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A. THE DERIVATION OF THE TRANSMISSION SPECTRA

In this section, we derive the detailed expression of transmission spectra in our experiment. We

solve the transmission spectra with standard steady state input-output theory. The cavity magnon-

polariton system is driven by two beams of microwave, which are called the pump tone and the

probe tone. The pump tone is applied through the antenna 2 anddrives the magnon with ampli-

tudeεm and phaseϕ. In the other side, the probe tone is used as the reference, applied through the

antenna 1 and drives the cavity with amplitudeεc and phaseϕc = 0. In our setup, the Kittle mode

of the YIG sphere is working in the low excitation regime. Using the Holstein-Primakoff trans-

formation, the collective spin mode excitation can be simply regarded as a harmonic oscillator.

Therefore, our system can described with the Hamiltonian

H = ωca
†a+ ωmm

†m+ g(a†m+ am†)

+i
√

2ηcκcεc
(

a†e−iωpt − aeiωpt
)

+i
√

2ηmκmεm
(

m†e−iωpt−iϕ −meiωpt+iϕ
)

. (S1)

Here, we have assumedh̄ = 1. a
(

a†
)

andm
(

m†) are the annihilation (creation) operator of the

cavity with resonant frequencyωc and the magnon mode with resonant frequencyωm, respectively.

κc andκm are the decay rates of the cavity and the magnon mode, respectively. We define the

coupling parameter of the cavity (the magnon mode) asηc = κc1/κc (ηm = κm1/κm), where

κc1 andκm1 are the external dissipation rates of the cavity and the magnon, respectively. In our

experiment, the coupling parameter of the cavity isηc = 0.19 which is less than1/2, and the cavity

works in under coupling regime. Mean while, the coupling parameter of the magnon mode isηm =

1/2, and the magnon works in the critical coupling regime.εc =
√

Pc/ωp

(

εm =
√

Pm/ωp

)

is

the amplitude of the cavity probe (the magnon pump) field. WherePc (Pm) is the power of cavity

probe (magnon pump) tone.ωp is the frequency of the cavity probe tone, and is equal to the

frequency of the magnon pump tone.ϕ is the relative phase between the cavity probe tone and the

magnon pump tone. Moving to the reference frame rotating with frequencyωp, we can write the

Hamiltonian as:
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H = ∆pa
†a +∆pm

†m+ g(a†m+ am†)

+i
√

2ηcκcεc
(

a† − a
)

+ i
√

2ηmκmεm
(

m†e−iϕ −meiϕ
)

, (S2)

where∆p = ωc−ωp (∆p = ωm−ωp) is the detuning between cavity resonant frequency (magnon

mode resonant frequency) and probe (pump) tones. In our setup, the cavity is resonant with the

magnon mode, i.e.ωc = ωm. The dynamics of the cavity magnon-polariton system can be de-

scribed by solving the corresponding semiclassical Langevin equations:

ȧ = − (i∆p + κc) a− igm+
√

2ηcκcεc, (S3)

ṁ = − (i∆p + κm)m− iga+
√

2ηmκmεme
−iϕ. (S4)

For steady states, we can obtain the solution of〈a〉 and〈m〉:

〈a〉 =
√
2ηcκcεc (i∆p + κm)

(i∆p + κc) (i∆p + κm) + g2
− ig

√
2ηmκmεme

−iϕ

(i∆p + κc) (i∆p + κm) + g2
,

〈m〉 = −ig 〈a〉+√
2ηmκmεme

−iϕ

i∆p + κm

. (S5)

The reflected signal from the cavity follows the input-output boundary condition

εout = εc −
√

2ηcκc 〈a〉 . (S6)

Using the input-output boundary condition, we can solve thereflection coefficient as

t =
εout
εc

= 1− 2ηcκc (i∆p + κm)

(i∆p + κc) (i∆p + κm) + g2
+

i2g
√
ηcηmκcκmδe

−iϕ

[(i∆p + κc) (i∆p + κm) + g2]

= tprobe + tpump, (S7)

wheretprobe = 1− 2ηcκc(i∆p+κm)
(i∆p+κc)(i∆p+κm)+g2

, tpump = ig
√
2ηcκc

√
2ηmκmδe−iϕ

(i∆p+κc)(i∆p+κm)+g2
, andδ = εm/εc is the pump-

probe ratio. Using the reflection coefficient, we can obtain the amplitude response spectrumS11

by
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S11 = |t| (S8)

