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We use a non-Lindbladian master equation of the Scully-Lamb laser model for the analysis of light propagation
in a parity-time symmetric photonic system composed of coupled active and passive whispering-gallery mi-
croresonators. Performing the semiclassical approximation, we obtain a set of two nonlinear coupled differential
equations describing the time evolution of intracavity fields. These coupled equations are able to explain the
experimentally observed light nonreciprocity [Peng et al., Nat. Phys. 10, 394 (2014); Chang et al., Nat. Photon. 8,
524 (2014)]. We show that this effect arises from the interplay between gain saturation in the active microcavity,
intercavity coupling, and losses in the cavities. Additionally, using this approach, we study the effect of the gain
saturation on exceptional points, i.e., exotic degeneracies in non-Hermitian systems. Namely, we demonstrate
that the inclusion of gain saturation leads to a modification of the exceptional points in the presence of intense
intracavity fields. The Scully-Lamb master equation for systems of coupled optical structures, as proposed and
applied here, constitutes a promising tool for the study of quantum optical effects in coupled systems with losses,
gain, and gain saturation.
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I. INTRODUCTION

Recent years have witnessed an increasingly intense
research effort to explore a class of non-Hermitian systems de-
scribed by parity-time (PT ) symmetric Hamiltonians [1] (for
reviews, see [2,3]). A system described by the Hamiltonian H
is PT symmetric if it is invariant under the combined action
of the parity P and the time-reversal T operators (i.e., H
commutes with the PT operator: [H,PT ] = 0) but not nec-
essarily with the P or T operator alone. An important conse-
quence of this is the necessary, but not sufficient, condition for
PT symmetry: the complex potential V (x) = Vr (x) + iVi(x)
of the Hamiltonian should satisfy V (x) = V ∗(−x), where the
superscript ∗ denotes complex conjugation. In other words,
the real part of the potential should be an even function of x,
while its imaginary part should be an odd function of x, i.e.,
Vr (x) = Vr (−x) and Vi(x) = −Vi(−x). A PT -symmetric sys-
tem exhibits two very distinct phases: an unbroken PT phase
(also known as the exact-PT regime), where the Hamiltonian
supports real eigenvalues despite being non-Hermitian, and
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a broken PT phase where some eigenvalues form complex
conjugate pairs. The transition between these two phases takes
place spontaneously as a result of parametric variation of the
Hamiltonian. This real-to-complex spectral phase transition
or the PT -phase transition point exhibits all properties of an
exceptional point (EP), which is defined as a singularity in the
parameter space of a non-Hermitian system at which two or
more eigenvalues and their associated eigenvectors coalesce.

A decade after the groundbreaking work of Bender and
Boettcher in 1998 which initiated the mathematical frame-
work and fundamental understanding of PT -symmetric sys-
tems [1], it was realized that PT symmetry and its breaking at
an EP can be observed in photonics by imposing the necessary
condition for PT symmetry on a complex optical potential,
that is on the complex refractive index, n(x) = nr (x) + ini(x),
which leads to nr (x) = nr (−x) and ni(x) = −ni (−x) [4,5].
Thus an optical system with the PT -symmetric potential has
a symmetric index profile but an asymmetric gain or loss
profile. Such a refractive index profile can be obtained in two
coupled optical structures, such as waveguides or resonators:
one having loss and the other having gain compensating
the loss of the other. This discovery opened a very fertile
research direction, where the interplay between gain, loss, and
the strength of the coupling between them provides entirely
new features and device functionalities [6–9]. In these non-
Hermitian systems, with coupled loss and gain components,
EPs can be observed by controlling (or tuning) the coupling
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strength to balance amplification (gain) and dissipation (loss).
Thus EPs can drastically alter the overall response of the
system. This leads to a plethora of nontrivial phenomena
[6–8], such as enhanced light-matter interactions [10–12],
unidirectional invisibility [13,14], lasers with enhanced mode
selectivity [15,16], low-power nonreciprocal light transmis-
sion [17,18], loss-induced lasing [19,20], and thresholdless
phonon lasers [21,22] to name a few. In parallel to these
efforts in photonics, the concepts of PT symmetry have been
put into use in electronics [23], optomechanics [21,24,25],
acoustics [26,27], plasmonics [28], and metamaterials [29].
More recently, there is a trend in investigating the features
of PT -symmetric quantum systems and the effect of PT
symmetry and its breaking on the quantum states of light and
the properties of quantum information [30–33].

