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Spin density wave and electron nematicity in magic-angle twisted bilayer graphene
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We study theoretically many-body properties of magic-angle twisted bilayer graphene for different doping
levels. Our investigation is focused on the emergence, stability, and manifestations of nematicity of the or-
dered low-temperature electronic state. It is known that, at vanishing interactions, the low-energy spectrum of
the system studied consists of four almost-flat almost-degenerate bands. Electron-electron repulsion lifts this
degeneracy. To account for such an interaction effect, a numerical mean-field theory is used. Assuming that
the ground state has spin-density-wave-like order, we introduce a multicomponent order parameter describing
spin magnetization. Our simulations show that the order-parameter structure depends on the doping level. In
particular, doping away from the charge-neutrality point reduces the rotational symmetry of the ordered state,
indicating the appearance of an electron nematic state. Manifestations of the nematicity can be observed in the
spatial distribution of the spin magnetization within a moir€ cell, as well as in the single-electron band structure.
The nematicity is the strongest at half-filling (two extra electrons or holes per supercell). We argue that nematic
symmetry breaking is a robust feature of the system ground state, stable against model parameter variations.
Specifically, it is shown that, away from the charge-neutrality point, it persists for all three parametrizations of
the interlayer hopping amplitudes discussed in the paper. Obtained theoretical results are consistent with the
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available experimental data.
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I. INTRODUCTION

Discovery of many-body insulating states [1] and super-
conductivity [2] in the so-called magic-angle twisted bilayer
graphene [3] (MAtBLG) has triggered an avalanche of both
theoretical [1-17], and experimental [18-28] studies of this
material. The MAtBLG has a twist angle 6, ~ 1° and it
is characterized by a superstructure with a large supercell
containing several thousand carbon atoms. Single-electron
states of MAtBLG form four weakly dispersive (almost flat)
low-energy bands [29-32] (these flat bands were recently
visualized by ARPES in Ref. [23]). Measurements [1,2] of
the conductivity o of MAtBLG versus doping n reveal sev-
eral conductivity minima at doping values n/(n;/4) =v =
0, £2, 43, £4, where the concentration ng corresponds [1,2]
to four electrons per supercell. Observation of the “miss-
ing” conductivity minima at v = +1 was later reported in
Ref. [19]. Aside from these findings, Ref. [2] reported super-
conductivity domes near v = —2. Superconductivity domes
near v = —2, v = 0, and v = £1 were also found [19].

Theoretically, conductivity minima at v = £4 can be un-
derstood in terms of single-electron physics [1]. However,
the minima at v = £1, 2, £3 cannot be explained within
single-particle theory, and the effects of interactions should
be taken into account. The nature of the insulating states in
MABLG was considered in several papers [5,6,8,9,11,14].
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Different types of spin density wave (SDW) states [5,9,11],
ferromagnetic state [14], and other symmetry-broken phases
[17] have been proposed to be the ground state of the sys-
tem. Potential mechanisms of the superconductivity (phonons
[4,12], electronic correlations [5,7,10,11,13]) as well as vari-
ous symmetries of the superconducting order parameters have
been considered.

Neglecting the possibility of superconducting ordering, in
a previous work [9], we assumed the multicomponent SDW
to be the ground state of MAtBLG in the doping range —4 <
v < 4. The structure of the SDW order parameter, as well as
the form of the renormalized low-energy spectrum, was calcu-
lated [9] for different doping levels within the framework of
a numerical mean-field approach. This allowed us to explain
the appearance of conductivity minima at integer-valued ratio
v, consistent with experiments [1,2,19].

Since doping affects the mean-field band structure, the
dependence of the density of states (DOS) p versus the
single-electron energy E is sensitive to the doping level of
the MAtBLG sample. This theoretical observation [9] is sup-
ported by recent STM measurements [20,21,24,25].

Further, we observed numerically [9] that, at sufficiently
strong doping, the point symmetry of the electronic state
reduces from Cg (full hexagonal symmetry) down to C;, giv-
ing rise to electron nematic state. References [20,21,27,28]
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published claims of the experimental nematicity observations
in MAtBLG samples.

The striking agreement between our conclusions [9] and
several independent experimental measurements testifies in
favor of the developed theoretical approach. To build up upon
this success, here we extend the study of Ref. [9]. In this paper
we focus on the emergence, stability, and manifestations of the
electronic nematicity, demonstrating that nematic symmetry
breaking is a robust feature of the MAtBLG, stable against
model modifications, such as alterations of the interlayer hop-
ping amplitudes. We will also argue that the nematicity affects
not only the spatial distribution of the spin magnetization, but
the single-electron spectrum as well. Experimental implica-
tions of these findings are discussed.

The paper is organized as follows. In Sec. II the geom-
etry of the twisted bilayer graphene (tBLG) is outlined. In
Sec. III we formulate our electronic model and analyze the
single-particle spectrum of the MAtBLG for three different
parametrizations of the interlayer hopping amplitudes. We
also present the general form of our multicomponent SDW
order parameter in this section. In Sec. IV we analyze the
spatial distribution of the SDW order parameter for different
doping levels, while in Sec. V we consider the properties
of the renormalized low-energy spectrum. Discussion of the
results obtained and the conclusions are given in Sec. VI
Details of the numerical procedure used for the calculations
of the SDW order parameter are described in the Appendix.

II. GEOMETRY OF TWISTED BILAYER GRAPHENE

In this section we present some basic facts about the ge-
ometry of twisted bilayer graphene, which are important for
further consideration (for more details, see, e.g., review papers
[3,33]). Each graphene layer in tBLG has a hexagonal crystal
structure consisting of two triangular sublattices .A and B. The
coordinates of atoms in layer 1 on sublattices .4 and B are

LA _ 1 1B _ .1
r, =r, =na +may, r,° =r,+34, e

where n = (n, m) is an integer-valued vector,
a1> = a(v/3, F1)/2 @)

are the primitive vectors, § = (a; + a;)/3 = a(l/«/g, 0), and
a = 2.46 A is the lattice constant of graphene. Atoms in layer
2 are located at

2B 2 ’ / 2A 2 /
r,” =r,=de,+na,+ma,, r,” =r,—98, ()

where a/ , and § are the vectors a; » and §, rotated by the twist
angle 6. The unit vector along the z axis is e, the interlayer
distance is d = 3.35 A. The limiting case 6 = 0 corresponds
to the AB stacking.

Twisting produces moiré patterns [3], which can be seen as
alternating dark and bright regions in STM images. Measuring
the moiré period L, one can extract the twist angle according
to the formula L = a/[2 sin(6/2)]. Moiré patterns exist for
arbitrary twist angles. However, if the twist angle satisfies the
relationship

Smg + 3mor + 122

cosf = 5 ,
3m§ + 3mor + r?

“

where my and r are coprime positive integers, a superstructure
emerges, and a tBLG sample splits into a periodic lattice
of finite supercells. The many of theoretical papers assume
the twist angle to be the commensurate one since only in
this case one can work with Bloch waves and introduce the
quasimomentum. For the commensurate structure described
by my and r, the superlattice vectors are

Ry = mpa; + (mo + r)ay,
Ry = —(mo + r)a; + 2my + r)a; (5)
if r 2 3n (n is an integer), or

R = (mg +n)a; +nay, Ry = —na; + (mg + 2n)a
(6)

if r = 3n. The number of graphene unit cells inside a supercell
is

Ny = (3m(2, + 3mor + rz)/g @)

per layer. The parameter g in the latter expression is equal to
unity when r # 3n. Otherwise, it is g = 3.

