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Topological quantum phase transitions retrieved through unsupervised machine learning
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The discovery of topological features of quantum states plays an important role in modern condensed matter
physics and various artificial systems. Due to the absence of local order parameters, the detection of topological
quantum phase transitions remains a challenge. Machine learning may provide effective methods for identifying
topological features. In this work we show that the unsupervised manifold learning can successfully retrieve
topological quantum phase transitions in momentum and real space. Our results show that the Chebyshev
distance between two data points sharpens the characteristic features of topological quantum phase transitions in
momentum space, while the widely used Euclidean distance is in general suboptimal. Then a diffusion map or
isometric map can be applied to implement the dimensionality reduction, and to learn about topological quantum
phase transitions in an unsupervised manner. We demonstrate this method on the prototypical Su-Schrieffer-
Heeger (SSH) model, the Qi-Wu-Zhang (QWZ) model, and the quenched SSH model in momentum space,
and further provide implications and demonstrations for learning in real space, where the topological invariants
could be unknown or hard to compute. The interpretable good performance of our approach shows the capability
of manifold learning, when equipped with a suitable distance metric, in exploring topological quantum phase
transitions.
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I. INTRODUCTION

Topological phases of matter have attracted tremendous
attention in the past decade [1–15]. Conceptually, topolog-
ical quantum phase transitions go beyond the conventional
Landau paradigm, which needs local order parameters to dis-
tinguish different phases. Instead, topological quantum phases
are usually characterized by topological quantum numbers,
which reflect global properties of the state manifold defined
on a compact Brillouin zone. Quantum states belonging to
the same topological sector can be continuously deformed
to each other without closing the bulk energy gap, and are
thus called homotopic. When a topological quantum phase
transition occurs, according to the bulk-boundary correspon-
dence, the band gap closes at the critical point. Therefore, a
topological quantum phase transition is usually accompanied
by a discontinuous change of the state configuration, such as
the sign change of the mass term in the Hamiltonian, or band
inversions in topological insulators [1,2].

Due to the absence of local order parameters, the detection
of topological quantum phase transitions remains a challenge.
For a given model Hamiltonian in momentum space featuring
a set of parameters, it is usually not obvious whether it ex-
hibits topological quantum phase transitions when sweeping
the model parameters. Recently, machine learning has been
introduced to quantum physics, including seeking quantum-
enhanced learning algorithms [16–20], and detecting quantum
phase transitions with machine learning in many-body physics
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[21–54] and topological systems [55–67]. In particular, deep
learning has been employed [57,58] to train a neural net-
work to recognize different topological phases in a supervised
manner.

However, prior knowledge and labeled training examples
are not always easily accessible in practice. In that respect,
the unsupervised learning, without pretraining, provides a
more promising learning framework to discover topological
patterns. For instance, neural networks with autoencoders [68]
and predictive models [66] were used to learn topological
features without explicit supervisions. Compared with deep
learning, manifold learning methods, such as Isomaps [69]
and diffusion maps [70,71], usually require lower computa-
tional costs. The unsupervised learning based on diffusion
maps has been successfully applied for the identification
of topological clusters [64]. The application of this method
leaves the freedom to choose the distance metric in the orig-
inal feature space. The Euclidean distance (ED), which has
been used in most cases, appears as a natural choice.

In this work we propose to use the better optimized Cheby-
shev distance (CD) to construct the graph-structured data
set, and to use unsupervised manifold learning to retrieve
topological quantum phase transitions in momentum space,
which can be further extended, in an interpretable manner, to
learning in real space. The use of the CD was inspired by
the fidelity-susceptibility (or the quantum-geometric-tensor)
indicator [72] for topological quantum phase transitions, as
well as the non-Euclidean structure of the data set.

We demonstrate this method on the prototypical Su-
Schrieffer-Heeger (SSH) model [73,74], the two-dimensional
(2D) Qi-Wu-Zhang (QWZ) model [75], and the quenched
SSH model [76] in momentum space, and further provide
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implications and demonstrations for learning in real space,
where the topological invariants could be unknown or hard to
compute. The interpretable good performance of our approach
highlights the capability and promising performance of un-
supervised machine learning of topological quantum phase
transitions, without prior analysis of the Hamiltonian.

II. MANIFOLD LEARNING AND DISTANCE METRIC

Manifold learning is used when linear unsupervised learn-
ing models, like the principal component analysis, fail to
uncover nonlinear structures in data sets [69,77]. A key char-
acteristic of manifold learning methods such as Isomap [69] is
that the ED is not suitable to reflect the intrinsic connectivity
and similarity between data points. Adapted distance metrics
such as the manifold geodesic distance, approximated from
the shortest distance on the neighborhood graph, should then
be used to characterize the similarities. The following step is
to embed the data points into a meaningful low-dimensional
Euclidean space based on this distance or similarity matrix,
where a conventional clustering method (e.g., k-means) can
be used to detect clusters in the data set.

When it comes to the unsupervised learning of topological
quantum phase transitions for states in momentum space, one
comes across a similar problem: the ED in general cannot
successfully retrieve topological clusters in the data set. A ho-
motopic distance metric (see, e.g., Ref. [78]) is instead needed
to adequately capture the structure of the data set. While
the generic numerical evaluation of the homotopic distance
between two input vectors is difficult at the current stage,
some approximative metrics may be used.