Although PT symmetry and related concepts have
their roots in quantum field theories, the experimental
demonstrations and the majority of theoretical works are
focused on classical systems, as in the example of two
coupled optical microresonators, where the energy loss in one
of them is compensated by the gain in the other and the system
is probed with light from a laser. In experiments, gain in such
systems can be provided optically via parametric gain or
Raman gain of the amplifying material, while the resonator is
made from emitters or rare-earth ions embedded in it [17,18].
The theoretical framework to analyze such systems relies on
linearly coupled rate equations of classical fields, where the
gain and loss correspond to a different sign of the imaginary
part of the complex frequencies (e.g., minus for gain and plus
for loss, or vice versa) without a reference to how the gain
and loss are generated. For example, the theoretical model,
developed in Ref. [17], was linear without any nonlinearity,
although the experimental results reported in that paper
showed the presence of nonlinearity leading to nonreciprocal
light transmission. Thus the theoretical framework, applied
there, failed to describe the observed nonreciprocity. On the
other hand, in Ref. [18], closely following Ref. [17], a term
was added phenomenologically (i.e., by hand) to the linear
rate equations to include the effect of gain saturation, which
provides the required nonlinearity for the nonreciprocal light
transmission, without explicitly describing where this term
comes from. One is also able to incorporate a nonlinear term
in the rate equations to explain light nonreciprocity, but in
the PT -symmetric system of coupled waveguides [34], by
resorting to a semiclassical Maxwell-Bloch approximation,
where the dynamics is governed by a spatial variable, not
time. On a different note, as the optical field is shifting from
the classical to the quantum realm, it is important that the rate
equations for the field operators are studied and the quantum-
mechanical origins of gain and loss are properly described and
incorporated into the models. Thus a theoretical framework
that addresses these concerns is highly desirable. Moreover,
since the EP depends sensitively on the nonlinear coefficients,
we can argue that having an ab initio model is important for
the question that this paper addresses. For this, we revisit the
system, studied in Ref. [17], and later on in Ref. [18], of two
coupled optical structures with loss, gain, and gain saturation
by using a non-Lindbladian master equation originally derived
for the Scully-Lamb laser model [35–37]. We apply this
master equation for the density operators of the optical fields
in optical structures. Our approach explains (at a fundamental

FIG. 1. Setup of the coupled active and passive whispering-
gallery microresonators system studied here and in Ref. [17]. The
active microresonator R1 is coupled to the waveguide WG1 and
also coupled to the passive resonator R2 with coupling strengths
γ1 and κ , respectively. The coupling strength between the passive
microresonator R2 and the waveguide WG2 is denoted as γ2. The
probe signal can be input from any port labeled from 1 to 4.

level) the results obtained in Refs. [17,18] and explicitly
describes the interplay of loss, gain, and gain saturation.

The paper is organized as follows. Section II contains
the Hamiltonian of the system and the Scully-Lamb laser
quantum master equation for the density operators of the
optical fields. Section III presents the results, which include
the rate equations of the field operators and their classical
limit showing explicitly the presence of gain saturation non-
linearity and its effect on the eigenfrequencies and exceptional
points of the system, as well as on the transmission spectra.
Sections IV and V include a discussion of our results, future
prospects, and a summary of the findings of this study.