Note that, in the general case, the superlattice cell is greater
in size than the moiré cell [3,29]. More precisely, the superlat-
tice cell of the structure with mg and r contains * moiré cells
if r # 3n, or /3 moiré cells otherwise. The arrangements
of atoms in moiré cells constituting the superlattice cell are
slightly different from each other. Only when r = 1, the su-
perlattice cell coincides with the moiré cell. In this paper we
consider only such structures. When 6 is small enough, the
superlattice cell can be approximately described as consisting
of regions with almost AA, AB, and BA stackings [3,29]. To
illustrate this fact, in Fig. 1(a) we present the supercell of the
tBLG structure with my = 10, r = 1 (these values of mg and r
correspond to 8 = 3.15°).

Let us now consider what happens in momentum space.
The reciprocal lattice primitive vectors for layer 1 (layer 2)
are denoted by by » (b3,2)~ For layer 1 one has

b1, = 2r/v/3, F21)/a, ®)

while b’ , are connected to b; » by a rotation of an angle 6.
Using the notation G , for the primitive reciprocal vectors for
the superlattice, the following identities in reciprocal space are
valid:

b} =bi+r(Gi+G2), b5 =by—rG, ©)
if r # 3n, or
b] =b; +n(G1 +2G,), b, =b, —n(2G, + G>)  (10)
if r =3n.

Each graphene layer in tBLG has a hexagonal-shaped Bril-
louin zone. The Brillouin zone of the layer 2 is rotated in
momentum space with respect to the Brillouin zone of layer
1 by the twist angle 6. The Brillouin zone of the superlattice
(reduced Brillouin zone, RBZ) is also hexagonal shaped, but
smaller in size. It can be obtained by Ny -times folding of the
Brillouin zone of the layer 1 or 2. Two nonequivalent Dirac
points of the layer 1 are

4r ,  4m
K=—(,1), K =—(@0,-1).
3a 3a
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FIG. 1. (a) The superlattice cell of the tBLG structure with my =
10, » =1 (@ = 3.15°). Regions with almost AA, AB, and BA stack-
ings are indicated by arrows. (b) Brillouin zones of layers 1 and 2
(big red and blue hexagons), as well as the Brillouin zone of the
superlattice (small thick green hexagon) of the structure my = 1,
r = 1(0 = 21.79°). Reciprocal vectors of the superlattice G ,, Dirac
points of layers 1 and 2, K, K’, Ky, and K, as well as symmetrical
points of the reduced Brillouin zone (I, M, K ») are also shown.

The Dirac points of the layer 2 are
4 ) ,  4m
Ky = ——(—sinf,cosf0), K, = ——(sin6, —cosf).
3a 3a

Band folding translates these four Dirac points to the two
Dirac points of the superlattice K ». Thus, one can say that
Dirac points of the superlattice are doubly degenerate. Points
K, and K can be expressed via vectors G » as

K, = 1(G, +26,),

K =326+ G2). (1D

A typical picture illustrating these three Brillouin zones, the
vectors G| », as well as main symmetrical points is shown in
Fig. 1(b).

III. MODEL HAMILTONIAN AND ITS
MEAN-FIELD TREATMENT

We start from the following electronic Hamiltonian of the
tBLG:

H= Zt (r:’ rlj;:)dljl.iso'dmjra + UZ”HisT”nisi
nmij nis
1 / , )
+ EZ V(rif - r{,:)nnisanmjra" (12)
nmij

sroo’

In this expression d.  (d,..) are the creation (annihilation)
operators of the electron with spin o (= 1, | ) at the unit cell
n in the layer i (= 1,2) in the sublattice s (= A, B), while
Nnise = d;. d;o. The first term in Eq. (12) is the single-
particle tight-binding Hamiltonian with #(r’ Tl being the
amplitude of the electron hopping from site in the position
r,’; to the site in the position rif. The second term in Eq. (12)
describes the onsite (Hubbard) interaction of electrons with
opposite spins, while the last term corresponds to the intersite
Coulomb interaction [the prime near the last sum in Eq. (12)

means that elements with rf,f = r{;f should be excluded].

A. Hopping amplitude parametrization schemes

Let us consider first the single-particle properties of
MATBLG. If we neglect interactions, the electronic spectrum
of the system is obtained by diagonalization of the first term of
the Hamiltonian (12). The result depends on the parametriza-
tion of the hopping amplitudes #(r’ :rir). In this paper we
keep only nearest-neighbor terms for the intralayer hopping.
The corresponding amplitude is t = —2.57 eV.

Unlike the intralayer hopping, there is no universally ac-
cepted parametrization scheme for the interlayer hopping
amplitudes. They are much weaker than the intralayer am-
plitude ¢, and may be significantly affected by numerous
nonuniversal poorly controlled factors (elastic deformations,
relative layer sliding, disorder). To address this uncertainty,
we will study the model (12) with three different parametriza-
tions for the function #(r; r’). These parametrizations, as well
as the single-electron spectra corresponding to them, are pre-
sented below.

The parametrization I is rather simple. The function #(r; r’)
is described by the following Slater-Koster [34] formula for
p. electrons (the corresponding contribution from V,(r) is
assumed to be negligible):

[(r —r)e,]’

e e, (13)

tr;r) =
where

Vo (r) = toe” M=/ (|r]), F.(r) = (14)

The cutoff function F,.(r) is introduced to nullify the hopping
amplitudes at distances larger than r.; we use r. = 4.92 A,
I, =0.2 A. The parameter f, defines the largest interlayer
hopping amplitude. We choose 7y = 0.37 eV (this value was
used to describe the AB bilayer graphene [3]). The parameter
o describes how fast the hopping amplitudes decay inside the
region r < r.. We choose ry = 0.34 A.
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The parametrization I, expressed by Eqs. (13) and (14),
both with and without a cutoff function, is widely used in the
literature [9,31,35-37]. However, in the limiting case of AB
bilayer (¢ = 0), Egs. (13) and (14) cannot correctly reproduce
the Slonczewski-Weiss-McClure (SWMc) parametrization.
Indeed, the AB bilayer has three distinct nearest-neighbor
interlayer hopping amplitudes: ¢y (hopping from site 1.4 to the
nearest site 2/3), y3 (hopping from 15 to 2.4), and y4 (hopping
from 1.4 to 2.4 and from 158 to 2B8). The parametrization I
gives y3 = y4, while experiment shows [38,39] that y3 > y4.

To comply with the SWMc scheme, we consider yet other
parametrization, designated below as “parametrization II.”
It is a more sophisticated approach, initially proposed in
Ref. [40]. Parametrization II takes into account the environ-
ment dependence of the hopping. That is, the electron hopping
amplitude connecting two atoms at positions r and r’ depends
not only on the difference r — r’, but also on positions of other
atoms in the lattice. Extra flexibility of the formalism becomes
useful when the tunneling between r and r’ is depleted by
nearby atoms, which act as obstacles to a tunneling electron.
For tBLG, the parametrization II was used in Refs. [32,41,42],
among other papers.

To use parametrization II for MAtBLG, values of several
fitting parameters have to be assigned. We choose them in
such a way as to correctly describe the case of the AB bilayer,
with y3 > y4 (details can be found in our previous paper
[32]). One of the fitting parameters is #y: the largest interlayer
hopping amplitude. It also scales all other interlayer hopping
amplitudes. We perform all calculations for two versions of
parametrization II denoted below as II.A and II.B. They have
different values of 7y. All other fitting parameters are identical
for II.A and IL.B. Specifically, for the parametrization II.A
we assign 7o = 0.21 eV to guarantee that the angle 6. is the
same for both II.A and I (the precise definition of 6, will
be given below, in the next subsection). For parametrization
ILB the value of #y is the same as for parametrization I:
to = 0.37 eV. In other words, the overall interlayer tunneling
energy scale is the same for both I and II.B. However, the
values of 6. for these parametrizations deviate significantly
from each other.