Motivated by the observation that topological transitions
usually are accompanied by sign changes or band inversions,
here we investigate the use of the L∞-norm induced CD
to (approximately) measure topological similarities. Across
topological transitions, quantum states defined over the com-
pact Brillouin zone (BZ) take sharp changes at certain sym-
metric points [79] in the BZ, while state vectors belonging to
the same topological phase vary smoothly. The CD highlights
[80] these features of topological quantum phase transitions,
facilitating the successful retrieval of the critical lines.

To see this more clearly, we analyze the performance of
the distance metric in clustering with the similarity (or kernel)
matrix

Kp
i j = exp

(
− ‖xi − x j‖2

Lp

ε

)
, (1)

where ε is the resolution parameter of the kernel, xi is the
ith input data vector, and i, j = 0, 1, 2, . . . , M − 1, with M
the size of the data set. The more similar (or closer) two data
points are, the larger value their corresponding kernel matrix
element will take. The Lp norm of a vector z = (z1, . . . , zdz )
is given by

‖z‖Lp =
(

dz∑
k=1

|zk|p

)1/p

, (2)

where p = 2 and p = ∞ give the ED and the CD, respec-
tively. The Lp norms with p = 1, 2,∞ are widely used due to
their explicit geometric and physical meanings. An equivalent
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FIG. 1. Similarity matrix Kp in Eq. (1) built from the Lp-norm
distance metric: Compared are the (a) Chebyshev distance (CD) with
p = ∞ and (b) the Euclidean distance (ED) with p = 2. M = 800
input feature vectors (i.e., reshaped unit Bloch vectors; see the main
text) are uniformly sampled in an ordered manner, from the 2D
Qi-Wu-Zhang model in Eq. (10), where the hopping energy is taken
to be b = 0.2 and the chemical potential μ varies from μ = −4b to
μ = 12b, and the Brillouin zone is sliced into 32 × 32 patches. The
resolution parameters are ε = 0.345 in (a) and ε = 1.28 × 10−4 in
(b), which are obtained by minimizing the respective mean squared
errors with respect to the ideal similarity matrix, where matrix ele-
ments for intracluster data points equal one and equal zero for the
others. It can be seen that, compared to the ED, the CD sharpens the
cluster boundaries as well as the characteristic feature of topological
quantum phase transitions.

but more useful expression for the L∞ norm is

‖z‖L∞ = max
k

|zk|. (3)

For instance, we show the similarity matrix Kp built upon
the CD in Fig. 1(a) and upon the ED in Fig. 1(b) for the 2D
QWZ model [75] [see Eq. (10)]. The data points are uniformly
sampled unit Bloch vectors in an ordered way such that one
can see four equally partitioned clusters. The resolution pa-
rameters are optimized with respect to the ideal similarity
matrix (see the caption of Fig. 1 for details). Compared to the
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ED displayed in Fig. 1(b), the similarity matrix from the CD
in Fig. 1(a) clearly shows four nearly ideal clusters with good
intra-cluster connectivity and poor inter-cluster connectivity,
which correspond to four distinct sectors in the topological
phase diagram. The ED leads to connected clusters, and we
find that, even for smaller values of ε, the first two sectors with
the ED are connected and thus cannot be correctly clustered
by the diffusion-map algorithm (see Appendix B for details).

Note that when the algorithm is fed with unit Bloch vec-
tors, the distances need to be normalized, which leads to

K∞
i j = exp

(
− ‖xi − x j‖2

L∞

4ε

)
(4a)

and

Kp=2
i j = exp

(
− ‖xi − x j‖2

L2

4ε(N + 1)2D

)
, (4b)

where the BZ is sliced into ND patches in the D-dimensional
case. It can be shown straightforwardly that Kp=2

i j � K∞
i j with

the same value of ε, and the ED overestimates the intercluster
connections, as compared to the CD.

III. DIFFUSION MAP AND DIMENSIONALITY
REDUCTION

With the CD as a topologically viable distance measure,
we are now ready to seek an appropriate approach for the
dimensionality reduction, to learn the topological clusters.
Among many manifold learning methods [69,77,81–83], dif-
fusion maps [64,70,71,84–86] can successfully discover the
connected components in a data manifold if a viable distance
measure is used, visualized by the similarity matrix in Fig. 1.
In the framework of diffusion maps, a Markovian random
walk is launched within the data set, where the transition prob-
ability between two data points is given by the normalized
similarity matrix,

Pi j = Kp
i j∑

j K
p
i j

. (5)

After t steps of random walk, the connectivity between two
points xi and x j is characterized by the diffusion distance [84]

D2
t (xi, x j ) =

∑
k

[(Pt )ik − (Pt ) jk]2

φ0(xk )
, (6)

where φ0(xk ) is the first left eigenvector of P with the eigen-
value λ0 = 1. The map to the Euclidean space Y , which best
preserves the connectivity of the data set, is determined by
minimizing the cost function [81]

C =
∑

i j

[Dt (xi, x j ) − dY (yi, y j )]
2, (7)

where dY (yi, y j ) is the Y -space Euclidean distance between
the images yi and y j of two data points. The solution of
minimizing the above cost function is given by [84]

yi = [
λt

0ψ0(xi ), λ
t
1ψ1(xi ), . . . , λ

t
M−1ψM−1(xi )

]
, (8)

where λk and ψk (xi ) are the kth eigenvalue and the right
eigenvector’s ith component of the Pt matrix, respectively.