II. LASER QUANTUM MASTER EQUATION FOR
OPTICAL FIELDS IN COUPLED ACTIVE-PASSIVE

MICRORESONATORS

Let us start from a description of the physical system that
we would like to investigate in the Scully-Lamb laser model
[35–37]. Our interest is focused on the system which was
experimentally studied first in Ref. [17] and later on in [18].
This system consists of two coupled whispering-gallery mi-
croresonators R1 and R2, where R1 is an active microresonator
used for the amplification of optical fields and R2 is a passive
microcavity, which only damps the propagating fields. We
denote the Q factors of the first and second microresonator
as Q1 and Q2, respectively. The schematic diagram of the
described system is shown in Fig. 1. The coupling strength
between the two microresonators is characterized by the real-
valued parameter κ . Moreover, each microresonator is cou-
pled to a different waveguide denoted as WG1 and WG2 with
coupling constants γ1 and γ2, respectively. The system shown
in Fig. 1 is PT symmetric for balanced gain and loss. This
is possible because the microresonators R1 and R2 become
interchanged under the parity reflection P , while loss and gain
are interchanged under the time-reversal operation T .

The active microresonator R1 can be considered as a laser
system with a laser gain medium. Naturally, in order to de-
scribe the dynamics of the electromagnetic field in the active
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laser microresonator one would resort to the quantum laser
theory and its master equation [35–37].

The Hamiltonian of the coupled microresonators with one
driving coherent field, which drives the active cavity, can be
written as

Ĥ =
2∑

k=1

h̄ωkâ†
k âk + ih̄[κ â1â†

2 + εâ1eiωl t − H.c.], (1)

where âk (â†
k) is the boson annihilation (creation) operator

of the mode k = 1, 2, with frequency ωk , and H.c. denotes
Hermitian conjugate. Moreover, κ is the coupling strength
between the microresonators and ε is the coupling strength
between the active cavity and the input signal driving field,
with power P and frequency ωl , which are related by ε ≡√

γ1P/(h̄ωl ). For the case when the passive cavity is driven,
it is enough to swap the boson operator â1 with â2 in the last
term of the Hamiltonian in Eq. (1).

By following the analysis of Yamamoto and Imamoğlu
[36], we consider our system as an ideal laser system in the
Scully-Lamb laser model, which can be described by a non-
Lindbladian master equation. This equation for the density
operator ρ̂ of the optical fields and for the Hamiltonian Ĥ
reads as follows (see Appendix A for details):

d

dt
ρ̂ = 1

ih̄
[Ĥ, ρ̂] +

[
A

2
(â†

1ρ̂â1 − â1â†
1ρ̂ )

+B

8
(ρ̂(â1â†

1)2 + 3â1â†
1ρ̂â1â†

1 − 4â†
1ρ̂â1â†

1â1)

+
2∑

i=1

�i

2
(âiρ̂â†

i − â†
i âiρ̂ ) + H.c.

]
, (2)

where the gain A and gain saturation B coefficients for the field
in the active cavity are expressed as

A = 2g2r

Y 2
, B = 4g2

Y 2
A, (3)

respectively. The parameter g stands for the coupling strength
between the atoms of the gain medium and the optical field in
the active cavity, Y is a decay rate of the atoms, and r accounts
for the pump rate of the gain medium. In Eq. (2), the decaying
rates for both cavities are denoted by (i = 1, 2)

�i = Ci + γi, where Ci = ωi

Qi
(4)

is the intrinsic loss of the ith cavity and γi stands for the loss
due to the coupling of the ith cavity to the ith waveguide.

We note that the derivation of the master equation in
Eq. (2), as carried out in Appendix A, is based on two main
assumptions: (i) the adiabatic elimination of the population
in the gain medium of the active resonator and (ii) the
weak-gain-saturation regime, i.e., when the laser in the
active cavity operates not far from the lasing threshold.
The non-Linbladian form of the master equation in Eq. (2),
which is obtained within the fourth-order field approximation
[36,37], is due to quantum jump-operator terms, which
account for gain saturation.