B. Single-particle spectrum of MAtBLG

Once a specific parametrization is chosen, the single-
electron part of our model may be diagonalized, and its
single-electron spectrum may be found. Regardless of the
type of the parametrization, the tBLG spectrum has com-
mon features. For each superstructure (myg, r), the tBLG
spectrum consists of 4N, energy bands Eéi) with quasi-
momentum k lying inside the reduced Brillouin zone, and
1 < § < 4Ng.. For given Kk, the energies E&S() are arranged in
ascending order.

When the twist angle is not too small, the spectrum at
low energies consists of two doubly degenerate Dirac cones
located near the RBZ Dirac points K; and K,. These Dirac
cones intersect at energies above and below the cone apex
energy giving rise to the low-energy van Hove singularities.

The interlayer hybridization renormalizes the Fermi ve-
locity of the Dirac cones, making it smaller than the Fermi
velocity of the single-layer graphene. At not-too-small 6, the

renormalized velocity decreases when 6 decreases [29,43].
The energies of the van Hove singularities demonstrate a
similar dependence on 6.

The Dirac cones inherited from two graphene sheets are
hosted by four bands Eél‘f ), with § = 2N, — 1, 2Ny, 2N +
1, 2Ny + 2. Since in a pristine or weakly doped sample these
are the single-electron states closest to the Fermi energy, the
low-temperature properties of the MAtBLG are controlled
by these bands. Consequently, their total width W defined
as

W = max (Eg"™"?) — min (Eg™ ") (15)

is an important characteristic of the MAtBLG spectrum. As
long as the twist angle is not too small, W decreases with
decreasing 6.

Both numerical and analytical studies demonstrate that
both the Fermi velocity and the width W experience substan-
tial reduction as 6, decreases. Yet, in a wide range of 6, the
tBLG formally remains a semimetal at the charge-neutrality
point. However, at some critical twist angle 6, the system
acquires a Fermi surface even at zero doping. For 8 < 6, the
tBLG remains in a formally metallic state.

The value of 6. is not universal, and depends on particulars
of the interlayer tunneling. For parametrizations I and II.A,
one has 6, = 1.08° [(mg, r) = (30, 1)]. For parametrization
IL.B, the Fermi surface arises at larger angle, 6, = 1.89°
[(mg, r) = (17, 1)]. With further decrease of the twist angle,
the bandwidth W becomes an oscillating function of 6. For
all three parametrizations under study, the width W has a
minimum at 6 = 6,. For each parametrization, the numeri-
cal calculations presented below were performed at 0 = 6,
(one must remember that 6, is a parametrization-specific
quantity).

Formally speaking, our 6, differs from the common defini-
tion of the first magic angle introduced in Ref. [43]. According
to the latter, the first magic angle corresponds to nullification
of the Fermi velocity at the Dirac points, yet, in our study this
velocity remains nonzero when 6 = 6.. While both definitions
give similar values of the twist angle, these values are not
identical. We choose to work in the regime of smallest W since
the logic of the mean-field approximation suggests that this
regime corresponds to the largest condensation energy.

The low-energy structure of the numerically calculated
spectra at 0 = 6, are shown in Figs. 2(a)-2(c) for all three
parametrizations. The finer details for the flat bands Eéf) may
be examined in Figs. 2(d)-2(f). We show the bands along the
contour I' - K; — M — TI'. Qualitatively, the low-energy
spectra for all parametrizations look very similar. We see a
Dirac cone near point K, local extrema near the M point, and
complicated behavior on the line M — T.

On the quantitative level, however, the characteristics
of the low-energy bands are different. For example, the
bandwidth W for the parametrization II.B is about six times
larger than that for the parametrization I, and about two times
larger than that for the parametrization II.A. Other important
parametrization-dependent quantities are the energy gaps
separating the flat bands Eéf ) from dispersive bands at higher
and lower energies. Formally speaking, these gaps can be
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FIG. 2. (a)—(c) Energy spectra for 6 = 6, calculated for parametrization I (a), II.A (b), and II.B (c). The energy window for (c) (parametriza-
tion I1.B) is about two times larger than that for (a) and (b). (d)—(f) Fine structures of the flat bands corresponding to (a)—(c), respectively. (g)—()
Four flat low-energy bands calculated inside RBZ for parametrization II.A. The color bar is the same for all four plots [see (g)].

defined as

Ay = ma () — min (E2),

A, m]flx (E(()IZ(N“H)) — rr}(in (EéiNSC+3)). (16)
Our numerical data demonstrate that the values of A, and A,
for parametrizations II.A and II.B exceed the values for the
parametrization I by order of magnitude. The characteristics
of the low-energy spectra for all three parametrizations at
6 = 6, are summarized in Table I.

TABLE 1. Various single-electron characteristics of the
MABLG spectrum for three parametrizations of the interlayer

hopping.

o 0, w A, Ay
Par. I 0.37eV  1.08° 1.8 meV 2.7 meV 2.3 meV
Par. LA  021eV 1.08° 48meV 17.5meV 155 meV
Par. II.LB 037eV  1.89° 94meV 332meV 27.1 meV

Finally, let us briefly discuss the symmetry properties of the
flat bands. Figures 2(g)-2(j) show the low-energy spectra cal-
culated inside the reduced Brillouin zone for parametrization
II.A. We see that the spectra have hexagonal symmetry. Spec-
tra are also symmetric under reflections with respect to the
axes parallel and perpendicular to G, G, and G| + G;. All
these symmetries are observed also for the other parametriza-
tions as well. However, below we will see that the symmetry
of the low-energy spectra can be reduced if we include inter-
actions into account.

C. Structure of the SDW order parameters

The system having flat bands intersecting the Fermi level
is very susceptible to interactions. In our model, the interac-
tions are described by the second and the third terms in the
total Hamiltonian (12). They represent the onsite and intersite
Coulomb repulsion. Interactions spontaneously break sym-
metries of the single-particle Hamiltonian generating a finite
order parameter. We assume here that this order parameter is
a spin density wave. This choice is not arbitrary. It was shown
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in many papers (see, e.g., Refs. [29,30,32]), that at small
twist angles, electrons at the Fermi level occupy mainly the
regions with almost perfect AA stacking within a supercell. At
the same time, it was demonstrated theoretically [44—47] that
the ground state of the AA-stacked bilayer graphene should
be antiferromagnetic. For this reason we believe that the
SDW should be a good candidate for the ground state of the
MAtBLG.

Our SDW order parameter is a multicomponent one. First,
it contains terms proportional to the onsite expectation values
of electrons with opposite spins. To be more specific, we
define

Anpis = U<d§l-s¢dm>‘ a7
These components are controlled by the Hubbard interaction.
We take U = 2¢. This value is somewhat smaller than the
critical value for a single-layer graphene transition into a
mean-field antiferromagnetic state [48], U, = 2.23¢. Thus, our
Hubbard interaction is rather strong, but not too strong to open
a gap in the single-layer graphene.

Next, we include the intralayer nearest-neighbor SDW or-
der parameter. In a graphene layer, each atom in one sublattice
has three nearest neighbors belonging to another sublattice.
(For example, an atom on sublattice 55 has three nearest
neighbors on sublattice .A.) For this reason we consider three
types of intralayer nearest-neighbor order parameters Afﬁzf
(£ =1, 2, 3), corresponding to three different links connect-
ing the nearest-neighbor sites. These order parameters are
defined as follows:

Aﬁﬁl = V"“<dr-:+n¢i.AodniBz’r>’ (18)
where n; = (0, 0), n, = (1, 0), n3 = (0, 1), & = —0o, and
Van = V(|8]) is the in-plane nearest-neighbor Coulomb re-
pulsion energy. We take V,,/U = 0.59, in agreement with
Ref. [49].