Note that the eigenvalues of the probability matrix P satisfy
0 � λk � 1 ∀k. Hence when the number of diffusion steps

t is large, the nontrivial vector components of yi are given
by those with λk ≈ 1, and the degree of (near) degeneracy of
these eigenvalues equals to the number of connected compo-
nents in the similarity matrix [64]. The first eigenvector is
ψ0 ∝ 1/M = const., so data images are not fully dispersed
in this dimension. Statistics and clustering methods such as
k-means will be then used in the Y space to identify the
samples in each cluster, and the critical lines are decided
automatically by the corresponding cluster boundaries in the
parameter space.

IV. LEARNING TOPOLOGICAL QUANTUM PHASE
TRANSITIONS IN TWO DIMENSIONS

First we consider the Qi-Wu-Zhang model [75] in two
dimensions. The Hamiltonian in momentum space is

H (k) = d0(k) + d(k) · σ, (9)

with σ = (σx, σy, σz ) the vector of Pauli matrices and d(k) a
three-dimensional vector with components

dx = sin (kx ), dy = sin (ky),
(10)

dz = μ − 2b[2 − cos (kx ) − cos (ky)],

where μ is the chemical potential and b is the hopping energy,
and we have taken a unit lattice constant. The 2D BZ is given
by [−π, π ] × [−π, π ]. We can further assume d0(k) = 0,
because it trivially contributes to the topology. The normal-
ized unit vector d̂(k) = d(k)/|d(k)| defines a mapping from
the compact 2D BZ (i.e., T 2) to the unit sphere S2. The
topological Chern number

C2D = 1

4π

∫
BZ

dkxdky d̂ · (
∂kx d̂ × ∂ky d̂

)
(11)

measures how many times the mapping wraps over the unit
sphere.

Shown in Fig. 2(a) are the topological critical lines au-
tomatically learned in an unsupervised manner by scanning
through the hopping energy b. For fixed b, the data set consists
of M uniformly sampled d̂ vectors from μ = −5b to μ = 15b,
and d̂(k) is vectorized to a high-dimensional feature vector
in R3(N+1)2

, where we have discretized the BZ into N × N
patches. The learned black triangles, red dots, and blue stars
precisely trace three critical lines that divide the parameter
(μ, b) space into four topological sectors.

It should be noted that further topological information may
be retrieved from Fig. 1(a), where the first and fourth, and
the second and third clusters are quasisymmetric, respectively,
indicating that the corresponding two sectors in the phase
diagram may have related topology.

This can be verified by calculating the Chern numbers
within each phase, as shown in Fig. 2(a). The number of
degenerate eigenvalues with λt ≈ 1 in Fig. 2(b) determines
the number of distinct topological sectors. Figure 2(c) shows
the data set embedded in the diffusion space. The size of each
cluster is sufficiently small such that points belonging to the
same sector almost collapse. Compared to supervised learn-
ing, here the learning is automatically achieved without prior
training. In Appendix C we also provide the principal com-
ponent analysis (PCA) and an Isomap learning, respectively,
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FIG. 2. (a) Topological quantum phase transitions of the Qi-Wu-
Zhang model retrieved from the diffusion map. The critical lines are
automatically learned by scanning the hopping energy b and for each
value of b, the input data set consists of uniformly sampled feature
vectors from μ = −5b to μ = 15b (see the main text for details)
[87]. The critical values (μc0, μc1, μc2) of the chemical potential μ

are identified by k-means in the diffusion space from the boundaries
of μ parameters in each cluster. The first topologically trivial phase
with μ < 0 and C = 0 is not shown. (b) First 30 eigenvalues of the
diffusion matrix Pt . The degeneracy of the largest λt

k indicates that
there are four disconnected clusters in total. (c) Images of the data set
in the low-dimensional diffusion space. The colors encode the values
of μ/b, as indicated in the color bar on the right-hand side of (c).
The clustering is very effective such that the size of each cluster is far
smaller than their interdistance. There are in total four clusters in (c),
where each sector contains several hundreds of dots, with the values
of μ/b (and also colors) gradually varying, and dots with lighter
colors are covered by those with darker ones in each cluster. (b) and
(c) Plotted with a representative value of b = 1. The hyperparameters
used are M = 1000, N = 32, ε = 0.03, and t = 500. In contrast, the
use of the Euclidean distance does not deliver the correct clustering,
independent of the choice of ε (see Appendix B).

for the QWZ model, where in the latter, results from the CD
and the ED are compared.

V. LEARNING THE SU-SCHRIEFFER-HEEGER MODEL

The SSH model describes electrons in an one-dimensional
lattice [73,74], with t1 and t2 the staggered hopping energies.
The Hamiltonian of the SSH model in momentum space reads

H (k) = [t1 + t2 cos(k)]σx + t2 sin(k)σy. (12)

In the Bloch vector formulation as in the 2D case, we have

dx(k) = [t1 + t2 cos(k)],

dy(k) = t2 sin(k), (13)

dz(k) = 0.
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FIG. 3. (a) Learned topological quantum phase transition of the
SSH model. The critical line t2c is automatically learned by scanning
the hopping energy parameter t1 and for each t1, the input data set
is composed of uniformly sampled feature vectors from t2 ∈ (0, 5t1]
(see the main text for details). There are only two topological sectors
detected, as illustrated by the degree of degeneracy of the largest
eigenvalue λt

k in (b). (c) Images of the data set in the embedded
diffusion space. The colors encode the values of t2/t1, as indicated
in the color bar on the right-hand side of (c). The clustering is
very effective such that the size of each cluster is far smaller than
their interdistance. There are in total two clusters detected in (c),
where each sector contains several hundred dots [see (d)], with the
values of t2/t1 (and also colors) gradually varying, and the green
and yellow dots are covered by the darker brown ones in the bottom
right. The k-means clustering method is used in (c) to automatically
retrieve the topological transition in (a). (b) and (c) Plotted with a
representative value of t1 = 1. Other parameters used are M = 1000,
N = 32, ε = 0.03, and t = 500.