Meanwhile, we can also obtain the phase of the reflected signal by

ϕ = arg(t). (S9)

Using the definition of group delay of microwave,τd = ∂ϕ/∂ωp, we can obtain the group delay

time of the transmitted microwave at the resonant frequency,

τd0 = − ∂ϕ

∂∆p

∣

∣

∣

∣

∆p=0

(S10)

B. THE SIDE-EFFECT OF THE ANTENNA 2

In our experiment, the round loop antenna 2 is not only coupled to the magnon mode but also

to the cavity mode. The redundant coupling introduces another input-output port to the cavity, and

induces an additional dissipation rateκc2 of the cavity. Therefore, the pump tone we applied to

the magnon also drives the cavity. In this section, we inspect the effects of this auxiliary coupling,

and compare the transmission spectra and group delay time with that without the influence of

dissipation rateκc2.

With the existence of the antenna 2, the Hamiltonian of our system can by written as

H = ωca
†a + ωmm

†m+ g(a†m+ am†)

+i
√

2ηcκcεc
(

a†e−iωpt − aeiωpt
)

+i
√

2ηmκmεm
(

m†e−iωpt−iϕ −meiωpt+iϕ
)

+i
√
2κc2εm

(

a†e−iωpt−iϕ2 − aeiωpt+iϕ2
)

. (S11)

Whereκc2 is the antenna 2 induced cavity decay rate, andϕ2 is the relative phase between the

pump tone and the probe tone applied to the cavity. In the reference frame rotating with angular

frequencyωp, the Hamiltonian is

H = ∆pa
†a+∆pm

†m+ g(a†m+ am†) + i
√

2ηcκcεc
(

a† − a
)

+i
√

2ηmκmεm
(

m†e−iϕ −meiϕ
)

+ i
√
2κc2εm

(

a†e−iϕ2 − aeiϕ2
)

. (S12)

3



Using the semiclassical Langevin equations, we can solve the steady state internal field of the

magnon and the cavity as:

a =

√
2ηcκcεc (i∆p + κm)

(i∆p + κc) (i∆p + κm) + g2
− ig

√
2ηmκmεme

−iϕ

(i∆p + κc) (i∆p + κm) + g2

+

√
2κc2εm (i∆p + κm) e

−ϕ2

(i∆p + κc) (i∆p + κm) + g2
,

m =
−iga+

√
2ηmκmεme

−iϕ

i∆p + κm

. (S13)

The antenna 2-cavity coupling does not change the input-output boundary condition which is

described in Eq. (S6). Therefore, the reflection coefficientcan be expressed as

t =
εout
εc

= 1− 2ηcκc (i∆p + κm)

(i∆p + κc) (i∆p + κm) + g2
+

i2g
√
ηcηmκcκmεme

−iϕm

εc [(i∆p + κc) (i∆p + κm) + g2]

− 2
√
ηcκcκc2εm (i∆p + κm) e

−ϕ2

εc [(i∆p + κc) (i∆p + κm) + g2]
. (S14)

Using the Eq. (S8) and Eq. (S10), we can obtain the amplitude response spectraS11 and the

group delay timeτd with considering the side-effects of the antenna 2. To evaluate the influence of

the antenna 2-cavity coupling on the transmission properties, we compare the amplitude response

spectraS11 and the group delay time calculated using Eq. (S7) and Eq. (S14).

In Fig. S1, we plot the main theoretical results of amplituderesponse spectra and the group

delay time with and without considering the effects of antenna 2-cavity coupling. In Fig. S1(a), we

compare the reflection spectrumS11 with the applied microwave phase0.35π. And in Fig. S1(b),

we compare the group delay time with the same applied microwave phase. In Fig. S1(c) and (d),

we compare the extreme amplitude ofS11 calculated with different pump-probe ratioδ when the

applied microwave phase is0.35π and1.35π, respectively. In Fig. S1(e) and (f), we compare the

extreme amplitude of the group delay time solved with various δ when the applied microwave

phase is0.35π and 1.35π, respectively. We can find form these comparisons that the impacts

of the antenna 2-cavity coupling on the system responses aretrivial. Therefore, we can use the

physical model described in the main text to explain the experiment results in our manuscript. In

order to fit the experimental results better, we considered the effects of antenna 2-cavity coupling

in theoretical results presented in the main text.
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FIG. S1. Comparisons of the

system responses with and without

the impacts of antenna 2-cavity cou-

pling. Here, the applied microwave

phaseϕ is presented by the experi-

mental parameter. Theoretically, the

fitted values ofϕ (ϕ2) are 1.5π

(0.8π) and 0.4π (1.4π) when the

experimental values are0.35π and

1.35π, respectively. (a) The am-

plitude responses withδ = 1 and

the applied microwave phaseϕ =

0.35π. (b) The group delay time

with δ = 1 and the applied mi-

crowave phaseϕ = 0.35π. (c)