Finally, we consider the interlayer SDW order parameter.
It is defined as follows:

B:;;na = V(rllnr - rlzls)<drlnlradn2s(r)' (19)
For calculations we assume that By, is nonzero only when
sites rl$ and r2" are sufficiently close. Namely, if the hopping
amplitude connecting rl¥ and r2" vanishes, then the param-
eter By, is zero. The number of nonzero By, depends
on the type of the hopping amplitude parametrization. For
parametrizations II.A and II.B we have up to three nonzero
Biyn, for a given m, r, s, and o. For parametrization I we
have up to nine such By . Assuming screening is small at
short distances we model the function V(r) in Eq. (19) as
V(r) o« 1/|r| with V(d) = Viuld|/d = 0.25U.

We assume superlattice periodicity for all three types of
SDW order parameters. A superlattice translation preserves
the SDW texture. With this constraint we write the system of
mean-field equations for the functions Ayq, Al(fif,, and Biine
and solve it numerically for different doping levels, n, varying
from —4 to +4 extra electrons per supercell. Details of the
calculation procedure are given in the Appendix.

D. Approximation quality

There are several circumstances which we must keep in
mind assessing the reliability of the approximations utilized
in this study. Our approach is based on the mean-field frame-
work. It is well known that the mean-field approximation is
reliable for (i) a three-dimensional model; (ii) in the limit of
weak coupling; (iii) with a single order parameter. If either
of these three conditions is violated, more care is necessary
interpreting the obtained results.

As our system is two dimensional, finite-temperature long-
range order in the MAtBLG is impossible, as postulated by
the Hohenberg-Mermin-Wagner theorem. Yet, it is believed
that, despite the absence of the true order, the mean-field
energy scale remains an observable quantity: it may be exper-
imentally measured as a low-T single-particle (pseudo)gap.
Consistent with this expectation, our calculations reproduce
energy scales observed in experiment (see the Discussion for
details).

Further, many real-life systems violate condition (ii). To
address this issue for the MAtBLG, let us evaluate the ef-
fective coupling constant for our model using the following
argument. The main contribution to the formation of SDW
order comes from the flat bands. Thus, the effective Hubbard
interaction can be estimated as

Ust =U Y |®,[*,
n

where @, is the wave function of the flat band in real-space
representation, and the summation is performed over all sites
within a single supercell. Since the electrons at the Fermi
level are localized inside the AA region of the superlattice,
occupying about % of the superlattice’s area, one can write
that inside this region

|®p| ~ v/3/Nic,

and we obtain the estimate
Uetr ~ 3U/Nsc‘

Substituting specific numbers, we obtain Ugs = 5.5 meV
for parametrizations I and I.A, and Ug s = 16.8 meV for
parametrizations II.B. These values must be compared against
the width of the flat bands W (see Table I). Since U /W for
all parametrizations is of the order of unity, the studied model
is in the limit of intermediate coupling. As the ratio Ueg/W
grows beyond unity, the mean-field approximation becomes
progressively less controlled, but we expect that our results
remain qualitatively valid at not too strong interaction. As an
example of a successful application of the mean-field calcula-
tions in the intermediate-coupling regime, see Ref. [50].
Another complication would be the violation of the con-
dition (iii) above: for the MAtBLG, several (metastable)
order parameters compete against each other to become the
true ground state. This situation is not unique, and similar
competitions were discussed in the contexts of other models
[51-54]. Since there is no known procedure which allows
one to compile an exhaustive list of metastable phases for a
given Hamiltonian, a compromise based on general physical
arguments, input from experiments, and other factors is un-
avoidable. It is not surprising, therefore, that our numerical
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FIG. 3. Characteristics of the SDW order at the charge-neutrality point. (a)—(c) Spatial distributions of the absolute values of the onsite
order parameter Ay, in layer 1 [Eq. (17)] within a single supercell [the supercell position relative to the MAtBLG lattice is the same as in
Fig. 1(a)]. The order parameter is calculated for parametrizations I (a), Il.A (b), and IL.B (c). Since different parametrizations have different
values of 6., the superlattice cell area for parametrization II.B is about four times smaller than that for parametrizations I and IL.A. (d)—(f)

Spatial distributions of the in-plane (layer 1) order parameter 2(

© _

nl —

AL, +ALT| for € =1 (d), £ =2 (e), and £ = 3 (), calculated for

nlp

parametrization 1. (g)—(i) Spins on the links [Eq. (21)] corresponding to order parameters AY with £ =1 (g), £ =2 (h), and £ =3 (i),
calculated for parametrization I. Only the AA region of the superlattice cell is shown.

search for the most optimal order parameter is constrained in
several respects. We already pointed out that the order param-
eters violating superlattice translations are not considered as
they incur unacceptable computational costs.

Also, the numerical implementation of our mean-field pro-
cedure does not account for noncoplanar spin textures, whose
relevance for the studied system is an open question. Non-
coplanar textures naturally appear [55] in recently introduced
effective models [5,55-57], where they stabilize due to Fermi-
surface nesting and a significantly enhanced symmetry group.
To which extent the weak-coupling nesting-based argument
of Refs. [5,55,56] is applicable to the MAtBLG (a system in
intermediate-coupling regime [57], with very complex Fermi
surface [32]) remains an interesting issue for future studies.

Finally, our procedure, as it is described above, does not
attempt to obtain self-consistency for the charge density dis-
tribution within a supercell. Indeed, one must remember that,
since the atoms locations within a supercell are not equivalent
to each other, the average charge on a given atom depends on
its position (the same is true for the local density of states).

nio

In principle, the interaction attempts to suppress spatial varia-
tions of charge through “Hartree” terms; however, we neglect
them in our numerical code.

IV. RESULTS: SPATIAL DISTRIBUTIONS OF SDW
ORDER PARAMETERS

In this section we present the results of our calculation
of the SDW order parameters and analyze their symmetry
properties. The spatial distribution of the order parameters
inside the superlattice cell is different for different doping
levels. However, it turns out that for a given doping the prop-
erties of the order parameters are very similar for the three
parametrizations used.

A. Charge-neutrality point

We start from the charge-neutrality point. Figures 3(a)-3(c)
show the color plots of the spatial distribution of the abso-
lute values of the onsite order parameter in layer 1, |Ayl,
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calculated for three parametrizations. Similar structures are
observed for layer 2. We see that the maximum values of the
Anq; are different for the three parametrizations, but the plots
themselves look very similar. The maxima of Ay are located
in the center of the AA region of the superlattice cell [cf. with
Fig. 1(a)]. The order parameter Ay;; defines the spin on a site
in position n, layer i, and sublattice s, as follows:
1
Shis = U(ReAnim ImAp;y, 0). (20)
A vanishing z component of Sy,;, in our definition (20) implies
that only planar spin textures are allowed (this is a limitation
of our numerical code, as explained in Sec. III D). However,
at the charge-neutrality point this constraint turns out to be
unimportant since all spins are collinear. If in layer 1 and
sublattice A (and in layer 2 and sublattice 53) they point in
one direction (along the x axis), then the layer 1 and sublattice
B (and in layer 2 and sublattice .4) they point in the opposite
direction. Thus, we have antiferromagnetic ordering of spins.
Let us now visualize the intralayer nearest-neighbor order
parameters Agﬁ)g. Using these quantities one can define the
spins on the link connecting nearest-neighbor sites in each
layer as follows:

1
) i
Sni = 5 ZGUU/<dn+ngi.AodniBa/> tc.c.

oo’

:i(Re[A“) +AL ] Im[AGL — AL ] 0). 2D

nit ni| 1’
nn
where o is a three-component vector composed of the Pauli
matrices. The quantity

@) _ |4 ()
anl - ’Aan AnIL’

is proportional to the absolute values of Siﬁ) calculated in layer
1 for parametrization 1. The spatial distributions of Qll(fl) are
shown in Figs. 3(d)-3(f) for all three possible values of £. The
distributions are shaped like dumbbells localized in the AA
region of the superlattice. The orientations of these dumbbells
are different for different orientations of the carbon-carbon
links. Similar figures are obtained for other two parametriza-
tions. The directions of the vectors S([) inside the AA region

are shown in Figs. 3(g)-3(1). We see that all spins S([)
collinear; but if in one part of a dumbbell they point in one d1-
rection, then in another part of the dumbbell they are oriented
in the opposite direction.