Note that the absence of the third component is related to
the chiral symmetry of the SSH Hamiltonian. The unit vector
d̂(k) = d(k)/|d(k)| defines a map d̂(k) : S1 �→ S1, where the
topological winding number is [74]

ν = 1

2π i

∫ π

−π

dk q−1(k)∂kq(k), (14)

where q(k) = dx(k) − idy(k). The input data is given by the
reshaped d̂(k) (k ∈ BZ) vector in high-dimensional feature
space R2(N+1), after slicing the BZ into N patches. For fixed
t1, the data set is obtained from uniformly sampled feature
vectors from t2 = 0 to t2 = 5t1.

Shown in Fig. 3(a) is the learned phase diagram indicating
that there are only two topologically distinct sectors [also
indicated in Fig. 3(b) by the degeneracy of λt with a large
t]. Figures 3(c) and 3(d) show the distribution of data points
in the low-dimensional diffusion space. The critical line in
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FIG. 4. (a) Topological quantum phase transition of a quenched SSH model, retrieved from the diffusion map. Only two topological sectors
are detected. The transition line is automatically learned by varying the parameter J0, and for each fixed value of J0 our input data set consists
of sampled feature vectors (i.e., reshaped unit Bloch vectors) from J1 ∈ (0, 2J0]. (b) The first 30 eigenvalues λt

k with t = 100. The number of
(near) degenerate largest eigenvalues indicate that there are two topological sectors. (c) Images of the data set in the embedded low-dimensional
flat space. The k-means clustering method is used to automatically identify each cluster and the corresponding parameter J1 for each data point.
The critical line in (a) is obtained from the identified J1 boundaries in each cluster. The color code indicates different values of J1/J0. (b) and
(c) Plotted with a representative value of J0 = 1. Here we have used M = 1000, N = 32, ε = 0.03.

Fig. 3(a) is decided by fixing t1 and identifying the t2 pa-
rameters in each cluster in Fig. 3(c). The obtained topological
quantum phase transition coincides with the theoretical pre-
diction [74].

VI. LEARNING THE QUENCHED SSH MODEL

As a final demonstration we provide the unsupervised
learning of the dynamically quenched SSH model [76]. Here
the hopping energies (t1, t2) = (J0, 0) in the SSH model expe-
rience a sudden change during the quench, which leads to the
pre- and post-quenched Bloch vectors d(k) = (J0, 0, 0) and

d′(k) = [J1 + J0 cos(k), J0 sin(k), 0], (15)

respectively.
With the K-theory classification of quench dynamics, the

parent Bloch Hamiltonian reads H (t, k) = d(t, k) · σ, where
the components of d(t, k) are given by [76]

dx(t, k) = −J0 + 2J0[J0 sin(k)χ (t, k)]2,

dy(t, k) = −2J2
0 [J1 + J0 cos(k)] sin(k)χ2(t, k), (16)

dz(t, k) = −J2
0 sin(k) sin [2d ′(k)t]/d ′(k),

where

χ (t, k) = sin [d ′(k)t]/d ′(k), (17)

with d ′(k) the norm of d′(k), and (t, k) ∈ [0, π/d ′(k)] ×
[0, π ].

The same learning protocol as above can be used to learn
the phase transition in (J0, J1) space, and shown in Fig. 4(a)
is the retrieved critical line (blue stars), which fits the theoret-
ical result (dashed blue line) well. The dynamical topological
numbers C in each sector are calculated with the method
provided in Ref. [76].

Figure 4(b) shows that there are two topological sectors
in the phase diagram (we have taken t = 100). Figure 4(c)

displays the diffusion-space distribution of uniformly sam-
pled M = 1000 data points from J1 = 0 to J1 = 2J0 with
J0 = 1. The k-means clustering method is used in this
low-dimensional Euclidean space to learn the critical line
automatically.

In the above examples, the data sets consist of normalized
Bloch vectors. In Appendix D we also provide distance and
similarity measures (i.e., the CD and the ED) for learning over
wave functions in momentum space.

VII. IMPLICATIONS FOR LEARNING IN REAL SPACE

We have presented manifold learning for topological
quantum phase transitions of several prototypical models in
momentum space. While the ED may, in simple cases and for
fine-tuned choices of ε, deliver correct clustering, the CD is
much more consistent and generic in its performance, as the
L∞-norm distance metric captures the characteristic features
of topological quantum phase transitions for states in momen-
tum space.

