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Edge modes in two-dimensional electromagnetic slab waveguides: Analogs of acoustic plasmons
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We analyze planar electromagnetic waves confined by a slab waveguide formed by two perfect electrical
conductors. Remarkably, two-dimensional (2D) Maxwell equations describing transverse electromagnetic modes
in such waveguides are exactly mapped onto equations for acoustic waves in fluids or gases. We show that
interfaces between two slab waveguides with opposite-sign permeabilities support 1D edge modes, analogous to
surface acoustic plasmons at interfaces with opposite-sign mass densities. We analyze this type of edge mode for
the cases of isotropic media and anisotropic media with tensor permeabilities (including hyperbolic media). We
also take into account “non-Hermitian” edge modes with imaginary frequencies or/and propagation constants.
Our theoretical predictions are feasible for optical and microwave experiments involving 2D metamaterials.
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I. INTRODUCTION

Surface wave modes play crucial roles in metamaterials
and topological wave systems [1-7]. Such systems are in-
tensively studied in both electromagnetism (optics) [1,3,6—
11] and acoustics [12-20]. Surface electromagnetic waves
between continuous isotropic media are also known as surface
plasmon-polaritons, which appear at interfaces where the
permeability or/and permittivity of the medium change their
signs [2—4,21-23]. Similar modes can also appear at acoustic
interfaces [24-26], but these are rather exotic, because the ef-
fective mass density must change its sign across the interface.
Up to now there were very few studies of such acoustic surface
plasmons.

In this work we describe a type of surface electromagnetic
mode, namely one-dimensional (1D) edge modes at interfaces
between two 2D slab waveguides (formed by perfect electric
conductors) with different signs of permeability. Such modes
have a threefold interest. First, these can be generated in
2D metamaterials, which have a number of advantages as
compared to bulk 3D metamaterials: more compact design,
smaller losses, etc. Second, we show that Maxwell equations
for waves in 2D slab waveguide are entirely analogous to
the equations of acoustics, and the electromagnetic modes we
describe are analogs of acoustic plasmons at interfaces with
different signs of the mass density [24-26]. Third, by consid-
ering anisotropic (uniaxial) permeability tensors we demon-
strate the persistence of these edge modes in anisotropic media
with elliptic or hyperbolic dispersion.

We first describe the general mapping between the equa-
tions of 2D electromagnetism and acoustics (Sec. II). Then,
we consider edge modes at interfaces between two slab
waveguides with different parameters (Sec. III). We consider
both isotropic media and uniaxial anisotropic media, where
permeabilities parallel and normal to the interface differ from
each other. The latter case also includes hyperbolic me-
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dia [27,28]. Following the recent “non-Hermitian” approach
to surface waves between continuous electromagnetic and
acoustic media [23,29], we take into account edge modes with
real and imaginary frequency and propagation constant.

We argue that the system we describe is quite feasible for
optical and microwave experiments, so that it can be used as
a convenient platform for experimental studies (and possibly
applications) of exotic surface/edge modes in wave systems.

II. 2D ELECTROMAGNETISM VERSUS ACOUSTICS

We consider light propagation in a slab waveguide formed
by two perfect electrical conductor (PEC) plates, shown in
Fig. 1. We allow the medium between the plates to be
anisotropic, described by lossless (i.e., Hermitian) permittiv-
ity and permeability tensors (£, (1). Maxwell’s equations for
monochromatic light at frequency w are

VxE=iogH, VxH=—-iwéE,

V- (bH)=V.-(EE)=0. €))
We take PEC boundary conditions at the z =0 and z =
d planes, (Ey, E,, B;)|.—0 = (Ex, E,, B;)|.—¢ =0, and seek
transverse electromagnetic (TEM) modes with field compo-

nents independent of z, i.e., (Ey, Ey, B;) = 0. Then the two
curl equations (1) become

(yE;, —0,:E;, 0)" =iwpH,
(0yH,, —3,H,, 3,H, — 3,H,)" = —iw?E. 2)

Note that, for w # 0, the solutions of these two equations,
if they exist, automatically satisfy the boundary condition
B, = (At H), = 0 (from the first equation) and the divergence
equations (1): V- (aH) =V . (¢E) =0 (by taking the di-
vergence of the two equations and assuming z-independent
fields).
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FIG. 1. System geometry: a thin slab waveguide embedded be-
tween two perfect electrical conductors (PECs). Inside the slab there
is an interface between two different materials at x = 0, which can
support edge modes propagating in the y direction.