Absolute values of the order parameters Amg are several
times smaller than that for A,;,. Our calculations show that the

interlayer order parameters Bl are one order of magnitude

smaller than A'") ; thus, we do not discuss them here in details.

We now demonstrate that the calculated SDW magnetiza-
tion texture has the same geometrical symmetries as the tBLG
superstructure. We start with the following observation about
the tBLG lattice symmetry. The center of the AA region of
the superlattice cell is located at Rya = (R; + R»)/3. For the
r = 1 superstructures considered here, one can prove using

Egs. (2), (4), and (5) that

RAA = mpa, — a; + 286 = moa’z + g (22)

FIG. 4. Mirror symmetries of the tBLG. Point Raa = (R; +
R;)/3 is the center of the AA region of the superlattice cell. The solid
(blue) lines represent carbon-carbon bonds in the (rotated) top layer,
dashed (red) lines correspond to the bonds in the (immobile) bottom
layer. The circles represent carbon atoms. Thin dashed (black) lines
are the reflection axes. It is easy to see from this figure that a
reflection relative to any of these axes, accompanied by exchange
of the layers, leaves the tBLG lattice unchanged.

It is easily seen from this equation that the point Ry is
located at the center of the hexagons of both layers. This
means that the tBLG lattice is invariant under a rotation by
60° around the axis perpendicular to the layers and passing
through the point Raa.

Further, the tBLG lattice also has mirrorlike symme-
tries. Indeed, the lattice remains invariant if one exchanges
layers and then performs a reflection with respect to a cer-
tain axis in the xy plane passing through point Ras (see
Fig. 4). There are six such axes. They cross the x axis
at 30°p+6/2, where p=0,1,...,5. Since for the super-
structures considered the twist angle is small, any mirror
symmetry axis is either approximately parallel to R;, R;, or
(R; —Ry), or approximately perpendicular to one of these
vectors.

One can easily see from Figs. 3(a)-3(f) that the SDW
order parameters are invariant with respect to all geometri-
cal symmetries of the tBLG lattice. Indeed, the onsite order
parameter does not change under the action of the rotations
and reflections mentioned above, while the intersite order
parameters 2[; either remain invariant or convert into Q[fﬁ ),
with £ # £.

B. Half-filled state

Our simulations show that doping of the system away from
the charge-neutrality point spontaneously reduces the symme-
try of the SDW order parameters. For illustration of this fact,
we consider only the case of half-filling, which corresponds to
two extra electrons or extra holes per supercell. Electron and
hole dopings are equivalent at the qualitative level; thus, for
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FIG. 5. Characteristics of the SDW order at the half-filled state (v = 2). (a) Spatial distribution of |A,,| within a single supercell [the
supercell position relative to the MAtBLG lattice is the same as in Fig. 1(a)]. (b), (c) Orientations of the onsite spins [Eq. (20)] in the layer 1,

sublattices .A (b) and B (c) shown inside the AA region of the supercell. (d)—(f) Spatial distributions of Qlifl) =
supercell, for £ = 1 (d), £ = 2 (e), and £ = 3 (f). (g)—(1) Spins on the links corresponding to the order parameters A,

+ A:fl)i‘| within a single

with € =1 (g), £ =2

()
|AnM

(£)

nio >

(h), and £ = 3 (i), shown inside the AA region of the superlattice cell. The order parameters shown are calculated for parametrization I. Similar

pictures are obtained for parametrizations II.A and II.B.

definiteness, we consider electron doping. Figure 5(a) shows
the spatial distribution of |Ay,|, calculated for parametriza-
tion I. A similar pattern is observed in layer 2. We see that
in contrast to Fig. 3(a) the spatial profile becomes uniaxially
stretched. The stretching axis is (approximately) parallel to
the vector (R; + Ry). As a result of this distortion, the 60°
rotation is no longer a symmetry of the system. However, the
spatial profile is still symmetric under 180° rotation around
Raa. Regarding the mirror symmetry, only axes parallel and
perpendicular to (R; — Ry) remain mirror symmetry axes.
Another difference, in comparison to the charge-neutrality
point, is that the onsite spins are no longer collinear, even
though an antiferromagnetic type configuration is preserved
[see Figs. 5(b) and 5(c)].

The change in the intersite order parameters under doping
is even more dramatic: the spatial profile for Q[ffl) with £ = 2
does not have the form of a dumbbell [Fig. 5(e)] and it is

different from that for £ = 1 and 3 [Figs. 5(d) and 5(f)]. How-
ever, the 180° rotation symmetry endures for all three types
of intersite order parameters. Moreover, the symmetry under
the reflection with respect to the axis parallel to (R; — R;)
also remains unbroken. This reflection transforms the profiles
shown in Figs. 5(e) and 5(f) into each other, while the profile
of Fig. 5(d) is unchanged. Likewise, one can argue that the
line perpendicular to (R; — Ry) is also a valid symmetry axis
for the intersite texture. Finally, our calculations demonstrate
that vectors S are no longer collinear, and their textures have

nl
a complicated structure.

Thus, at half-filling the symmetry of the order
parameters is partially reduced, indicating spon-
taneous formation of the electron nematic state.
The nematicity of the ordered state in doped

MABLG is a robust property which does not require
fine tuning. Indeed, the rotation symmetry of the order
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FIG. 6. Local density of states at the Fermi energy for the many-
body states with nematicity. Both panels present a single supercell,
whose position relative to the MAtBLG lattice is the same as in
Fig. 1(a). The numerical data in the top panel are for v = 2 (half-
filling, two extra electrons per supercell), in the bottom panel is
for v = 2.25. For both filling fractions, the local densities of states
demonstrate a C, point symmetry group, instead of the larger Cg
group of the moiré superlattice. This manifestation of nematicity may
be detected in STM experiments.

parameter is lowered for all three parametrizations studied
in this paper.

The nematicity also manifests itself in the local DOS (see
Fig. 6). The two panels of this figure show the local DOS at the
Fermi energy for the half-filled (v = 2) and v = 2.25 states. In
both cases, the local density of states demonstrates invariance
under the C, point symmetry group, which is smaller than
Cs of the MAtBLG moiré superlattice. In this context, the
symmetry reduction can be interpreted as a type of com-
mensurate charge-density wave, with the modulation wave
vector Q.qw being equal to zero in the RBZ. In real space the
charge modulation has the same period as the superlattice. To
discriminate between the superlattice and the charge-density
wave in experiments, one has to rely on differences in the
point symmetry groups of the two.