Based on the mathematical fact [88] that the Fourier trans-
form of a L1(R) space is the L∞(R) space, and the Fourier
transform of a L2(R) space is still a L2(R) space, the cor-
responding dual distance metrics in real space can be given
by the L1 norm (dual to the CD) and the L2 norm (dual
to the ED), respectively. In the following we discuss the
unsupervised learning of the tight-binding SSH model and a
locally disordered SSH model in real space, respectively. Our
results show that the performance of the L2-norm distance
(real-space ED) is also suboptimal compared to that of the
L1-norm distance (real-space dual CD) [89].

The clustering of different Hamiltonians or density matri-
ces in real space, in an unsupervised manner, is as interesting
as significant. In real space, the calculation of topological
invariants is not as straightforward as in momentum space,
where topological phases are distinguished by different homo-
topy classes of maps from the BZ to the Hamiltonian space.
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Below we present clustering results for a real-space SSH
chain with Nl number of unit cells (i.e., L = 2Nl is the number
of lattice sites). The Hamiltonian is [74]

H =
Nl∑

n=1

a†
nĥnan+1 + H.c. + a†

nμ̂nan, (18)

where

ĥn = tn2

2
(σx − iσy), μ̂n = tn1σx, (19)

and a†
n = (c†

n1, c†
n2), with c†

ni being the fermion creation op-
erator at the ith site in the nth unit cell. The intra- and
intercell hopping constants are given by tn1 and tn2, respec-
tively. The Hermitian conjugates of the creation operators
give the corresponding fermion annihilation operators. Note
that the hopping constants can be disordered, in which case
the quasimomentum is not well defined. We assume periodic
boundary conditions.

As in many machine learning tasks for physics, where the
algorithm is fed with samples from numerical simulations or
experimental data, here we first solve the energy spectrum and
the corresponding eigenvectors of the Hamiltonian in Eq. (18),
and then take the density matrix within the half lower bands
as the input data for the clustering algorithm.

This is analogous to feeding the algorithm with the lower
band states in the two-band model in momentum space.
Specifically, the input data is given by the (unnormalized)
density matrix ρ = ∑Nl

n ρn in the position representation [90],
where the ρn = |ψn〉〈ψn| are the density matrices of the nth
energy band En (from bottom to top). Then, the diffusion map
algorithm and the matrix L1-norm distance (dual to the CD in
momentum space) are used for the unsupervised learning. The
similarity matrix from the Lp norm is given by

Kp
i j = exp

(
− ‖xi − x j‖2

Lp

2εL2

)
, (20)

where xi is the ith density matrix in the vector form.
First we consider uniform and disorder-free hopping con-

stants: tn1 = t1 > 0 and tn2 = t2. Figure 5(a) shows the learned
transition lines in the t1-t2 phase diagram, with the L1-norm
kernel matrix. There are three clusters [as indicated in
Fig. 5(b)] and two critical points detected in total. Plotted
in Fig. 5(c) are the images of the input data set in the
two-dimensional diffusion-mapped space. Detailed hyperpa-
rameters are provided in the caption of Fig. 5.

Second, we consider the situation with locally disordered
hopping constants [90], with tn1 = 1 − wr1n and tn2 = 1 +
wr2n, where rn1 and r2n are locally independent random num-
bers taken from uniform distributions within (0, 1), and w ∈
[−1, 1] is the disorder strength. The locally random hopping
energies break the spatial translation symmetry of the system
and the momentum-space description will be no longer valid.
As a consequence, Brillouin zone-based calculations of topo-
logical invariants are not possible anymore, and hence cannot
be used as shortcuts to discover topological transitions.

Our implementation of the manifold learning with diffu-
sion map and the kernel built from the L1-norm distance
between density matrices lead to a critical line at w = 0 for
this disordered model. Use of the L2 norm, on the other hand,
does not deliver this (correct) result.
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FIG. 5. (a) Unsupervised learning of transition lines of the model
in Eq. (18) in real space, with the uniform and disorder-free hopping
constants t1 and t2. The results are obtained by scanning t1 and for
each t1, the input data set is composed of ordered M = 200 feature
vectors from t2 ∈ [−2t1, 2t1] (see the main text for details). There
are in total three topological sectors detected, as indicated by the
degree of degeneracy of the largest eigenvalue λt

k in (b). (c) Images
of the data set in the diffusion space. The color code indicates
different values of t2/t1. The k-means clustering method (with k = 3)
is used in (c) to automatically retrieve the topological transitions in
(a). (b) and (c) Plotted with a representative value of t1 = 1. Other
parameters used are L = 2Nl = 80, ε = 0.03, and t = 50.

We plot in Fig. 6 the comparison between the kernels
constructed from the L1-norm and the L2-norm distances,
respectively, for this disordered model. M = 200 data points
are uniformly sampled within w ∈ [−1, 1] in an ordered fash-
ion, where i, j = 100 corresponds to w = 0, the critical point.
Figure 6(a) shows two nearly ideal clusters separated by w =
0, outperforming the result shown in Fig. 6(b) given by the
L2-norm distance. In addition, compared to the L1-norm ker-
nel, the L2-norm kernel in real space requires a much smaller
resolution parameter ε, and the application of the diffusion
map does not deliver the correct clustering.

VIII. DISCUSSION

Our manifold learning explores and includes the (topologi-
cally) characteristic distances between data points. It thus can
also cluster samples consisting of energy spectra or eigenvec-
tors, sampled from numerical simulations or extracted from
experimental data. Therefore, it can be applied to cluster
topological phases in new problems and real materials. The
advantage of this method in learning the topological quantum
phase transitions is its good interpretability in momentum and
(dual) real spaces. With its successful interpretation demon-
strated in the above benchmark models, it paves the way
towards learning more complicated materials, in an unsuper-
vised or semisupervised manner.