We also note that the master equation, given in Eq. (2), can
be recast to the Lindbladian form as [38]

d

dt
ρ̂ = 1

ih̄
[Ĥ , ρ̂] − 1

2

4∑
i=1

(L̂†
i L̂iρ̂ + ρ̂L̂†

i L̂i − 2L̂iρ̂L̂†
i ), (5)

where the Lindblad operators L̂i (for i = 1, . . . , 4) are defined
as

L̂1 =
√

Aâ†
1

(
1 − B

2A
â1â†

1

)
, L̂2 = 1

2

√
3Bâ1â†

1,

L̂3 =
√

�1â1, L̂4 =
√

�2â2. (6)

The Lindblad form in Eq. (5) is equivalent to the master
equation (2) if the terms of second order in Bâ1â†

1/(2A) are
neglected in Eq. (5), which holds true for the weak gain
saturation regime.

III. RESULTS

A. Rate equations

The master equation for the field operators, given in
Eq. (2), and the Hamiltonian in Eq. (1) yield the rate equations
for the averaged boson operators â1 and â2. Namely, by using
the formula

d

dt
〈â j〉 = Tr

[
â j

d

dt
ρ̂

]
, j = 1, 2, (7)

and utilizing the cyclic property of the trace operation, after
substituting Eq. (2) in Eq. (7), we obtain

d

dt
〈â1〉 = −iw1〈â1〉 + G1

2
〈â1〉 − κ〈â2〉 − B

2
〈â†

1â1â1〉
−ε exp (−iωl t ),

d

dt
〈â2〉 = −iw2〈â2〉 − �2

2
〈â2〉 + κ〈â1〉, (8)

where G1 = A − �1 − 7
4 B.

As one can see, the rate equations, given in Eq. (8) for
the averaged quantum amplitudes, are nonlinear due to the
presence of the gain saturation in the active cavity, i.e., the
term (B/2)〈â†

1â1â1〉 represents the nonlinearity.

B. Classical limit

In the classical limit, i.e., in the case of large intensities of
the fields, the quantum field operators can be represented by c-
number amplitudes as âi → 〈âi〉 ≡ ai. Then the rate equations
in Eq. (8) can be rewritten in the classical limit as

d

dt
a1 = −iw1a1 + G1

2
a1 − κa2 − B

2
|a1|2a1 − ε exp (−iωl t ),

d

dt
a2 = −iw2a2 − �2

2
a2 + κa1, (9)

where the term B
2 |a1|2a1 represents the nonlinearity due to

gain saturation. By substituting ak = Ak (t ) exp(−iωt ) into
Eq. (9), one arrives at

d

dt
A1 = i�A1 + G1

2
A1 − κA2 − B

2
|A1|2A1 − ε,

d

dt
A2 = i�A2 − �2

2
A2 + κA1, (10)
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where � = ω − ωc is the frequency-detuning parameter, and
we assumed that the frequency of the driving coherent field
is ωl = ω and the frequencies of the cavities are the same,
ω1 = ω2 = ωc. We note that when the input driving field
enters the passive cavity from port 4 in Fig. 1, then the term
(−ε) would appear in the second equation (instead of the first)
in Eq. (10). Importantly, in the semiclassical approximation,
the coupling constant ε can be expressed via the complex
amplitude Ain of the input driving field as ε ≡ √

γ jAin, for j =
1, 2. Nevertheless, for convenience, we will keep the current
notation for the input driving field via ε, because it shares the
same dimensionality with the other parameters describing the
system. Moreover, by keeping this notation it will be more
transparent and easier for us to compare the semiclassical
and fully quantum approaches in related future research. In
what follows, we will always recall the connection between
the driving coupling constant ε and the input driving field
amplitude Ain to avoid any confusion.

It is clearly seen from Eq. (10) that the rate equations
simplify to a linear form if the gain saturation in the active
laser cavity is neglected.