V. RESULTS: THE LOW-ENERGY BAND STRUCTURE

A. Symmetry of the mean-field low-energy spectra

If interactions are neglected, the tBLG single-electron
states are doubly degenerate. The SDW order parameters
lift the spin degeneracy. As a result, at low energies we
have eight nondegenerate flat bands. Figure 7 allows one
to compare the spectrum of the noninteracting model with
the mean-field spectrum at the charge-neutrality point. The
degeneracy-lifting patterns for different doping levels and

(b)

0.01+

E/t
0.005-

-0.1 0
0.05
ak. 0.1 0.10
y 0.2 O.lSakx

FIG. 7. The spectrum of the noninteracting model (a) compared
with the spectrum calculated within the mean-field approximation
(b). The spectrum in (a) consists of four warped bands, each band
is spin-degenerate. In (b), two quartets of single-electron bands are
visible, while the individual bands are indiscernible on this scale. We
see that the characteristic gap-inducing splitting between the quartets
exceeds the warping of the noninteracting single-electron bands. The
calculations were performed at the charge-neutrality point n = 0, for
parametrization I1.B.

parametrizations are illustrated by plots in Figs. 8(a)-8(h)
which show the low-energy spectra inside a reciprocal super-
cell (these data will be discussed in detail in Sec. V B, see also
Ref. [9]).

However, the lifting of the spin degeneracy is not the
only consequence of the SDW ordering. The geometrical
symmetries of the order parameter affect the symmetries of
the single-electron mean-field spectrum as well. The plots in
Fig. 8 are not convenient for discussion of this issue, and we
will use Figs. 9(a)-9(d), which present individual color plots
of the mean-field bands calculated at different doping levels
inside the RBZ [similar data for the noninteracting case is
shown in Figs. 2(g)-2(j)], instead.

We start from the charge-neutrality point. At zero doping,
the low-energy bands bundle into two groups (four bands per
group) of nearly degenerate bands [see Figs. 8(a) and 8(e)].
Such a group will be called a quartet [9]. The separation
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FIG. 8. Mean-field low-energy spectra calculated at different integer-valued doping levels for parametrizations I [(a)—(d)] and IL.B [(e)—(h)].
Doping levels are v = 0 [(a), (e)], v = 1 [(b), (D], v = 2 [(c), (g)], and v = 3 [(d), (h)]. The red thick arrow near the E /¢ axis marks the position

of the Fermi level.

between bands within a specific quartet is finite. However,
it is much smaller than the characteristic separation between
the quartets themselves. Because of this near degeneracy, it
is sufficient to choose a single band to represent a given
quartet. Of four bands in each quartet, the bands closest to
the Fermi level are shown in Figs. 9(a) and 9(b). These plots
have the same symmetries as those in Figs. 2(g)-2(j): they all
are symmetric under rotations of 60° around the I" point, they
also have six mirror symmetry axes, parallel and perpendic-
ular to Gy, G;, and (G| + G;). The other bands in quartets
all have the same symmetries, independent of a specific
parametrization.

Doping reduces the symmetry of the SDW order param-
eters. As a result, the symmetry of the mean-field spectrum
is also reduced. To illustrate this, in Figs. 9(c) and 9(d) we
present color plots of two low-energy bands closest to the
Fermi level (one is filled, the other is empty) calculated for
parametrization II.A at doping v = —2. The spectra now do
not exhibit hexagonal symmetry, but they are still symmetric
under a 180° rotation around the I' point. There are also two
mirror symmetry axes, parallel and perpendicular to (G| +
G>). Similar pictures are observed for electron doping and for
the two other parametrizations.

B. Mean-field low-energy spectra: Evolution with doping

We reported previously [9] that the structure of the low-
energy single-electron spectrum strongly depends on the
doping level. The study in Ref. [9] was performed for a single
parametrization (the parametrization employed in Ref. [9]

is a version of parametrization I). Below we will extend
that analysis by comparing spectra calculated for differ-
ent parametrizations. Our main findings are summarized in
Figs. 8(a)-8(h). These show the spectra inside a reciprocal
supercell (centered at the I" point) calculated for parametriza-
tions I and IL.B at four integer-valued doping levels v =
0, 1, 2, 3. The structures for negative doping levels n are very
similar to that for positive dopings |n|.

For fixed doping, the change of parametrization does not
introduce qualitative modifications to the spectrum. How-
ever, several quantitative characteristics are sensitive to the
parametrization choice.

1. Charge-neutrality point

At the charge-neutrality point, the eight low-energy bands
split into two quartets. Except for a small vicinity of the I
point, the energy A separating the quartets is almost constant
everywhere in the RBZ. The specific value of A; depends
on the parametrization: for case I one has A; = 15 meV. A
similar value (A; =~ 14 meV) was found for parametrization
II.A. At the same time, for the case IL.B this quantity is
significantly larger A; & 40 meV.

At the I' point, the separation between the quartets is
the smallest. For parametrization I [see Fig. 8(a)], the split-
ting between upper and lower quartets is ~9 x 107¢. Such
a splitting is smaller, but comparable to, the splitting of
the noninteracting bands close to the I' point, as shown in
Fig. 2(d). Atthe I point, each quartet consists of two doublets,
the splitting between doublets is about 8 x 107%. A similar
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FIG. 9. Color plots of the mean-field low-energy bands closest to the Fermi level calculated at the charge-neutrality point [(a) and (b)] and
atv = —2 [(c) and (d)]; parametrization II.A. Each plot has its individual color bar. Nematicity-induced reduction of the point symmetry group

from Cg [(a) and (b)] to C; [(c) and (d)] is clearly seen.

situation takes place for other two parametrizations, with the
only difference being that the splitting between quartets is one
order of magnitude larger than for parametrization I. Thus,
on a qualitative level, the band structures at the I" point are
similar for all three parametrizations.

The spectra of noninteracting models are fourfold de-
generate [(twofold spin degeneracy) times (twofold valley
degeneracy)] at the I' point [see Figs. 2(d)-2(f)]. Thus, the
SDW order partially lifts this degeneracy.

2. Doped states

For v = %1, each quartet splits into a group of three bands
(a triplet) and a single band (a singlet), with the chemical
potential in the (partial) gap between the triplet and the sin-
glet. At half-filling (v = £2) each quartet is transformed into
two doublets. The chemical potential is between the doublets.
When we have three extra electrons (or extra holes) per super-
cell, v = +£3, the upper (lower) quartet is separated into the
doublet and two upper (lower) singlets. For electron (hole)
doping, the chemical potential lies between the upper (lower)
singlets.

As one can see from Fig. 8(h), for parametrization II.B at
[v| & 3, the band warping becomes comparable to the band
splitting. This effect is even more pronounced for parametriza-

tion II.A. We note that the (approximate) band degeneracy at
the I" point persists for all parametrizations and all levels of
doping.

It is instructive to interpret the doping-induced band struc-
ture reconstructions in terms of the minimization of the total
energy. At the charge-neutrality point, splitting of the eight
bands into two quartets acts to lower the total energy since
only four of eight bands are filled. At half-filling (two extra
electrons per supercell), the single-particle energy is opti-
mized if a filled doublet splinters away from the quartet and
sinks beneath the Fermi level.

When we have only one extra electron per supercell, it is
favorable to separate the lower single band (filled) from the
quartet. Finally, when we have three extra electrons per su-
percell, the three filled energy bands from the quartet separate
from the upper empty one.