Conventional theoretical approaches studying topological
phase transitions are usually formula driven, where a mathe-
matical expression for the topological invariant is calculated,
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FIG. 6. Similarity matrix constructed from samples of the locally
disordered SSH model in real space. Compared are Kp with (a) the
L1-norm distance (real-space dual Chebyshev distance) and (b) the
L2-norm distance (real-space Euclidean distance). M = 200 input
data points are uniformly sampled in an ordered manner within the
range w ∈ [−1, 1]. The middle positions with i, j = 100 correspond
to w = 0, where a clear transition and phase boundary can be seen
in (a). We have used L = 2Nl = 400 lattice sites. The resolution
parameters are ε = 0.33 in (a) and ε = 1.0 × 10−4 in (b), which
are obtained by minimizing the respective mean squared errors with
respect to the ideal similarity matrix, where matrix elements for intra-
cluster data points equal one and equal zero for the others. Compared
to (a), (b) takes a smaller of several orders resolution parameter ε.
The dual Chebyshev distance metric in (a) sharpens the feature of
the topological transition.

and the transition of this quantity at certain critical values
of model parameters indicates the occurrence of topological
quantum phase transitions. Indeed, to precisely determine the
phase boundaries, the numbers of samples required in the two
approaches are the same. However, expressions for topologi-
cal invariants are in general based on prior knowledge, such
as the presence of symmetries in the Hamiltonian, and are
thus not easily available, for instance, in real space or in the
presence of disorders.

In comparison, unsupervised machine learning methods
are data driven, which automatically explore the intrinsic
correlations and patterns in a set (manifold) of Hamiltonians
or quantum states, without prior detailed analysis. Manifold
learning can be a precursor approach for extracting patterns in
a data manifold composed of Hamiltonians or quantum states,
and is expected to prove its advantage in scenarios where
the formulas for topological invariants are unknown or hard
to compute. In practice, combining the two approaches may
prove most efficient.

IX. CONCLUSIONS

In summary, we have leveraged the L∞-norm distance in
momentum space, as well as the (dual) L1-norm distance
in real space, as approximative topologically characteristic
distance measures, and shown how to embed them in the unsu-
pervised manifold learning to successfully retrieve topological
quantum phase transitions. In the benchmark Su-Schrieffer-
Heeger model and the Qi-Wu-Zhang model considered, the
critical lines in the phase diagrams were precisely identified
without pretraining.

We have shown that, compared to the Euclidean distance,
the Chebyshev distance in momentum space and the dual
L1-norm distance in real space sharpen the characteristic fea-
tures of topological quantum phase transitions, making them
easier to be retrieved by machine learning methods. This
was inspired by the fidelity-susceptibility (or the quantum-
geometric-tensor) indicator for topological quantum phase
transitions, as well as the non-Euclidean structure of the data
set.

In view of the good interpretability and demonstrated per-
formance on several benchmark models in momentum and
real spaces, manifold learning has the potential to widen our
understanding of topological features in quantum systems,
and may find applications in discovering exotic topological
quantum phase transitions in momentum or real space, both
in theoretical models and in real materials.

Note added. After our work for momentum-space learning
was completed, two related preprints [90,91] appeared, study-
ing unsupervised clustering of topological states with different
emphases compared to our work.
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APPENDIX A: SIMILARITY MATRICES FOR
THE SSH AND QUENCHED SSH MODELS

Here we compare the similarity matrices built from the ED
and the CD, for the SSH and the quenched SSH models, re-
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FIG. 7. Similarity matrix Kp for the SSH model built from the
Lp-norm distance metric: Compared are the (a) Chebyshev distance
(CD) with p = ∞ and (b) the Euclidean distance (ED) with p = 2.
M = 200 input data points (reshaped unit Bloch vectors) are uni-
formly sampled in an ordered manner within the range t2 ∈ (0, 2t1],
with t1 = 1. The one-dimensional Brillouin zone is sliced into N =
32 patches. Compared to (b), (a) shows two nearly ideal clusters with
good intra-cluster connectivity, and poor inter-cluster connectivity
(corresponding two squares in the diagonal direction). The resolution
parameters are ε = 0.41 in (a) and ε = 2.68 × 10−6 in (b), which
are obtained by minimizing the respective mean squared errors with
respect to the ideal similarity matrix, where matrix elements for
intracluster data points equal one and equal zero for the others.

spectively. In both cases, M = 200 data points (i.e., reshaped
unit Bloch vectors) are sampled in an ordered manner, and
each cluster has equal number of samples (i.e., M/2 for even
M). Then the ideal similarity matrix is given by

Kideal = IM/2 ⊕ IM/2, (A1)

where Ik is the k × k matrix with all matrix entries being
1. For each case, the value of the resolution parameter ε is
obtained by minimizing the mean squared error with respect
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FIG. 8. Similarity matrix Kp of the quenched SSH model built
from the Lp-norm distance metric: Compared are the (a) Chebyshev
distance (CD) with p = ∞ and (b) the Euclidean distance (ED)
with p = 2. M = 200 input data points (reshaped unit Bloch vec-
tors) are uniformly sampled in an ordered manner within the range
J1 ∈ (0, 2J0], with J0 = 1. The (t, k)-space Brillouin zone is sliced
into 32 × 32 patches. Compared to (b), (a) shows two nearly ideal
clusters with good intra-cluster connectivity, and poor inter-cluster
connectivity (corresponding two squares in the diagonal direction).
The resolution parameters are ε = 0.57 in (a) and ε = 2.9 × 10−4 in
(b), which are obtained by minimizing the respective mean squared
errors with respect to the ideal similarity matrix, where matrix ele-
ments for intracluster data points equal one and equal zero for the
others.