We now assume that the anisotropy can only occur in the
in-plane constitutive parameters, i.e.,

Ezj = Ejz = Mzj = Mj; = 0,

where j = x, y. Then, valid solutions must have H, = 0 [be-
cause ({1 H), = 0], these are independent of ., and only one
component ¢, = ¢, of £ is relevant.

Introducing the “wave function” W = (E,, H,, Hy)T, we
can write the curl equations (2) compactly as

0 -3 & e 0 0
-3 0 0|W=—iow|0 u pyl¥. 3
% 0 0 0 pye ny

where iy, = [ty and pyy, = Wy,

Remarkably, Eq. (3) is equivalent to acoustic equations for
sound waves in fluids or gases [30] in (2 4+ 1)D space-time.
Indeed, introducing the “pressure” field P = E, and “velocity”
field v = (vy, vy) =Z x H = (—H,, H,) (where Z is the unit
vector along the z axis), as well as the “compressibility” g =
e. and “mass density” p = (/> T

write Eq. (3) as follows (cf. [24,26,29]):

) of the medium, we

Bo,P=—-V-v, pov=-—VP. 4)
Here we substituted —i w — 9; for monochromatic waves.

Thus one can use TEM slab waveguides to emulate wave
propagation in 2D acoustic media with arbitrary parameters g
and p. Note that filling the waveguide with 2D metamaterial
structures, one can provide any desired parameters &, and
Wi, (j, 1) = {x,y}, both positive and negative, at a given
frequency w. This allows efficient electromagnetic emulation
of acoustic metamaterials, including anisotropic ones with the
tensor mass density p.

Notably, the above 2D electromagnetic-to-acoustic map-
ping includes the main dynamical properties of the waves.
In particular, the energy density W and energy flux (Poynt-
ing vector) I are consistent with both electromagnetic and

acoustic theories [26,30-32]:
1 1
W = J(E2E + H'iH) = 2(BIPI* +v'pv),
1 1
II= 3 Re(E* x H) = 3 Re(P*v). %)

Here we neglected, for the sake of simplicity, possible disper-
sion of the medium parameters.

Furthermore, the quadratic forms, which describe the spin
angular momentum density S in isotropic electromagnetic and
acoustic media [26,32-36], are also equivalent:

1 1
S= —ImE"xE+H*x oH) = — Im(v* x pv). (6)
4w 4w

Note that, in the system under consideration, the spin has
purely magnetic origin (i.e., only the magnetic field can
rotate), and it is purely transverse [i.e., orthogonal to the
propagation (x, y) plane]: S || Z [34,37-39].

III. 1D EDGE MODES AT ISOTROPIC AND
ANISOTROPIC INTERFACES

We now consider an interface at x = 0 between two slabs
with different parameters (&) 2, ft12) and seek solutions local-
ized to the interface with localization lengths «; » > 0,

W o exp(ikyy — |x]«12). 7)

References [24-26,29] previously showed that interfaces be-
tween isotropic acoustic media where the sign of p (i.e.,
W is our system) changes exhibit surface modes analogous
to electromagnetic surface plasmons, protected by a non-
Hermitian bulk-boundary correspondence [23,29]. While neg-
ative individual components of fi can be readily implemented
using microwave metamaterials such as split ring resonators,
achieving isotropic negative fi is much more challenging.
Therefore, we will consider the most general form of [
to determine the conditions under which these edge modes
persist in anisotropic media.

Substituting Eq. (7) into Eq. (3) and obtaining its eigenvec-
tors yields the modal components

w(,uxy,m,uyx,m - Mx,mllvy,m)
W= _ky:uy,m + iﬂxy,m’(m
ky:uyx,m + iﬂx,me

etk y—tmlxl 8)

Here m = 1, 2 denotes the medium, and the frequency satis-
fies

2 _Mx,mK;i + I'Ly,mkyzv + iKmky(Mxy,m + Myx,m)
Sz,m(ﬂx,mﬂy,m - ,vayﬁm:vax,m)

w ) (9)
where the upper sign (+) should be taken for medium 1 (x)
and lower sign (—) for medium 2 (k). Continuity of the
tangential field components E; and H, at x = 0 requires
ky/*Lyx,l + i/»l«x,lkl

— : . (0)
kyl‘L}'x,Z — Iy 2K2

/’ny,lllfyx,l - Mx,l//’#y,l
MX)',ZMyx,2 - /fo,ZMy,Z

In the isotropic limit, where

Mxy,m = Myx,m = O, Mx.m = Hym = Mm,
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Eq. (10) reduces to the usual boundary condition for the TE
surface mode it = wy/u1 = —ka/k; [21-26], which yields
the topological bulk-boundary existence condition sgn(fi) =
—1[23,26].