As a result of the spectrum reconstruction, the density of
states at the Fermi energy p(¢r) becomes a nonmonotonic
function of n (see Fig. 10). One observes that the density of
states has a local minimum near or at the integer value of v
for all three parametrizations. At the same time, the depen-
dence of p(er) on n is sensitive to details of the interlayer
hopping. For example, the minimum at v = 3 is very shallow
in Fig. 10(b), it is more pronounced in Fig. 10(c), and in
Fig. 10(a) the density of state drops to zero at v = 3. Similar
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FIG. 10. The density of states at the Fermi level p(er) as a
function of doping n, for different parametrizations: (a) corresponds
to parametrization I, (b) and (c) show the results for the cases II.A
and IL.B. Colored rectangles mark the areas near integer values of
v = n/(n,/4). For all parametrizations, the density of states has local
minima near or at integer v. At the same time, finer details of p(er)
are sensitive to the particulars of the interlayer hopping. Specifically,
the precise locations and the depth of a given minimum vary among
the various parametrizations.

oscillations of the DOS were observed experimentally (for
details, see next section).

VI. DISCUSSION

We argued that doping of the system away from the
charge-neutrality point reduces the symmetry of both the
order parameters and the electronic spectrum, giving rise
to the SDW-driven electronic nematic state. The SDW or-
der parameters monotonically decrease when doping goes
away from zero. On the other hand, the nematicity demon-
strates a different trend. Our calculations show that for
doping |v| < 0.5, the nematicity is virtually absent. At
larger doping it starts growing and achieves maximum at
half-filling, that is for two extra electrons or holes per super-
cell. With further increase of doping the nematicity decays,

and at |v| &4 it vanishes together with the SDW order
parameters.

Nematicity reveals itself in the symmetry reduction of
both the SDW order parameters and the electron spectrum.
The reduced symmetry in the order parameters acts to re-
duce the symmetry of the charge density and local density of
states (see Fig. 6). “Nematic” features of the local density of
states can be detected in STM measurements, for example,
as in Refs. [20,21]. In these experiments, the bright spots
in STM images, centered at the AA regions of the moiré
superlattice, were uniaxially stretched. Moreover, the triangu-
lar superlattice was skewed as well. Reference [21] reported
that the strongest nematicity of STM images was observed
near half-filling, in agreement with our findings. Nematicity
of the normal phase near half-filing (v &~ —2) was observed
in Ref. [27] by direction-dependent transport measurements.
This is in agreement with our results. Reference [27] reports
also the nematicity of the superconducting phase near half-
filling.

Our calculations demonstrate that nematicity of the order
parameters and the energy spectra is very robust to the change
of the hopping amplitude parametrization. This indicates that
the nematic state is not an artifact of some “lucky” model
or parameter choice. Rather, it is an inherent feature of the
MABLG.

We observed that the low-energy band structure sub-
stantially depends on the doping level. As a result of the
doping-induced spectrum reconstruction, the density of states
at the Fermi level p(er) passes through minima at (or close
to) integer valued v’s. Such a behavior was reported in sev-
eral experimental papers [20,24,25,28] [see, e.g., Fig. 3(a) of
Ref. [24] or Fig. 3(e) of Ref. [25]]. On the theory side, we
reported similar findings in Ref. [9] for a single specific inter-
layer parametrization. In this paper, we extend our previous
study considering three more parametrizations (see Fig. 10).
This is important because no interlayer tunneling model is
universally accepted, and such an investigation allows us to
understand what physical properties of the MAtBLG are sta-
ble against model variations, and what properties are fragile
and require fine tuning.

Comparing graphs for p(er) versus n calculated for dif-
ferent interlayer tunneling parametrizations, we learn an
important lesson. On these graphs, the visibility of a specific
minimum is a nonuniversal quantity, sensitive to the model
details. This was illustrated in Sec. VB with the discussion
of the minimum at v = 3. Other minima at odd values of
v demonstrate a similar nonuniversality. The peaks at v =
0, £2 are not immune to the model modifications either,
although to a lesser extent. We believe that the manifesta-
tion of this sensitivity might explain the sample-to-sample
variation of the conductivity minima observed experimen-
tally. Indeed, in Fig. 1(c) of Ref. [19] all minima are
discernible, in Fig. 2(a) of Ref. [1] the minimum at v =
—1 1is absent, while the minimum at v =1 is extremely
weak.

According to our calculations, the system can be insu-
lating only at the charge-neutrality point. Specifically, for
parametrizations II.A and II.B we see that p(e¢r) = 0 when
n = 0 [for parametrization I the gap is very small, cf. Figs.
8(a) and 8(e)]. At other integer valued v’s, the mean-field
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ground state is always metallic: the bands in the upper and
lower quartets are not well separated in the whole RBZ for any
doping levels (see Fig. 8). Experimentally [1,19], however,
the state at even v shows insulating properties. This discrep-
ancy can be an artifact of the approximation used. First, we
consider only short-range order parameters. Second, for these
order parameters a superlattice periodicity was assumed, that
is, no extra periodicity emerged as in usual antiferromagnets.
Removing any of these constraints will lead to a significant
increase of computation costs.

More generally, the doping-induced reconstruction of the
spectrum affects not only p(er ), but changes the whole curve
p(E) versus energy E. This dependence was indeed observed
in recent experiments [20,21,25] [see, e.g., sequence of dI/dV
curves presented in Fig. 4(a) of Ref. [20]]. The band splitting
of two quartets A; existing at the charge-neutrality point can
be used as a characteristic energy scale of the low-energy
band structure. Our calculations give the values for Ay, rang-
ing from about 15 meV to about 40 meV, depending on the
interlayer hopping amplitude parametrization (see Sec. V B).
Such estimates are in agreement with experimental data in
Refs. [20,21,24-26,28].

In conclusion, we studied the properties of the magic-angle
twisted bilayer graphene in the doping range from —4 to +4
electrons per supercell. A spin density wave is assumed to
be the ground state of the system in the whole doping range.
Doping the system away from the charge-neutrality point re-
duces the symmetry of the order parameters, giving rise to the
SDW-driven electron nematic state. Nematicity is largest near
half-filling (two electrons or holes per supercell). The spatial
profile of the SDW order parameters and nematicity of the
electron spectrum are robust to the change of the interlayer
hopping amplitude parametrization. Our theoretical results are
consistent with several experiments.
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APPENDIX: CALCULATION PROCEDURE OF
THE SDW ORDER PARAMETERS

Here we present the details of the iteration scheme for
calculating the SDW order parameters. The total Hamiltonian
is given by Eq. (12). It can be rewritten as H = Hy + Hiyy,
where Hj is the single-particle part corresponding to the first
term of H, while H,,, includes the second and third terms of

H. The interaction Hamiltonian is quadrilinear in the terms of
electronic creation and annihilation operators. In the mean-
field approximation used here, the following decoupling is
explored:
diodyodi o d

niso “miso “mjro’“mjro’

> —d o d . (dl . d )

niso “mjro’ \*“mjro’ “niso

@dt. d_. Md . .d. ).

niso “mjro’ mjro’ “niso

(AD)

—dt . d. dod . )+

mjro’ “niso \*nisc ““mjro’

Assuming that nonzero expectation values are only those
shown in Egs. (17), (18), and (19) for the SDW order param-
eters, we obtain for the mean-field interaction Hamiltonian

2
MF + |Anis|
Hmt - Z(A:Hdmn nis| + H'C') + Z
nis nis
A© | (l) ’
% T nw
- Z ( nio dn+n(1A(rde(r + H. C + Z
nilo nilo
sk T | an
Z Bm nﬂdmlra n2s¢ +H. C Z Vrs ’