to this ideal similarity matrix, i.e.,

min
ε

1

M2

∑
i j

(
Kp

i j − Kideal
i j

)2
. (A2)

Shown in Figs. 7(a) and 7(b) are the similarity matrices for
the SSH model, built from the CD and the ED, respectively,
where the sampling parameter range is t2 ∈ (0, 2t1] with t1 =
1. Other parameters can be found in the caption of Fig. 7.

134213-8



TOPOLOGICAL QUANTUM PHASE TRANSITIONS … PHYSICAL REVIEW B 102, 134213 (2020)

Shown in Figs. 8(a) and 8(b) are the similarity matrices for
the quenched SSH model, built from the CD and the ED, re-
spectively. The sampling parameter range is J1 ∈ (0, 2J0] with
J0 = 1. Also, other parameters can be found in the caption of
Fig. 8.

Note that the “squares” of the block diagonals are very
sharp in Fig. 7(a) (for the SSH model) but soft in Fig. 8(a)
(for the quenched SSH model). The reason for the softer
clusters or block diagonals in Fig. 8(a) can be understood from
Fig. 7(c), where the two clusters are a little bit dispersed but
not collapsed to two dots as in Figs. 2(c) and 3(c). In both
Figs. 7 and 8, the case with the CD [subfigure (a)] is sharper
than that with the ED [subfigure (b)].

APPENDIX B: LEARNING THE QI-WU-ZHANG MODEL
WITH THE EUCLIDEAN DISTANCE

Here we provide the learning results for the QWZ model
in the main text, with the diffusion map, and using the ED as
a distance metric. The ED in general gives incorrect results.
By carefully fine tuning the resolution parameter ε, the best
result for the ED is given in Fig. 9. The carefully fine-tuned
resolution parameter ε is much smaller than that used in the
CD case, indicating that the ED is not a good distance metric
discriminating different clusters in the data set. Only two crit-
ical lines (the red dots and blue stars) can be retrieved, while
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FIG. 9. (a) Unsupervised learning of the Qi-Wu-Zhang model
using the diffusion map algorithm with the Euclidean distance. All
the parameters used are the same as that in Fig. 2 in the main text,
except for a carefully fine-tuned value of the resolution parameter
ε = 2 × 10−5 for b = 1 and ε = 6 × 10−6 for the other values of b,
and t = 100. This is the best result one can obtain by fine tuning
the value of ε. In (a), only two critical lines (the red dots and blue
stars) can be retrieved, while the first two clusters in the correct
phase diagram (separated by μ = 0) are mixed into one cluster in
this case. One cannot read out the correct number of clusters from
(b), either. In (c), the color code indicates different values of μ/b.
(b) and (c) Plotted with a representative value of b = 1.

the first two clusters in the correct phase diagram (separated
by μ = 0) are mixed into one cluster in this case.

APPENDIX C: UNSUPERVISED LEARNING WITH
PRINCIPAL COMPONENT ANALYSIS AND ISOMAP

FOR THE QI-WU-ZHANG MODEL

To further clarify the suboptimal performance of linear
models such as the principal component analysis (PCA), and
the advantage of the Chebyshev distance combined with man-
ifold learning, here we present clustering results for the QWZ
model from the PCA and give a comparison between the
Isomap using the CD and ED, respectively. We use the QWZ
model because it exhibits multiple topological transitions and
can thus be used to test various methods.

PCA projects data points along several most dispersed
directions, i.e., directions with large variances. It is a linear
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FIG. 10. Unsupervised learning of the Qi-Wu-Zhang model us-
ing the principal component analysis, with (a) the retrieved critical
lines (dark triangles, blue stars, and red dots) and (b) data images in
the first two principal components ψ1 and ψ2. The data set consists
of uniformly sampled unit Bloch vectors as in the diffusion map
algorithm in the main text, with the chemical potential varying from
μ = −20b to μ = 20b. The k-means clustering method (with k = 4)
is then used in (b) to automatically retrieve the topological transition
in (a). The hopping energy in (b) is set to be a representative value
b = 1. M = 1000 data points are sampled and N = 20 is used.
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FIG. 11. Unsupervised manifold learning of the Qi-Wu-Zhang
model using Isomap. (a) and (b) Obtained using the Chebyshev
distance to construct nearest-neighbor graph in the isometric embed-
ding. (c) and (d) Obtained using the Euclidean distance. In (a) and
(c), the dark triangles, blue stars, and red dots are the learned critical
points, respectively. (b) and (d) The respective images of sampled
data points in the low-dimensional embedded space. In both cases,
the data set consists of uniformly sampled unit Bloch vectors as in the
diffusion map algorithm in the main text, with the chemical potential
varying from μ = −20b to μ = 20b. The k-means clustering method
(with k = 4) is used to automatically retrieve the topological transi-
tions from the embedded space. In both (b) and (d) we take b = 1 for
a representative value. Other hyperparameters used are M = 1000,
N = 20 and the number of neighbors used in the Isomap algorithm
is 500. Note that in the upper panel of (b), the two clusters are very
close such that they are visually overlapped, but actually they can
be identified by the k-means algorithm, and the critical points [blue
stars in (a)] are automatically retrieved. The retrieved critical lines
in (c) are similar to that from the principal component analysis in
Fig. 10(a).