In the general case of anisotropic media it does not seem
possible to formulate a topological bulk-boundary correspon-
dence because the condition for localized surface waves,
k1/k2 > 0, cannot be expressed simply in terms of the proper-
ties of the interface, but rather depends implicitly on the bulk
dispersion relations of the two media via the appearance of k,
on the right-hand side of Eq. (10). The problematic k, terms
can be eliminated if the principal axes of the media are aligned
with our coordinate axes, such that /i becomes diagonal:

Poxym = Myxm = 0.
In this case the boundary condition (10) reduces to
- My2 K2
S

an

This yields the existence condition in the topological form
sgn(fiy) = —1, i.e., localized edge modes can exist provided
the sign of u, changes across the interface.

The explicit solutions for the surface wave propagation
constant and frequency obtained using Egs. (8), (9), and (11)
are

Hy.1 (B — fy)
SRl = Ty (12)
Mx,1 SZI'LX_]
1 — it
€01ty 0 = —— K}, (13)
8ZMx_1

where &, = ¢,2/¢,1 and iy = Wy 2/ My 1. Expressions (11)—
(13) generalize the isotropic TE surface plasmon solu-
tions discussed in Refs. [21-23] and their acoustic analogs
[24-26,29]. Akin to the isotropic case, the edge modes can
have either real or imaginary frequency w or/and propagation
constant k, [23,29]. In what follows, we will focus on the
modes with real w and either real or imaginary k,. Such
modes have physical sense of propagating and evanescent
surface waves and can be observed experimentally. For ex-
ample, Fig. 2 shows the phase diagram for the existence of
propagating and evanescent real-frequency edge modes for
the simplest case of an interface between a vacuum (g, ; =
Jet = fiy1 = 1) orametal (6,1 = —1, pty1 = 1 = 1) and
an isotropic slab metamaterial with > = p,> = fi, which
reproduces the previously demonstrated phase diagrams for
3D Maxwell’s equations and acoustic waves [23,29].

Figure 3 shows the phase diagram for the edge modes
for the case when medium 2 is an anisotropic metamaterial
with u,» = —1. Thus the existence condition (11) is satisfied,
while the sign of p,,» determines whether the medium 2 has
elliptic (fi, < 0) or hyperbolic (fi, > 0) dispersion [27,28].
We observe that propagating edge modes can persist for
arbitrary anisotropy in the permeability tensor [i, provided
the permittivity &, is chosen appropriately. Furthermore, in-
terfaces between metal and hyperbolic metamaterials can also
support evanescent edge modes [23,29], which have not been
observed so far.

According to Egs. (12) and (13), transitions between the
different types of surface modes can occur in three differ-

FIG. 2. Phase diagram of real-frequency edge modes supported
by interfaces between a vacuum (blue; &, = iy = iy = 1) or
metal (yellow/brown; e, = —1, uy; = uy,; = 1) and an isotropic
metamaterial with p,, = py > = jt (cf. Refs. [23,29]). Yellow indi-
cates propagating (real k,) solutions, while brown indicates evanes-
cent (imaginary k) solutions.

ent ways. (i) Via a simultaneous divergence of k, and « ,
occurring when fi,fi, = 1. Spatially nonlocal corrections to
the material dispersion will become important near this limit
[40]. (ii) k, vanishes while « > remains finite, occurring when
& =iy or ji, =0 and corresponding to the edge mode’s
phase velocity vanishing. (iii) k1, vanishes while k, remains
finite, occurring when &fi, = 1 and corresponding to the
edge mode delocalizing. Figure 4 shows that each of these
scenarios can be observed in the (&, ft,) phase diagram
of Fig. 3.

From Egs. (11)-(13) and Figs. 2—4, we summarize the
main differences of the anisotropic as compared to isotropic
cases as follows.

FIG. 3. Phase diagram of real-frequency edge waves supported

by interfaces between a vacuum (blue; &, = iy = iy = 1) or
metal (yellow/brown; &, = —1, uy; = iy, = 1) and an anisotropic
metamaterial with u,, = —1. Yellow indicates propagating (real k)

solutions, while brown indicates evanescent (imaginary k) solutions.
The sign of i, determines whether the medium 2 has elliptic (&, <
0) or hyperbolic (ft, > 0) dispersion.
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FIG. 4. Normalized edge mode propagation constant k, (a) and
localization length «; (b) for the modes shown in Fig. 3, obtained
using Egs. (12) and (13). Boundaries between different types of
solutions (e.g., propagating and evanescent) correspond to zeros or
divergences of ky, k1, or k; = —fiyk;.