(A2)

where V55 = V(rl’ — r2*). The total mean-field Hamiltonian
HMF H + H&’{F is quadratic in terms of electron operators,
and can be diagonalized. To proceed with the diagonalization,
we switch to the superlattice quasimomentum representation,
as proposed in Ref. [58]. To this end, we introduce new elec-

tronic operators

1 ‘

dyino = 7 Z exp[—i(p+ )} Jduiss,  (A3)
where N is the number of graphene unit cells in the sample
in one layer, the momentum p lies in the first Brillouin zone
of the superlattice, while G = nG; + mG, is the reciprocal
vector of the superlattice lying in the first Brillouin zone of
the ith layer. The number of such vectors G is equal to Ny
for each graphene layer. In terms of dpGl.m , the single-particle
Hamiltonian becomes

=1 Z fl+G pGiAc thBa +H. C)

pGio
+ Y [ (0+Gi; G —Gy)d; 56 150 BpG,2r + HC]-
s
(A4)
Here,
i, "
fE=1+ e 4 o
and
1Y (p; G) = N—Z ¢ PTG (), (AG)

where the summation symbol with prime ", implies that m
runs over sites inside the zeroth supercell, while n runs over
all sites in the sample. The first term in Eq. (A4) corresponds
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to the intralayer nearest-neighbor hopping, while the second
term describes the interlayer hopping. In terms of operators

J

HMF —

nt
GGy
is

-2

l k)
Z |:<1v_sc ZB:;;na

p( 1(

2.4

mé

Using the operators dpGl.w we construct the Ng-component
vector

AR AR AN
- (I/,plT’ ‘(/fpzqw wplia wp2¢)9

d(

T
PGy iAc’ dpGN 130) (A8)

— T
Ippza - ( pG iAo’ dpG iBo> "

In terms of this vector, the total mean-field Hamiltonian

MF MF T 5o
H" can be written as H'" =} WpHp Wy, where Hp is
the Ng x N matrix constructed from f1;+G’ t7(p+ Gi;G —

G2), Anis, Af”f,, and By, according to Egs. (A4) and (A7).

Since N = 8N Wlth N from Eq. (7), one can evaluate
Ng = 7352 for parametrization II.B, while for parametriza-
tions I and II.LA we find Np = 22 328. These numbers are
too large for the effective execution of a numerical proce-
dure which requires multiple diagonalizations of matrices of
rank Ng.

Fortunately, our task is simplified by the following circum-
stances. The main contribution to the order parameter comes
from low-energy single-particle states; consequently, the con-
tributions of the states far from the Fermi energy can be safely
approximated. Aside from this, the Hamiltonian describing
these states is particularly simple. Indeed, for large intralayer
kinetic energy, we can neglect both interlayer hoppings and
SDW order parameters. In this limit, the matrix 1-71, becomes
block diagonal, with the following 2 x 2 matrices on its diag-

onal:
" ( O 1l)+G> .
;ii(; 0

The eigenenergies of such a matrix are | fli +gl- Both in-
terlayer hopping amplitudes and SDW order parameters are
small in comparison to . As long as we are interested in
low-energy features, we can use the truncated matrix 1-?1; to
calculate the mean-field spectrum. To derive this matrix, we
define the reduced subset of G satisfying the inequality

(£ < E.

where Ep is the cutoff energy. (In all simulations, we use
Er ~ 1 eV.) Obviously, the number N; of such G’s is an
increasing function of Eg. Also, N; < N,.. Using this subset
of G’s, we construct the truncated basis \Ill’, and truncated

matrix I?", according to Eqs. (A4) and (A7) with G| and G,

(A9)

(A10)

o—iG1=Gory | gt
- Z [( Z Apise™™ )dpGlispoGziw
(f)* —i(p+G)rl, —i(G;—Gy)ri, i
mio € Ve e )d ll.AUdpG,lBU +H.c. :|

—i(p+G1)(rh—12) e~ i(G1— Go)rl, )dt d

dpGim >

as

the mean-field interaction Hamiltonian can be written

|Anis|2
U

2

nis

+ H.c.:| +

©)

+ Z ‘I;l(T

nn
nilo

mno

v (A7)

PG lro “pG2sa

+ H.c.] Z

rso

(

belonging to the reduced subset. The rank of the truncated
matrix is N = 8Nj.

Diagonalization of 1-7]/) gives the wrong result for the
eigenenergies EISS) close to +E. For this reason, we take into
account only eigenenergies satisfying the inequality |EY| <
Ey, with Ey < Eg. We use Ey = 0.21, Eg = 0.4t (N = 720)
for parametrization I and II.A, and Ey = 0.5¢, Ex = 0.7t
(N = 720) for parametrization II.B. Several calculations with
smaller and larger Er and E, show that the results are almost
independent on these quantities.

Our goal is to minimize the total energy £ of the system
with respect to the order parameters. Since we use the trun-
cated Hamiltonian, the contribution to the total energy from
the discarded states E*) < —E, must be accounted for sepa-
rately. Since Ey > max | A/, this can be done perturbatively.

The leading corrections to Eés) are quadratic in Ayq, Afﬁl
and By .. The same is true for the total energy. In our ap-
proximation we assume that the proportionality coefficients
are identical for all order parameters and are equal to

1 1 [ E
/ dEpo( )7
Ep

“VuEy) | 2 E
where po(E) is the single-layer graphene density of states.
Such a correction can be taken into account by the following
replacement in the total mean-field Hamiltonian:

(Al1)

/MF | A"U |A£1€ll)f |Bm no }
HY — HME= -2 =T
= Ve(Eo) == Ve(Ey) o Ve (Ep) ’
‘ (A12)
where H™F is the effective Hamiltonian in the truncated basis.

While the truncation scheme and Egs. (A12) and (A11) are
an obvious simplification, we want to argue in favor of such
an approach. Working within the mean-field framework, one
expects the expression for the order-parameter magnitude A
to have the familiar structure

A~ Qoexp(—1/g),

where g is the dimensionless interaction constant, and €2 is
the so-called preexponential energy scale. Depending on the
physical situation, one estimates €2 as being of the order of
the Debye temperature, or of the order of the bandwidth. How-
ever, the intrinsic accuracy of the mean-field approximation
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does not allow us to improve our knowledge of €2; beyond
these order-of-magnitude estimates. Keeping this limitation in
mind, we note that Egs. (A12) and (A11) approximate contri-
butions to this preexponential energy scale. Consequently, a
simplified treatment of these terms is in general agreement
with the accuracy of the mean-field approach. Also, we need
to remember that our simulations are in the regime U < U,. In
this limit, two uncoupled single layers of graphene remain in
the disordered state. Thus, the stability of the SDW state relies
crucially on the low-energy band structure, while higher-
energy states are of lesser importance. These reasonings, in
addition to numerical checks demonstrating the insensitivity
of final results to specific value of Nj, lend support to our
confidence in the formulated approximation.

For Ey = 0 we have V_(0) = 2.23¢, which is equal to the
critical Hubbard U for the mean-field transition to the AFM
state of single-layer graphene [48]. Thus, the replacement
(A12) is exact for the Hubbard model of the tBLG in the limit
of uncoupled graphene layers.

Our iteration scheme for finding order parameters is the
standard one. For a given Ay;, Affii, and B;ﬁm, we calculate
the eigenenergies ES* and eigenvectors @ of the truncated

matrix ﬁi’). Using these quantities we calculate the gradient of
the system’s energy according to

dE  [oHM"
ar \ or [

(A13)

where A = Ayq, Affif,, or By ..,,- The new values of the order
parameters are calculated according to the conjugate-gradient
method. The averaging in Eq. (A13) is performed at fixed
doping level, where the chemical potential is found from the

condition

Nk d’p s ,
n-:Z/ 0(u — ED) — Np/2.
Fos=1

(A14)
URBZ

where vgrpyz is the area of the reduced Brillouin zone.
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