unsupervised learning model and cannot uncover nonlinear
structures in the data set. Note that the success of PCA in
clustering certain topological phases [25] is based on prepro-
cessing the raw data (the Hamiltonian or the wave function),
where a nonlinear transformation will be performed in the first
step. For instance, Ref. [25] took the entanglement spectrum
of the Kitaev model as the input of the PCA algorithm. This
makes sense because the topological features and transitions
can be directly read from the entanglement spectrum [3,4]. In
contrast, for many applications where the input contains raw
wave functions or Hamiltonians, linear learning models are
not optimal choices.

In Fig. 10 we show the learning results for the QWZ model
given by the PCA. It fails to retrieve the correct topological
transition lines in Fig. 10(a), and the data points projected
to the first two principal components do not exhibit cluster
structures that are linearly separable.
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FIG. 12. Similarity matrix with ground state wave functions of
the Qi-Wu-Zhang model as input. Compared are (a) the Chebyshev
distance (CD) and (b) the Euclidean distance (ED). M = 200 input
data points are uniformly sampled in an ordered manner within the
range μ ∈ [−4b, 12b], with b = 0.2. The 2D Brillouin zone is sliced
into 32 × 32 patches. The resolution parameters are ε = 0.382 in
(a) and ε = 0.0326 in (b), which are obtained by minimizing the
respective mean squared errors with respect to the ideal similarity
matrix, where matrix elements for intracluster data points equal one
and equal zero for the others.

In comparison to PCA, Isomap [69] is one of the important
manifold learning methods that achieves nonlinear dimen-
sionality reduction in an unsupervised manner. The manifold
geodesic distance, approximated from the shortest distance on
the neighborhood graph constructed from the data set, should
then be used to characterize the similarities. The following
step is to embed the data points into a meaningful low-
dimensional Euclidean space based on this adaptive distance,
where a conventional clustering method (e.g., k-means) can
be used to detect the structure of the data set. There is another
degree of freedom in this process, i.e., the original distance
metric used in constructing the neighborhood graph.

In Fig. 11 we present a comparison for the Isomap learning
of the QWZ model with the CD and the ED, respectively, to
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construct the neighborhood graph. Figures 11(a) and 11(b)
are obtained using the CD to construct the nearest-neighbor
graph in the isometric embedding. Figures 11(c) and 11(d)
are obtained using the ED. One can read from Figs. 11(a)
and 11(c) that the CD performs better than the ED, where the
dark triangles, blue stars, and red dots are the learned critical
points, respectively. Figures 11(b) and 11(d) are the respective
images of sampled data points in the low-dimensional embed-
ded Euclidean spaces.

APPENDIX D: LEARNING OVER WAVE FUNCTIONS

In many physical scenarios, it is useful to use wave func-
tions as the input data and detect topological transitions of the
ground state. Then the similarity measure used for supervised
or unsupervised learning can be defined through the local
fidelity of quantum states

F i j
k = ∣∣〈ψ i

k

∣∣ψ j
k

〉∣∣2
, (D1)

where k is the local index, and i and j are the sample indices,
respectively. The squared ED corresponds to an averaged
(pseudo) distance measure over the local index [91]:

d2
E(i, j) = 1

N
∑

k

(
1 − F i j

k

)
, (D2)

with N the dimension of the wave-function feature vector.
The squared CD is

d2
C(i, j) = max

k

(
1 − F i j

k

)
. (D3)

For quantum states in momentum space, the local index is the
momentum k. Here the (pseudo) distances are effective simi-

larity measures, which may not satisfy the triangle inequality
required by the mathematical definition of distance metrics.

The corresponding similarity (kernel) matrices are

KCD(ED)
i j = exp

(
−d2

C(E)(i, j)

ε

)
. (D4)

The Euclidean distance takes the average over local EDs
at each momentum in the Brillouin zone (BZ), and this av-
erage process smears out the characteristics of topological
transitions, where only at certain special points in the BZ
(not at all points) sign changes may occur and the local
wave functions abruptly become orthogonal across the phase
transition.

Note that this is different from the divergence of the av-
eraged fidelity susceptibility (over the BZ) as an indicator of
topological quantum phase transitions (see, e.g., Ref. [72]).
The averaged fidelity susceptibility can be strongly peaked
at the transition point if some local ones become nearly di-
vergent. The use of the Chebyshev distance instead of the
ED was somewhat inspired from this. We have verified that
the unsupervised learning over wave functions gives the same
result as that over the Bloch vectors for the two band models,
e.g., the QWZ and SSH models.

In Fig. 12 we show the similarity matrix built from the
wave functions for the QWZ model, with the CD and the
ED in the kernel function, respectively. Their structures are
similar to Fig. 1 in the main text. For more generic and com-
plex models in momentum space, such as symmetry-protected
topological orders, multiband models, and Chern insulators,
the topological critical points can be retrieved from learning
over proper wave functions, which are maps from the BZ,
as feature descriptors, and by using the CD combined with
manifold learning algorithms.
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