(i) The topological condition for the existence of the edge

mode in the isotropic case, sgn(it) = —1 [23,29], involves
the longitudinal permeability in the anisotropic case:
Sgn(ﬁy) =-1

(i1) The sign of the refractive index of medium 1, n; =
/€11, which determines whether the edge mode has real
or imaginary frequency  in the isotropic case [23,29], is
replaced by the longitudinal refractive index n, | = ,/&; 11ty 1.

(iii) The transition from elliptic to hyperbolic dispersion in
the anisotropic medium, controlled by fi,, swaps the propa-
gating (real k,) and evanescent (imaginary k,) edge modes.

Moreover, we emphasize that Eqs. (11)-(13) depend only
on the relative material parameters (up to a rescaling of k, and
w); hence interfaces between two anisotropic metamaterials
will exhibit qualitatively similar features.

For completeness, Fig. 5 shows the phase diagram for
edge modes as a function of (fiy, ft,), for fixed & = —1. For
this value of &, the vacuum interface supports real frequency
edge modes over a narrower parameter region compared to a
metallic interface. The latter also exhibits transitions between

BT — 0 ~ 1 2 3

U,

FIG. 5. Phase diagram of real-frequency edge waves supported
by interfaces between a vacuum (blue; &, = ) = py; = 1) or
metal (yellow/brown; &, 1 = —1, p,1 = iy = 1) and an anisotropic
metamaterial with ¢,, = —¢, ;. Yellow indicates propagating (real
ky) solutions, while brown indicates evanescent (imaginary k)
solutions.

propagating and evanescent edge modes when fi, = &, which
does not coincide with any change in the topology of the
isofrequency surfaces of medium 2.

IV. CONCLUSIONS

We have studied monochromatic electromagnetic waves
in slab waveguides formed by two perfect electrical conduc-
tors, showing that Maxwell’s equations governing transverse
electromagnetic modes map exactly onto the two-dimensional
acoustic equations for sound waves in fluids or gases. We
derived conditions under which boundaries between two slab
waveguides with different permittivities and anisotropic per-
meabilities support edge modes (similar to surface plasmons)
protected by a topological bulk-edge correspondence.

The system considered in our work provides a simple
platform to emulate “acoustic surface plasmons” at inter-
faces where the mass density changes its sign [24-26,29],
based on the analogy between the acoustic compressibility
and mass density (8, p) and the electromagnetic permittivity
and permeability (e, ft). Moreover, this system can serve
as an efficient platform for the experimental realization of
recently proposed non-Hermitian (evanescent) surface modes
with imaginary propagation constants [23,26]. Indeed, we
have shown that it does not require isotropic 3D metamaterials
with negative permittivity or permeability, and it is sufficient
to provide the negative sign of only one component of the
permeability tensor, which can be readily implemented using
hyperbolic metamaterials. For example, anisotropic negative
permeability can be achieved at the polariton resonance of cer-
tain magnetic materials, or using metamaterials such as split
ring resonators at microwave frequencies or multilayer fishnet
structures in the near infrared [28]. Analogously, acoustic
wave systems with a negative component of the mass density
0 have been demonstrated using arrays of thin plates [14,41].

We focused on anisotropic metamaterials described by

PN

a real permeability tensor [i. Another interesting class of
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anisotropic media are gyrotropic materials described by u, =
ty = (0 and iy, = —py = ijt, which can be generated by
placing a ferrite material between the plates and applying a
magnetic field parallel to the z axis. A similar configuration
was used in the experiment of Ref. [8], which, however,
focused on a photonic crystal band structure rather than the
low frequency response described by a homogeneous effective
medium. References [42-45] have described the unidirec-
tional surface waves at boundaries between different classes
of gyrotropic media. It will be interesting to study whether
the bulk-boundary correspondence introduced in Refs. [23,29]
can be extended to these gyrotropic surface waves.

The edge modes we have considered may form the basis for
subwavelength waveguides and resonators. Particularly inter-
esting are the edge modes supported by interfaces between
regular metals with ¢ < 0 and negative index metals with
w < 0, which can support propagating edge modes despite
both bulk materials being metallic. Thereby losses due to
bending of the waveguide may be completely eliminated. By
modulating the material parameters parallel to the interface to
alternate between propagating (real k) and evanescent (imag-
inary k,) edge modes, one may also create highly localized

resonant modes. Unavoidable metamaterial losses may be
reduced by considering heterostructure waveguides formed by
a thin film of one medium embedded within another [46,47].
Whether the modes of such thin film waveguides can be
related to topological properties of the bulk media is another
interesting question for future research.
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