ
∼ nimpu2

0

v2 p5
0

� 1, (14)

where ε = max{μ, T } is the characteristic energy scale for
charge carriers and τ is its impurity scattering time [see below
Eq. (40)].

The analysis (see, e.g., Ref. [15]) shows, that unlike
the ordinary Drude conductivity proportional to the disorder
scattering time (inverse disorder strength), the magnetocon-
ductivity in the ultraquantum limit is, in fact, perturbative in
the disorder strength.

Here is a short explanation. In the absence of magnetic
field (spatially uniform case) and the absence of disorder, the
momentum is conserved and the conductivity is infinite. The
introduction of disorder scattering, however small, makes the
conductivity finite. As a result, the conductivity is nonpertur-
bative in the disorder strength.

The magnetic field radically changes the system. In the
absence of disorder, the application of an external transverse
electric field can be gauged out by changing the reference
system moving along the direction perpendicular to the elec-
tric and magnetic fields. This leads to a vanishing σxx in the
absence of disorder. Consequently, the transverse magneto-
conductivity is perturbative in the disorder strength.

As a result, it is enough to compute σxx in the first order
of perturbation in disorder. There are three possible diagrams
(see Fig. 2). In the limit of very long-range disorder, r0 → ∞,
all three diagrams vanish due to the fact that in the ultra-
quantum limit, they are proportional to the spectral density
of the zeroth Landau level (LL) δ(ε − vpz ), multiplied by the
combination of Green’s functions of the first LL. The disorder
scattering with finite characteristic length r0 
 lH effectively
smears out the particle spectral density in momentum space
leading to the enhanced contribution from all three diagrams.
This was first stated explicitly for the case of short-range
disorder in Ref. [16].

The expression for the conductivity σxx is obtained along
the same lines for the general type of disorder as is done
in Ref. [15] for the case of Coulomb disorder. In the ultra-
quantum limit and in the long-range disorder case lH � r0

[Eq. (7)], only the zeroth and first Landau level (LL) in Fig. 2
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contribute to the conductivity. For the Green’s function GR
11 in

(11), it is enough to take only the contribution of the zeroth
LL,

Im G11(ε, p) = −πδ(ε − pzv). (15)

Next, we expand all three diagrams in the small parameter of
our problem

(qylH � 1, qxlH ) ∼ lH/r0 � 1, (16)

where qx, qy is the momentum carrier by the disorder line (see
Fig. 2).

The result is given by the following integral:

σxx = e2v2

4�2

∫
dqxdqy

(2π )2
(q2

x + q2
y )g2,qxy , (17)

where g2,qxy is the effective two-dimensional disorder correla-
tion function defined as

g2,pxy =
∫

g(p)
d pz

2π
≡ g(pxy)

∣∣∣∣
z=0

. (18)

Here, pxy = (px, py) is a two-dimensional (2D) momentum
and g(p) is defined in Fig. 1. In Ref. [15], Eq. (17) was
analyzed only in the case of the Coulomb impurity potential.
We, however, come to the conclusion that for different types
of disorder, this formula gives a qualitatively different H de-
pendence.

Before we proceed, let us make the following observation.
The integral in Eq. (17) of the 2D disorder correlation function
determining the conductivity can become divergent at high
momenta (short-range case). However, in our calculations,
we used the long-range disorder approximation, implying that
qlH � 1, where q is the characteristic disorder momentum.
Therefore, q ∼ l−1

H is the natural short-range cutoff scale. As
we will see below, the system exhibits a qualitatively different
magnetic field dependence of the conductivity for different
short-range behavior of the disorder p0 � q � l−1

H .

B. σxx for different short-range behaviors of the impurity
potential

In this paper, we restrict our attention to disorder potentials
with the power-law short-range asymptotics

u(r) = u0

(p0r)1+γ
, lH � r � p−1

0 , −1 < γ < 1. (19)

Here, the natural constraint γ < 1 means that we are not con-
sidering pathological cases of potentials leading to the “falling
to the center” phenomenon. On the other hand, the γ < −1
constraint should exclude the unphysical case of decaying at
r = 0. Then, the disorder correlation function in momentum
space reads as (see Appendix A for the details)

g(p) = nimpu2
0

p6
0(p0/p)4−2γ

, p0 � p. (20)

The question we now address is as follows: What is the
behavior of the conductivity as a function of H for different
values of γ ? To answer this question, we analyze expression
(17) for various cases discussed below.

(a) −1 < γ < 0. We call this the “regular disorder” case.
The integral in (17) is convergent, and the convergence region
is p ∼ p0. In this case, we have

σxx = ec

16πH p2
0

nimpu2
0g1, γ < 0, (21)

where g1 = ∫ ∞
0 g(x2)x3dx, with x = p/p0, is a numerical con-

stant, which depends on the details of the shape of the disorder
distribution function.

As we are going to see below, the behavior corresponding
to Eq. (21) is identical to that characteristic of the Coulomb
disorder γ = 0.