We note that in the semiclassical Maxwell-Bloch picture,
which is widely used for describing the characteristic PT -
symmetric properties of classical optical fields, one can in-
troduce gain saturation via a modified gain coefficient A for
the field A1 in the active cavity as A → A/(1 + |A1|2/|As|2) in
Eq. (10) for B = 0, where |As|2 is the gain saturation threshold
[18]. In this case, by decomposing this modified gain coeffi-
cient A in a Taylor series (up to the first order in |A1|2/|As|2 �
1, which is justified in the weakly saturated regime), one ob-
tains a one-to-one correspondence between the semiclassical
Maxwell-Bloch picture and the semiclassical Scully-Lamb
laser model for the optical fields in Eq. (10) by setting B =
A/|As|2. Nevertheless, compared to the Maxwell-Bloch pic-
ture, where the gain saturation term is introduced phenomeno-
logically, the semiclassical Scully-Lamb laser theory explains
gain saturation not only qualitatively, but also quantitatively,
via the laser system parameters given in Eq. (3).

We also note that a set of nonlinear equations, similar to
Eq. (10), can be obtained within the semiclassical Maxwell-
Bloch approximation for PT -symmetric coupled waveguides
[34]. Nonetheless, there are two main differences with respect
to Ref. [34]. The first is that we consider the case of cou-
pled resonators instead of coupled waveguides. In our case,
feedback effects and two different kinds of losses (i.e., input-
output and intrinsic losses) are considered. Second, even if we
apply the semiclassical approximation, our theory is based on
a fully quantum approach, which can be useful to investigate
quantum effects and quantum noise.

C. Eigenfrequencies in the steady state and exceptional point

In the steady state, by considering γ1 = γ2 = γ for sym-
metry reasons, we find from Eq. (10) that(

i� + G′
1

2

)
A1 − κA2 = ε,

(
i� − �2

2

)
A2 + κA1 = 0,

(11)

where G′
1 = G1 − B|A1|2. Because the system of equations in

Eq. (11) is written for the complex fields Aj , we can incor-

porate the real steady-state intensity |A1|2 into the prefactor
G′

1. One can obtain the eigenvalues of the system, given in
Eq. (11), by setting the driving field to zero (ε = 0). Defining
the vector α = (A1, A2)T , we can rewrite Eq. (11) as follows:

i
dα

dt
= Mα, (12)

with the evolution matrix

M =
(

−� + i G′
1

2 −iκ
iκ −� − i �2

2

)
. (13)

For the case when gain and losses are balanced, i.e., when
G′

1 = �2 holds, the evolution matrix M, given in Eq. (13),
becomes PT symmetric, i.e., [M,PT ] = 0, with the parity
operator P = (0 1

1 0) and T performing complex conjugation.
The characteristic equation of the matrix M is(

� − i
G′

1

2

)(
� + i

�2

2

)
− κ2 = 0, (14)

from which we find the formal solution for the eigenfrequen-
cies, as follows:

�± = i
G′

1 − �2

4
±

√
4κ2 − 1

4
(G′

1 + �2)2. (15)

By recalling that �± = ω± − ωc, we obtain

ω± = ωc + i

4
(A − C1 − C2 − BI1 − 2γ )

±1

2

√
4κ2 − 1

4
(A − C1 + C2 − BI1)2, (16)

where I1 = |A1|2 is the dimensionless intensity of the field in
the active cavity in the steady state and which is by itself a
function of the frequency ω (for the solutions of the steady-
state intensity I1; see Sec. III E). The solutions in Eq. (16) give
the energy eigenspectra of the system, i.e., the eigenvalues
of the system Hamiltonian, which determine the evolution
matrix M.