Extreme values of the amplitude re-

sponsesS11 with different pump-

probe ratioδ and applied microwave

phaseϕ = 0.35π. (d) Extreme

values of the amplitude responses

S11 with different pump-probe ra-

tio δ and applied microwave phase

ϕ = 1.35π. (e) Extreme values

of the group delay time with differ-

ent pump-probe ratioδ and applied

microwave phaseϕ = 0.35π. (f)

Extreme values of the group delay

time with different pump-probe ra-

tio δ and applied microwave phase

ϕ = 1.35π.
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C. ERROR ANALYSIS

In Fig.5(a) of the main text, we can find that the experimentaldata deviates from the theoretical

result around the abrupt transition point. This is mainly induced by the imperfect system setups,

such as limited output precision of AWG, imperfectness of the IQ mixer and unstable magnon

frequency. We give the detailed discussions below.

Besides the 2D curves shown in Fig5 (a), we also provide 3D figures here to present how

group delay time evolutions versus both the pump-probe ratio δ and the sweep step of the detun-

ing frequency∆p, as shown in Fig. S2. Fig. S2(a) presents the theoretical results obtained with

our system parameters, and Fig. S2(b) is the experimental result. The step of pump-probe am-

plitude ratioδ is 0.053 and the step of the detuning frequency∆p is 60 kHz. We can find that

the experimental data present the same behavior with the theoretical calculations. However, the

experimental data deviates from the theoretical result around the transition point (δ = 3, ∆p = 0).

In order to present the parameter sensitivity of the delay time around the transition point, lets

zoom in and calculate the delay time around this point by refining the sweep step. As shown in

Fig. S2(c)-(f), the extreme value of the delay time increases sharply with further decreasing the

coordinate step size. As shown in figure (f), when the sweep step for frequency detuning∆p is 1

mHz (0.001Hz) and the step ofδ is 1×10−9, the maximum delay time reaches 200 s. With further

refinement, the extreme value approaches 40000s, which are not presented here due to the great

difficulties in experimental realization. From these calculations, we can conclude that the extreme

values of delay time increase sharply and the theoretical delay time does approaches infinity.

It is notable that the time delay value is quite sensitive to the sweep step changes (bothδ and

∆p). In our experiment, the amplitude ratioδ is dominated by the output precision of AWG and

IQ mixer, and the step is set to be 0.053. This step size corresponds to the finest output precision

of AWG. Considering the imperfectness of the IQ mixer, we canexpect that the deviation between

the set value ofδ and the actual one is in the order of 0.01. On the other side, there are current

fluctuations of our electromagnet supply. The current fluctuation results the magnon frequency

drift in the order of 100 kHz. The frequency drift leads to thefrequency detuning between the

magnon and the cavity, as well as imprecise step size of∆p. We find from our calculations that

the variation of delay time reaches2 µs with changing∆p 60kHz in the vicinity of the transition

point. These factors together cause the measured time delayto be smaller than the theoretical one

in the vicinity of the abrupt transition point. Based on the above discussions, it is reasonable that
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FIG. S2. (a) The theoretical data obtained with experimental parameters (the step ofδ is 0.053 and the step

of driving frequency is 0.06 MHz). (b) The experimental data. (c) The theoretical data obtained with the

step ofδ is 1 × 10
−6 and the step of driving frequency is 1 Hz. (d) The theoreticaldata obtained with the

step ofδ is 1× 10
−7 and the step of driving frequency is 0.1 Hz. (e) The theoretical data obtained with the

step ofδ is 1× 10
−8 and the step of driving frequency is 0.01 Hz. (f) The theoretical data obtained with the

step ofδ is 1× 10
−9 and the step of driving frequency is 0.001 Hz.

the measured maximum group delay time ( 800 ns) deviates fromthe theoretical one (3.8 µs).
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