(b) γ = 0. For the Coulomb disorder, the integral de-
termining the conductivity in (17) is log-divergent. In the
Coulomb case, the inverse Debye radius reads as

p0 = √
αl−1

H (22)

for the case {T, μ} � �, where

α = e2

h̄vκ
(23)

is the WSM fine structure constant and κ is the permittivity.
One recovers the result [15]

σxx = e3cπ

H
nimp ln

1

α
, γ = 0. (24)

(c) 0 < γ < 1. We call this the “singular disorder” case
due to its short-range behavior. The integral in (17) is then
divergent at high momenta q and an appropriate cutoff q ∼
l−1
H should be introduced. In this case, we have a nontrivial

result for σxx:

σxx = ec

16πH p2
0

nimpu2
0

(
eH

cp2
0

)γ

, 0 < γ < 1. (25)

The above results can be summarized by formula (2), pre-
sented in the Introduction. We see that the H dependence
of the conductivity is affected by the nature of the disorder.
In particular, if the correlation function has stronger than
Coulomb power-law growth at short distances, the corre-
sponding exponent γ enters the conductivity.

The parameter most relevant to many experiments is the
magnetoresistance. To calculate it, we need to know the Hall
conductivity σxy.

C. Hall conductivity σxy

The Hall conductivity is given by the sum of two terms:

σxy = σ I
xy + σ II

xy. (26)

The first term in (26), σ I
xy, is the so-called normal contribution,

which is given by the following relation [24]:

σ I
xy = e2�2

4π2

∫
dε

2π

df (ε)

dε

∑
n

[
GR

22 Im GR
11−GR

11 Im GR
22

− Im GR
22GA

11+ Im GR
11GA

22

]
. (27)

As is seen from Eq. (27), it comes from the vicinity of the
Fermi surface, as it is proportional to df /dε. In the absence of
disorder, it is easily verified that σ I

xy = 0. Therefore, it is per-
turbative in the disorder strength. The second term in Eq. (26)

205105-4



EFFECT OF DISORDER ON THE TRANSVERSE … PHYSICAL REVIEW B 102, 205105 (2020)

is the so-called anomalous contribution. It is proportional to
the derivative of the charge-carrier density with respect to the
applied magnetic field H and, as such, comes from the entire
volume inside the Fermi surface. As is understood from the
definition of the anomalous part

σ II
xy = ec

dN (H, μ, T )

dH
,

N (H, μ) =
∫ ∞

−∞
ν(ε) fε−μdε, (28)

it is nonzero even in the absence of disorder. Here, the density
of states reads as

ν(ε) = tr
∫

d pyz

(2π )2
Im G(ε, py, pz, x, x)

= 1

2π l2
H

∑
n

∫
d pz

2π
ImGn(ε, pz ). (29)

Thus, from perturbative arguments, we understand that σxy =
σ II

xy, i.e., it is determined by the anomalous part.
In our case (long-range disorder), it is even possible to

compute σ II
xy at all orders of perturbation theory in the strength

of the disorder, in the limit p−1
0 → ∞. The result is indepen-

dent of the disorder strength and is given by the disorder-free
expression

σxy = σ II
xy = e2μ

4π2v
= e2n0l2

H , (30)

where n0 is the charge-carrier density. In experiments, n0 is
usually a fixed parameter stemming from the charge-neutrality
condition due to the imbalance of donor and acceptor impu-
rities in WSMs. Therefore, to compare with experiments, one
needs to express the chemical potential in terms of n0.

The formula for the resistivity is as follows:

ρxx = σxx

σ 2
xx + σ 2

xy

. (31)

Taking into account the expressions for σxx [Eq. (2)] and
σxy [Eq. (30)], we obtain the following results for the field
dependence of the resistivity in the ultraquantum limit:

ρxx ∼
{H, −1 < γ < 0,

H, γ = 0 Coulomb disorder,
H1+γ , 0 < γ < 1,

(32)

at fixed n0. The expression (32) is an important result of
our paper. It shows that measuring ρxx(H ) of the WSM in
the ultraquantum regime, one can extract information about
disorder correlations and the form of the impurity potential.

IV. MAGNETOTRANSPORT AT max{T, μ} � �

(SEMICLASSICAL LIMIT)

The opposite limit, which allows for an analytical treat-
ment, is when the temperature or chemical potential of the
WSM is much larger than �. Here, we focus on the most
experimentally viable case when the magnetic length is being
much larger than the disorder correlation length

l−1
H � p0 � max{T, μ}

v
. (33)

In the case of the Coulomb potential, p0 is the inverse Debye
screening length, and the right-hand side condition in Eq. (33)
is equivalent to α � 1 [which is true for a typical WSM, like
Ca2As3 (see Refs. [25,26]), where the α value is estimated
[27] as ∼0.05]. The left-hand side condition in (33) in this
case should be substituted by

� � √
α max{T, μ}. (34)

Therefore, the temperatures should not be too low.

A. Semiclassical perturbation theory

In this regime, the transport physics of the system is
governed by highly excited LLs, as follows from the Fermi-
function shape entering the expression for the conductivity
(11). This time the computation of the conductivity requires
the summation of an infinite Drude-type diagrammatic series.

The long-range nature of the disorder p0lH 
 1 allows us
to simplify the perturbation series for the conductivity. It turns
out that the diagrammatic series in this regime can be built in
a manner similar to the spatially uniform case, albeit with an
effective 2D disorder correlation function.