We note again that, in reality, the loss rates γi, arising
from the coupling with the input-output channels, are not true
losses, because these describe the energy transfer from the
system to the output (or from the input to the system). Hence
the concept of the effective PT symmetry in our system with
balanced gain and loss can be expressed as

A − C1 − C2 − BI1 = 0. (17)

This is valid because the system is PT symmetric regardless
of how it is probed (i.e., waveguides in the coupled resonator
systems are used only to probe the system). When the condi-
tion, given in Eq. (17), is satisfied we find from Eq. (16) that

ωPT
± = ωc − i

γ

2
± 1

2

√
4κ2 − C2

2 . (18)

Note that, when changing the input signal ε (and hence
the resulting steady-state intensity I1), one has to adjust the
losses correspondingly in order to satisfy the PT -symmetry
condition.
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FIG. 2. Real part, Re[ω] (red solid curve), and imaginary part,
Im[ω] (blue dashed curve), of the eigenfrequencies of the super-
modes, as a function of coupling κ at the PT -symmetry condition
A − C1 − C2 − BI1 = 0. The exceptional point does not depend on
gain saturation. We have chosen C2 = 1 MHz and γ = 1.15 MHz.
In addition, we show Re[ω] (red solid curve, which overlaps with
the other red curve) and Im[ω] (gray dash-dotted curve) of the
eigenfrequencies of the supermodes when the input-output losses are
not considered. Here ωc stands for the cavities’ resonance.

The analysis of the frequency spectrum, given in Eqs. (16)
and (18), provides two different regimes, or so-called unbro-
ken and broken PT -symmetry phases, depending on the sign
of the expression under the square-root sign. In the unbroken
PT -symmetry phase, the expression under the root is posi-
tive (that is, κ > C2

2 ), and there are always two supermodes
with nondegenerate real frequencies ω± that propagate in the
system. Note that this is true for the system itself, where the
coupling loss γ (which is not inherent to the system of coupled
resonators) is zero (i.e., γ = 0). In the broken PT -symmetry
phase, that expression is negative (that is, κ < C2/2), and the
real spectrum becomes degenerate, indicating that the system
displays two modes with the same resonance frequency but
with different decay rates. The transition between these two
regimes takes place at an EP given by

κEP = C2

2
. (19)

In Fig. 2 we show the real and imaginary parts of the eigen-
frequencies of the supermodes. As expected by the inspection
of Eq. (19), the EP at κ = κEP does not depend on the field
intensity. For κ > κEP, we observe that the imaginary part is
different from zero. This is due to the contributions of the
loss rates γi arising from the coupling with the input-output
channels. The gray dash-dotted curve in Fig. 2 describes the
imaginary parts of the complex eigenfrequencies, when the
input-output coupling losses are neglected (i.e., γ = 0).

We now consider the case where the PT -symmetry con-
dition is achieved at low input rates, so the gain saturation
effects are negligible (BI1 
 0). In this case, as for the PT -
symmetry condition, we can use Eq. (17) calculated for I1 =
0:

A − C1 − C2 = 0 . (20)

FIG. 3. Real part, Re[ω] (red solid curve), and imaginary part,
Im[ω] (blue dashed curve), of the eigenfrequencies of the super-
modes as a function of the coupling κ under the PT -symmetry con-
dition A − C1 − C2 = 0 (i.e., excluding the gain saturation term BI1)
for different values of the coupling coefficient ε of the driving field
to a microresonator (see Fig. 1). It is seen that the exceptional point
depends on gain saturation. (a) The linear regime with B = 0.05 Hz
and ε = 1 MHz and (b), (c), (d) the nonlinear regime according to
Eq. (22) with B = 0.05 Hz with (b) ε = 2 GHz, (c) ε = 20.5 GHz,
and (d) ε = 25 GHz. The observed inclination of the imaginary
part of the eigenfrequencies (blue dashed curve) towards negative
values near the EP indicates an additional loss due to gain saturation
caused by stronger driving fields. We assumed a passive cavity loss of
C2 = A − C1 = 1 MHz, an active cavity gain of A = 301 MHz, and a
waveguide-microresonator coupling strength of γ = 1.15 MHz. The
vertical black dashed line denotes the EP κEP for the linear system,
when the gain saturation term BI1 = 0. The horizontal gray dash-
dotted line denotes the converging value (γ /2) for the imaginary
part of the eigenfrequencies (blue dashed curve) for large κ . The
condition BI1/A � 1 for a weak saturation is always satisfied for all
the cases corresponding to panels (a)–(d) (see also Appendix B).