Here, we present the qualitative arguments for the simpli-
fication mentioned, directing the reader to Appendix B for all
the technical details. The most important terms in the Green’s
function are those close to its poles, where the energy ε ≈ εn.
This means that for not very large pz � ε/v [we will see that
the weight of terms with pz ≈ ε/v in (11) is small],

n ∼ ε2

�2

 1. (35)

The fact that we are interested in large-n terms in the
Green’s function (12) allows for a natural separation of scales
in the problem. The crucial observation is that all the inte-
grals entering the Green’s functions and Dyson equations in
this case are essentially orthogonality equations sometimes
spoiled by the potential enveloping function.

On the slow scale of disorder correlation length r0, the
asymptotics of the LL wave functions ψn(x) are highly os-
cillatory and can be presented as a modulated combination
of plane waves: ψn(x) ∼ exp(±i

√
nx/lH ). The corresponding

length lH/
√

n ∼ λ sets the fast scale of the problem. Here,
we remind that λ is the particle wavelength with energy
max{T, μ}.

Physically, the fast oscillating functions of the LLs are a
signature of the semiclassical regime, where a large amount
of wavelengths can be accommodated by an envelope over
the wave function (corresponding to a semiclassical magnetic
orbit of radius rc = lH

√
n). The respective matrix elements of

the disorder correlation function get averaged over the posi-
tion of the center of the orbit (formally determined by l2

H py

in our asymmetric gauge). Therefore, only the 2D potential
correlation function enters all the scattering rates in the prob-
lem. The hopping between levels n and n + �n, �n/n � 1
implies the change of the linear scale:

�rc ∼ �nlH√
n

∼ λ�n, (36)
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and due to the smoothness of disorder on this scale, its matrix
elements are equivalent to the ones of Fourier components
with momentum transfer [

√
n + �n − √

n]/lH .
Once we take into account the disorder averaging of the

Green’s function, we obtain the following result:

G(x, x′) ≈
∑

n

χn(xpy )[G−1(pn) − �(pn)]−1χn(x′
py

), (37)

where pn is introduced in (12). The self-energy �(pn) is
computed with the help of the 2D disorder correlation function

g2,pxz =
∫

g(p)
d py

2π p0
≡ g(pxz )

∣∣∣∣
y=0

(38)

and is equal to

�(pn) = −δμ + δv(pn(σ )) − i

2τ0
− inσ

2τ1
, (39)

where δμ and δv are the corrections to the chemical potential
and Fermi velocity, respectively, and n ≡ pn/|pn| is a unit
vector in momentum direction.

We also define the effective two-dimensional scattering
times τl (l = 0, 1, 2) according to

1

2τl
= nimpu2

0
ε

2v2 p5
0

∫
g2,pε (n−n′ ) cosl (θ − θ ′)

dθ ′

2π
. (40)

Here, pε = ε/v and n(′) = (cos θ (′), sin θ (′) ).
The very fact that the whole physics of the problem can

be reformulated in terms of the 2D potential has a beautiful
physical interpretation. Let us recall that in the Landau gauge
(5), the center of the orbit is given by pyl2

H . That is, the
effective scattering rates (40) entering the perturbation theory
are essentially ordinary scattering rates but averaged over
the positions of the center of the Landau orbit. With these
perturbative building blocks, we are ready to compute the
conductivity tensor.

B. General expressions for conductivities

The conductivities σxx and σxy, in leading order of the
expansion parameter (14), are given by the following Kubo
expressions [17]:

σx,x[y] = e2�2

4π2v

∑
n

∫
Re[Im]

〈
GR

n,11GA
n+1,22

〉df

dε
dε d pz. (41)

Here, we discard the GRGR and GAGA terms as subleading
in the 1/(τε) disorder expansion. Also, by σxy, we mean the
normal part σ I

xy of the Hall conductivity (see Sec. IV C below
for the full computation of the Hall conductivity).

We switch from the summation over LLs to integration
over n. This is possible under the condition that the broaden-
ing of the LL, (1/τ )(ε2/�2), [16] is larger than the distance
between LLs: �2/ε. That is, ε ≡ max{T, μ} � �(�τ )1/3.
Since �τ is an arbitrary finite parameter of our problem, this
additional condition is assumed to be satisfied in the semiclas-
sical limit. We substitute 1 = dn = v2 pyd py/�

2, and turn to
polar coordinates: pyd pyd pz = p2 sin θ dθ d p (py = p sin θ ).
Now, we need to find the nonperturbative vertex renormal-
ization responsible for the difference between 〈GRGA〉 and
〈GR〉〈GA〉.

As shown in Appendix B, we are able to perform the inte-
gration over the modulus of the momentum p in (41) and end
up with only an angular integral. As a result, the conductivity
tensor (41) can be rewritten in the following form:

σx,x[y] =
∫

dε

2π

df (ε)

dε

∫
dθ sin θ

2π
tr
{
�RA

x (θ )σ̃x[y]
}
, (42)

where �x(θ ) is the so-called angular vertex function

�RA
x (θ ) =

∑
n

∫
d pzd py

(2π )2
δ
(

cos θ − pz

p

)

× 〈
GR

x,x′ (ε, p) σ̃ GA
x′,x(ε, p)

〉
dx. (43)

It is essentially a vertex function, integrated over the modulus
of the momentum at fixed vpx/ε ratio. The notation σ̃x,y in
the right-hand side of Eq. (42) stands for Pauli σ matrices.
Then, we plug in the vertex expressions from (B20) and take
the angular integral to obtain⎛

⎝σxx

σ I
xy

⎞
⎠ = e2

2πv

∫
dε ε2

2π

df

dε

ε2τtr (ε)

τtr (ε)2�4 + ε2

( 1

�2τtr/ε

)
.

(44)

Here,

τ−1
tr ≡ τ−1

0 − τ−1
2 (45)

is the transport scattering rate. Equation (44) is quite an impor-
tant result. It shows that in the long-range disorder limit, the
conductivity is effectively recast in terms of the 2D Drude-type
expression.

Similar formulas for the δ-correlated disorder were ob-
tained in Ref. [17]. However, the magnetoconductance in
Ref. [17] is expressed in terms of the three-dimensional
(3D) scattering rates. This is somewhat predictable since the
δ-corrrelated disorder has zero correlation length and the scat-
tering rate is not affected by any other scale, including the
magnetic length, which is responsible for the change in the
geometry of the problem.

For the disorder of the general type, with the correlation
radius independent of the characteristic energy of the host
system, we have for the transport scattering time

τ−1
tr (ε) = u2

0T 3
imp

g1ε2(p0v)2
, Timp = n1/3

impv. (46)

Here, g1 = ∫ ∞
0 g(x2)x2 dx is the numerical constant deter-

mined by the type of disorder. This way, we obtain the general
expression for the longitudinal conductivity for any relation
between the chemical potential and temperature:

σxx = e2

g1v

u2
0T 2T 3

imp

(p0v)2�4
f
( T

τtr (T )�2

)
, where

f (a) = 4π2

3
−4

(
a2 − μ2

T 2

)
+2a3

π
Re

[
ψ ′

(1

2
+a + iμ/T

2π

)]
,

a = u2
0T 3

imp

g1(p0v)2�2T
. (47)
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FIG. 3. Conductivity σxx given by the exact Eq. (47) (solid curve)
and by the approximate Eq. (48) (dashed curve) expressions as a
function of dimensionless parameter �2τtr/T ∼ H.

Here, ψ (x) is the Euler’s digamma function. The dimension-
less parameter a plays the role of the relative strength of the
disorder.

The exact formula (47) can be somewhat simplified by the
interpolation expression (which becomes exact in the limits
� → 0 and � → ∞) making it more useful for experimental
purposes:

σxx = e2

v
τtr max

{
T 2, μ2}[1 + 7π2

5

�4τ 2
tr

max {T 2, μ2}
]−1

. (48)

Here, the transport scattering time τtr should be taken at the
energy ε = max{μ, T }. To give the reader an idea of how well
the interpolation formula represents the exact result (47), we
plot it in Fig. 3. Equations (47) and (48) reproduce the T 4

dependence at � → 0, obtained in Refs. [28] and [23] in the
zero-field limit. The interpolation formula (48) for the con-
ductivity σxx effectively recasts it in the form of the familiar
Drude-type metallic expression

σ ∝ τtr

1 + ω2
cτ

2
tr

, (49)

where ωc = �2/2ε is the semiclassical cyclotron frequency
at energy ε. The same kind of Drude representation, but with
3D scattering times, was obtained in Ref. [17] for δ-correlated
disorder. The conductivity σxx(H ) for different values of μ/T
is shown in Fig. 4.

The behavior of the conductivity σxx can be conveniently
shown in the phase diagram (see Fig. 5). The upper left red
corner of this phase diagram corresponds to the ultraquantum
regime T � �, where depending on the characteristic expo-
nent γ of the impurity potential, we expect a γ -dependent
scaling of σxx. The lower right corner is divided into the
regimes of weak and strong disorder. The brown area corre-
sponds to a strong disorder, and is described by Eq. (48) in
the

τtr � max{T, μ}/�2 (50)

limit. One could also refer it to as a weak magnetic field
regime, where σxx exhibits predominantly the T 4 depen-
dence characteristic of a zero-field system with a correction
proportional to H2. The green area depicts the opposite weak-
disorder limit (or that of high magnetic field), where the

FIG. 4. Conductivity σxx given by Eq. (47) as a function of μ/T
and the dimensionless parameter �2τtr/T ∼ H . Here, we assume that
μ � T .

transport of charge carriers is strongly affected by the mag-
netic field.

Next, we calculate the Hall conductivity.

C. Hall conductivity σxy

As usual, the Hall conductivity is split into two parts:
anomalous and normal ones. Let us first calculate the anoma-
lous part. As before, we make use of Eq. (28). To regularize
the expression for the charge-carrier density, we subtract the
respective density at zero chemical potential, thus eliminating
the contribution of the Fermi sea

n0(H, μ, T ) = �2

4π2v2

∫ ∞

−∞

d pz

2π

∑
n

( f (εn − μ)− f (εn + μ)).

(51)

FIG. 5. Phase diagram for the conductivity σxx for the non-
Coulomb disorder [see Eqs. (2) and (47)]. Here, g = 0 for γ � 0,
and g = γ /2 for 0 < γ < 1. See detailed explanations in the text.
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In the � � (T, μ) limit, we use the Euler-MacLaurin sum-
mation formula

∞∑
n=0

F (a + n) ≈ F (a)

2
+

∫ ∞

a
F (x) dx. (52)

Then, we obtain

n0(μ, T ) = 1

4π2v3

(
�2μ + 2

3
[μ3 + π2μ2T ]

)
. (53)

Only the first term in Eq. (53) is field dependent. Despite its
smallness, it is this term that contributes to σ II

xy. This way, we
arrive at the following expression:

σ II
xy = e2μ

2v
. (54)

In experiments, the charge-carrier density is constant for each
sample of WSM. Hence, the chemical potential is almost field
independent in the high-temperature regime (see Discussion
section for the relevant estimates).

Note here that the anomalous contribution to the Hall con-
ductivity (which is independent of disorder and retains its
value for clean WSM) is totally due to the Berry curvature.
In our paper, we focus on the effects of disorder, and the the
Berry phase itself does not lead to additional effects. However,
it is not so in the case of strong spin-orbit coupling of charge
carriers with impurities, which we do not consider here (see,
e.g., Ref. [29]).

Next, we calculate the normal part of σ I
xy given by (44).

The conductivity σ I
xy can be computed exactly at any value of

μ (see the corresponding integral derived in Appendix C):

σ I
xy = e2T 2μ

π2v�2
f1(a),

f1(a) = μ2

T 2
+ π2 − a2− a4T

2πμ
Im

[
ψ (1)

( a

2π
+ 1

2
+ iμ/T

2π

)]
,

(55)

where a is defined in Eq. (47).
As before, we concoct a Drude-type interpolation formula

from � → 0 to �2 
 τ−1
tr max{T, μ} using formula (55):

σ I
xy ≈ c1e2μ

v

�2τ 2
tr

1 + c2τ
2
tr�

4

max{T 2,μ2}
, (56)

where c1,2 = 1 if μ 
 T and c1,2 = 7π2(4)/3 if μ � T . Here,
τtr (ε) is taken at ε = max{μ, T }. Depending on the factor
ωτtr , the normal part may be a leading or subleading con-
tribution to the Hall conductivity. Qualitatively, σxy can be
described by the following identity:

σxy = e2μ

v

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d1, �τtr � 1,

d2�
2τ 2

tr, 1 � �τtr � max{T,μ}
�

,

d3
max{T 2,μ2}

�2 ,
max{T,μ}

�
� �τtr.

(57)

Here, di are numerical factors following from relations (54)
and (56). The plot illustrating the accuracy of the interpolation
formula (56) is presented in Fig. 6.

Interestingly, the case of Coulomb impurities does not lead
to different results, despite the fact that the Debye radius

FIG. 6. Hall conductivity σxy given by Eq. (55) (solid curve)
and by Eq. (56) (dashed curve) as a function of the dimensionless
parameter �2τtr/T ∼ H .

depends on temperature. The relatively slow decay of the
Coulomb correlation function leads to a trivial logarithmic
enhancement of the respective 2D scattering rate:

τ−1
tr = 2π2

α2T 3
imp

ε2
ln

1

α
. (58)

Otherwise, the whole temperature and field dependence re-
mains the same.

The plot of the Hall conductivity σxy is presented in Fig. 7
as a function of the magnetic field H and chemical potential
μ.

V. DISCUSSION

In this paper, we have performed a detailed analysis of the
effect of the long-range disorder introduced by impurities on
the magnetotransport in WSMs. Our study is mainly focused

FIG. 7. Conductivity σ I
xy given by Eq. (47) as a function of μ/T

and the dimensionless parameter �2τtr/T ∼ H .
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FIG. 8. Electron self-energy.

on the magnetic field and temperature dependence of the
transverse magnetoconductivity.

Two important limiting cases are considered: (i) the ultra-
quantum limit, corresponding to low temperatures (or high
magnetic field), for which the main contribution comes from
the zeroth Landau level, and (ii) the opposite semiclassical
limit, when a large number of Landau levels are involved in
the transport phenomena.

We have completely discarded the effects of the internode
charge transfer. In principle, this effect can be important at
sufficiently high fields, as argued in Ref. [30]. The necessary
condition for the applicability of our approach is

τ−1
inter � τ−1

intra, (59)

where for finding the scattering rates, we can use, e.g.,
Eqs. (40) or (46). As derived in Ref. [30], this condition is
equivalent to

H � α−3/2eQ2/v, (60)

where Q is the distance between the Weyl nodes in momentum
space.

However, for a typical WSM like TaAs [31–33], we extract
the separation between Weyl nodes as Q = 0.01 Å−1, while
the Fermi velocity v ≈ 3 × 105 m/s, which gives the respec-
tive field estimate of H ∼ 50 T even for the fine structure
constant in TaAs (unknown to us at the moment) α ∼ 1.
Therefore, we safely discard this effect.

The long-range impurity potential is chosen in a rather
general form. We show that in the ultraquantum limit the non-
linear magnetoresistivity dependence on the magnetic field is
the manifestation of the singular (non-Coulomb) short-range
behavior of the impurity potential and its correlation function.
In the semiclassical limit, we have demonstrated that unlike
the short-range disorder case [17], the long-range disorder
makes the scattering in the system essentially two dimen-
sional. We derived general formulas for σxx(H ) and σxy(H )
valid within a wide range of values of temperature and chem-
ical potential.

In typical experiments [13], the doping levels in WSMs are
rather high (∼10 meV), which corresponds to μ ∼ 100 K.
The typical magnetic fields H ∼ 1 T correspond to the gap
between the zeroth and first Landau levels ∼10 K. Reference
[34], however, reports the observation of WSM in an almost
undoped regime μ � T . Therefore, both the μ � T and

μ 
 T regimes seem experimentally viable and the relation
between μ, H , and T can be quite general. Hence, our results
obtained in both limits can be relevant.

We can also mention the numerical work in Ref. [19].
In this paper, Coulomb impurities are correctly identified
as the long-range disorder, and the high-temperature limit
is explored. The nontrivial result of Ref. [19] is the scal-
ing of the magnetoconductance σxx ∝ H−5/3 in the low-field
regime � � T . Our analytical study addresses the case � �
T , and the aforementioned regime cannot be accessed in our
semiclassical computation, where �/T � 1 is the essential
expansion parameter.

In the semiclassical regime T 
 �, our results match the
results reported in Ref. [16] in the low-impurity concentra-
tion regime τtr 
 T �−2, but differ in the opposite limit. We
attribute this to the effect of the long-range disorder correla-
tions.

In conclusion, the diagrammatic approach within the Kubo
formalism used in our paper can be applied not only to the
specific problems studied here, but also have a wider range
of applicability. This was clearly demonstrated in our earlier
work [27] on the conductivity of anisotropic Weyl semimetals,
and we believe that it could also allow going beyond the
self-consistent Born approximation in the analysis of Weyl
semimetals with different kinds of impurities [35], and even
in more general problems of electron transport and optics in
linear and nonlinear regimes [36,37].

Note also that the problem under study has a deep analogy
with the detailed analysis (in Refs. [38–40]) of the effect
of the interplay of quantum interference and disorder on the
magnetoresistance in systems with hopping conductivity.
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APPENDIX A: KUBO FORMULA AND DISORDER AVERAGING σαα

1. Disorder correlation function

The disorder correlation function entering the diagrammatic series is obtained from the standard averaging over impurity
position:

g(r1 − r2) = 1

V

∑
ra

∫
drau(r1 − ra)u(r2 − ra)dra = 1

V

∑
ra

∫
dra

dp dq
(2π )6

upeip(r1−ra )uqeiq(r2−ra )dra

= nimp

∫
|up|2eip(r1−r2 ) dp

(2π )3
. (A1)

We parametrize the disorder correlation function introducing the dimensionless function g and characteristic momentum p0 as
|up|2 = |u0|2/p6

0g(p2/p2
0).

2. General expression for the σxx conductivity

The general expression for the conductivity reads as

σαβ (ω) = e2
�R

αβ (ω)

iω
, �R

αβ (ω) = i
∫

dt dr〈 jα (t, r) jβ (t ′, r′)〉eiω(t−t ′ )θ (t ). (A2)

As follows from the Ward identity, �R
αβ (0) = 0 (a vector potential uniform in space and time does not create the field). Therefore,

we will use the slightly more suitable formula for the conductivity

σαβ (ω) = e2
�R

αβ (ω) − �R
αβ (0)

iω
, (A3)

and the expression for the polarization operator

�αβ (ω) = −v2tr
∫

dε

4π i

dp
(2π )3

{
〈GA(ε, p)σαGR(ε + ω)σβ〉

[
tanh

ε + ω

2T
− tanh

ε

2T

]

+〈GR(ε, p)σαGR(ε + ω, p)σβ〉 tanh
ε

2T
− 〈GA(ε, p)σαGA(ε + ω, p)σβ〉 tanh

ε + ω

2T

}
. (A4)

Since we are interested in the ω → 0 limit, we expand the expression in ω:

σαβ (0) ≡ σαβ = e2v2tr
∫

dε

4π

dp
(2π )3

{
〈GA(ε, p)σαGR(ε, p)σβ〉∂ε tanh

ε

2T

+〈GR(ε, p)σα∂εGR(ε, p)σβ〉 tanh
ε

2T
− 〈GA(ε, p)σα∂εGA(ε, p)σβ〉 tanh

ε

2T
− 〈GA(ε, p)σαGA(ε, p)σβ〉∂ε tanh

ε

2T

}

= ie2v2tr
∫

dε

2π

dp
(2π )3

{
〈GA(ε, p)σαImGR(ε, p)σβ〉∂ε tanh

ε

2T
+ 〈Im[GR(ε, p)σα∂εGR(ε, p)σβ ]〉 tanh

ε

2T

}
. (A5)

If we are interested in symmetric combinations of the conductivity tensor σii, then the expression for the conductivity can be
further simplified to the extent that all the contributions to the integral over energy only originate from the vicinity of the Fermi
surface. Let us rewrite the expression for the conductivity

σαα = ie2v2tr
∫

dε

2π

dp
(2π )3

{
〈GA(ε, p)σαImGR(ε, p)σα〉∂ε tanh

ε

2T
+ 〈Im[GR(ε, p)σα∂εGR(ε, p)σα]〉 tanh

ε

2T

}
. (A6)

The term I is fine since it is proportional to the derivative of the Fermi function and cuts a slice of the order of T from the Fermi
surface.

Term II should be rearranged:

tr [GR(ε, p)σα∂εGR(ε, p)σα] = 1
2 tr∂ε[GR(ε, p)σαGR(ε, p)σα] → − 1

2 tr[GR(ε, p)σαGR(ε, p)σα]∂ε . (A7)

As a result, we obtain for the conductivity

σαα = e2v2tr
∫

d�p
dε

2π

{
〈ImGR(ε, p)σαImGR(ε, p)σα〉∂ε tanh

ε

2T

}
, (A8)

where d�p = eH
2πc

d pz

2π
. Expanding the trace we recover Eq. (11).
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APPENDIX B: PERTURBATION THEORY FOR max{T, μ} � �

1. Self-energy and Dyson series for the Green’s function

The diagram representing the first-order correction to the Green’s function is presented in Fig. 8 and is given by the following
analytical expression:

δG(x, x′) =
∑
n,m,k

∫
dqxdqydqz

(2π )3
eiqx (x1−x2 )g(qx, qyz )Sn(xpy )Gn(pz )S†

n

(
x1

py

)
Sm

(
x1

py+qy

)
Gm

(
pz + qz

)
S†

m

(
x2

py+qy

)
Sk
(
x2

py

)
Gk (pz )S†

k (x′
py

).

(B1)

The correction to the Green’s function is a matrix, where each term contains a product of χl (xpy ) functions.
It is essential that for large n, we discard the difference between n and n + 1, when computing the correlation function.

This allows us to treat the matrices Sn(xpy ), S†
n (xpy ) as proportional to unit ones: Sn(xpy ), S†

n (xpy ) = χn(xpy ) · 1. The leading
contribution to the conductivity comes from n 
 1 [in fact, we will later see that the contribution comes from n ∼ (T/�)2] and
use the asymptotic relation for the Hermite polynomials [41]:

e−x2/2Hn(x) ≈
(2n

e

) n
2 √

2 cos
(

x
√

2n − nπ

2

)(
1 − x2

2n + 1

)− 1
4

. (B2)

The question is how to simplify the product

χm
(
x1

py+qy

)
χm

(
x2

py+qy

)
dqy (B3)

entering (B1). We split the product of two cosine functions in each Hermite polynomial into

cos
[√

2m
(
x1

py
− x2

py

)
/lH

] + cos
(√

2m
[(

x1
py

+ x2
py

)
/lH − 2qylH

])
. (B4)

Then, we perform integration over qy. The first term gives just the integral∫
g(qx, qyz )dqy/2π = g2,xz. (B5)

It is simply an effective 2D potential (18). The second term in (B4) is proportional to U (
√

2mlH , qxz ). However,
the correlation radius of the potential obeys the inequality r0 � lH � √

2mlH . As a result, the term proportional to
cos (

√
2m[(x1

py
+ x2

py
)/lH − 2qylH ]) is suppressed.

Now, we are able to perform the next estimate:

δG(x, x′) ≈
∑
n,m,k

χn(xpy )χk (x′
py

)
∫

dqz

2π
Gn(pz )Gm(pz + qz )Gk (pz )

∫
dqx

2π
eiqx (x1−x2 )g2(qxz )

× 1

π lH
√

2m
cos

[√
2m

(
x1

py
− x2

py

)
/lH

] 1

π lH

( 4

nk

)1/4 cos[
√

2nx1
py

/lH ]

4

√
1 − x1,2

py

2n

cos[
√

2kx2
py

/lH ]

4

√
1 − x2,2

py

2k

dx1dx2. (B6)

In Eq. (B6), it is important to discern the difference between the fast-oscillating cosine-type terms in the numerator and the slow
algebraic factors in the denominator. To perform the integration over x1, x2, we change x1, x2 → r = x1 − x2, x2. We obtain
many fast-oscillating terms (the relevant n, m, and k are large). For example, performing integration over x2, we obtain

1

2

∫
dx2 cos[

√
2nr + (

√
2n + √

2k)x2/lH ] + cos[
√

2nr + (
√

2n − √
2k)x2/lH ]

4

√
1 − (r+x2

py )2

2nl2
H

4

√
1 − x2,2

py

2kl2
H

.
(B7)

As we see from the structure of the integral of (B7), the nominator is a fast-oscillating function of x2
py

. As a result, the integral is

suppressed unless n = k. Thus, the integral is ∝δnk in the main order for 1/
√

n − k. Let us compute it for n = k. The nominator
does not oscillate anymore, and we should analyze the denominator. The dominant range is r ∼ p−1

0 , which comes from g2(qxz ).
On the other hand, the the main contribution comes from x2

py
∼ √

nlH . We see that r � x2
py

for the denominator. Therefore, we

integrate over x2
py

trivially. We are then left with the following expression:

δG(x, x′) ≈
∑
n,m

χn
(
xpy

)
χn

(
x′

py

) ∫ dqz

2π
Gn(pz )Gm(pz + qz )Gn(pz )

∫
dqxdr

2π
eiqxrg2(qxz )

1

π lH
√

2m
cos(

√
2mr/lH ) cos(

√
2nr/lH ).

(B8)
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While integrating over r, we obtain the combination of four δ functions. The only relevant ones are δ(qx + √
2ml−1

H − √
2nl−1

H )
and δ(qx − √

2ml−1
H + √

2nl−1
H ). Consequently, we have the following final formula for the correction to the Green’s function:

δG(x, x′) ≈
∑
n,m

χn(xpy )χn(x′
py

)
∫

dqz

2π
Gn(pz )Gm(pz + qz )Gn(pz )

1

2π lH
√

2m
g2
[
(
√

2m −
√

2n)l−1
H , qz

]
. (B9)

Using the fact that
√

nl−1
H ∼ max{T, μ} 
 p0, we understand that m in the last sum is actually very close to n. Indeed, we see

that

(
√

m − √
n) ∼ p0lH 
 1, while

√
m − √

n√
m + √

n
∼ p0v

max{T, μ} � 1. (B10)

From the last inequalities, we see that the terms of the sum over m are smooth functions of m, and the sum can be turned into an
integral. Introducing the effective momentum p′

y = √
2ml−1

H , dm ≡ 1 = qydqyl2
H , and p′

z = pz + qz, we obtain

δG(x, x′) ≈
∑

n

χn(xpy )

[∫
dp′

(2π )2
G(pn)G(p′)G(pn)g2(p′ − pn)

]
χn

(
x′

py

)
. (B11)

Here, pn is introduced in (12). The expression in the square brackets in (B11) allows us to build the ordinary 2D Dyson series
for the Green’s function as well as vertex functions determining the conductivity tensor. Indeed, it coincides with the standard
expression of perturbation theory without magnetic field with the effective 2D potential g2(p′ − pn). Therefore, we can write the
momentum-dependent self-energy as

�(pn) =
∫

dp′

(2π )2
G(p′)g2(p′ − pn). (B12)

The resummed Green’s function then reads as

G(x, x′) ≈
∑

n

χn(xpy )[G−1(pn) − �(pn)]−1χn
(
x′

py

)
. (B13)

The resulting expression yields an irrelevant part, which can be absorbed into the renormalized chemical potential and Fermi
velocity, and the dissipative part. The dissipative part reads as

�R(pn) = v.p.
∫

dp′

(2π )2

ε + p′σ
(ε + i0)2 − p2

n

g2(p′ − pn) − iπ
∫

dp′

(2π )2
[δ(ε − εn) + δ(ε + εn)]

[
1

2
+ p′σ

2ε

]
g2(p′ − pn)

= −δμ + δvpnσ − i

2τ
− inσ

2τ1
,

1

τ
= pn

4π

∫
g2(nn′)dn′,

1

τ1
= ε

4π

∫
(nn′)g2(nn′)dn′.

(B14)

2. Vertex renormalization and the conductivity tensor

The Dyson equation for the vertex is built in a more subtle way. In this case, the built-in magnetic anisotropy of the problem
takes its toll. What we are going to do now is to introduce a slightly unusual definition of the vertex. We define the mass-shell
vertex according to the following equation:

�RA
x (θ ) =

∑
n

∫
d pzd py

(2π )2
δ
(

cos θ − pz

p

)〈
GR

x,x′ (ε, p) σx GA
x′,x(ε, p)

〉
dx. (B15)

Then, the conductivity tensor assumes the form in Eq. (42). In the zeroth-order ladder approximation, we change 〈GRGA〉 =
〈GR〉〈GA〉, and the vertex becomes

�RA,0
x = 1

2π l2
H

∑
n

d pz

2π
δ

(
cos θ − pz

p

)(
0 GR

11,nGA
22,n+1

GR
22,nGA

11,n−1 0

)
. (B16)

Changing the sum and the integral using the semiclassical approximation

∑
n

∫
d pz

2π
δ

(
cos θ − pz

p

)
= l2

H

∫
p2d p

2π
, (B17)

we obtain

�RA,0
x = n2

y

2πv3

(
0 [ 1

τ
+ 1

τ1
+ i�2

ε
]−1

[ 1
τ

+ 1
τ1

− i�2

ε
]−1 0

)
. (B18)
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In the first order of perturbation theory, the picture changes slightly, and we obtain the first stair of the ladder series

�RA,1
x = n2

y

2πv3

⎛
⎜⎜⎝

0
1
τ1

+ 1
τ2

[ 1
τ
+ 1

τ1
+ i�2

ε ]
2

1
τ1

+ 1
τ2

[ 1
τ
+ 1

τ1
− i�2

ε ]
2 0

⎞
⎟⎟⎠. (B19)

In higher orders of the perturbation theory, the pattern repeats itself. As a result, we are able to perform the full disorder ladder
summation

�RA
x = n2

y

2πv3

(
0

[
1
τtr

+ i�2

ε

]−1

[
1
τtr

− i�2

ε

]−1
0

)
. (B20)

Using vertex (B20), we are ready to obtain the expression for the conductivity:

σx,x[y] =
∫

dε

π

df (ε)

dε

∫
dθ sin3 θ

2π
Re[Im]

[
1

τtr
+ i�2

ε

]−1

. (B21)

In expression (B21), we, as usual, take into account only the normal part of σxy.

APPENDIX C: CALCULATION OF THE INTEGRAL FOR THE CONDUCTIVITY AT max{T, μ} � �

.
The integral that enters the upper matrix element in the expressions for the conductivities in (44) has the following form:

I (a) =
∫ ∞

−∞

1

x2 + a2

x4dx

cosh2 x−μ

2

=
∫ ∞

−∞

x2 + μ2 − a2

cosh2 x
2

dx + a4
∫ ∞

−∞

1

cosh2 x
2

dx

(x + μ)2 + a2
.

The last integral is equal to ∫ ∞

−∞

1

cosh2 x
2

dx

(x + μ)2 + a2
= 2

πa
Re

[
ψ ′

(1

2
+ a − iμ

2π

)]
. (C1)

As a result, we recover Eq. (47). In the same manner, we perform the integration for σ I
xy in the lower part of (44) to obtain the

exact expression (55).
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