If the input drive is increased without adjusting the other
parameters (κ and Ci), the PT -symmetry condition is not
satisfied any more. We will investigate the effect of gain
saturation on the spectral properties of the considered PT -
symmetric system, which is usually studied without the inclu-
sion of gain saturation. Thus, hereafter, we assume that the
PT -symmetric condition is given in Eq. (20). The condition
for the exceptional point becomes [see Eq. (16)]

κEP = 1
4 |A − C1 + C2 − BI1| = 1

4 |2C2 − BI1|. (21)

From inspection of Eq. (21), we observe that, in this case, the
EP changes when the steady-state field intensity increases in
the active cavity (see Fig. 3). In particular, as an example,
in Fig. 3 we plot the real and imaginary parts of the eigen-
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FIG. 4. Real part, Re[ω] (red solid curve), and imaginary part,
Im[ω] (blue dashed curve), of the eigenfrequencies of the super-
modes as a function of the coupling κ under the PT -symmetry
condition A − C1 − C2 = 0 (i.e., excluding the gain saturation term
BI1) for different values of the coupling coefficient ε when the
driving field drives the passive cavity (see Fig. 1). The parameters
used here are the same as in Fig. 3.

frequencies of the supermodes for the linear [Fig. 3(a)] and
nonlinear [Figs. 3(b)–3(d)] regimes for different values of the
driving-field coupling ε when driving the system at a resonant
frequency ωc.

In the linear regime, the gain saturation term BI1 is either
exactly zero or negligible compared to the system parameters
A and Ci; thus the behavior of the EP is identical to that
presented in Fig. 2 [see also Figs. 3(a) and 4(a)]. The same
conclusion applies when the driving field is far away from the
resonance ωc, as in that case the steady-state intensity also
tends to zero.

An interesting situation arises when the gain saturation
term BI1 becomes comparable with the passive cavity loss
C2. However, at the same time, it is much less than the gain
coefficient A in the active cavity, i.e., BI1 � A, so the weakly
saturated regime still holds and the validity of the master
equation in Eq. (2) remains. This also implies that C1 � C2. In
this case, the system starts exhibiting some nonlinear features
in its eigenspectrum. In short, the described condition can be
written as

BI1 ≈ C2 � A ≈ C1. (22)

In what follows, we always call the system to be in the
nonlinear PT -symmetric regime, whenever both conditions,
given in Eqs. (20) and (22), are satisfied. In that case, one
can observe that the critical value of κEP significantly changes
depending on the gain saturation term BI1. Moreover, the

steady-state intensity I1 in the active cavity by itself becomes
dependent on the direction of the propagation of the driving
field, i.e., on whether the driving field is coupled to the active
(from port 1 to port 4) or the passive cavity (from port 4 to port
1) (see Fig. 1). Consequently, the gain saturation term BI1 also
depends on the driving-field direction.

When the input driving field is coupled to the active cavity,
it can experience a significant gain saturation for large input
intensities and, as a result, its losses increase. This especially
happens when one decreases the intercavity coupling κ . In
the latter case, the strong signal field becomes localized in
the active resonator, before being transferred to the lossy
passive cavity. This leads to the gain decrease of the intense
driving field due to gain saturation and, therefore, to the
observed signal-field losses (see blue dashed curve in Fig. 3).
Moreover, when the losses induced by the gain saturation
become comparable to the losses in the passive cavity (i.e.,
when BI1 ≈ C2), then the critical value of κEP first decreases
and then increases when increasing the intensity of the input
field (see Fig. 3). As Eq. (21) implies, this shift of κEP can be
explained by the interplay between losses in the passive cavity
and losses induced by gain saturation in the active resonator.
Namely, by increasing the gain saturation term BI1 (i.e., by
increasing the input signal) in the proximity of C2 in Eq. (21),
the critical value κEP first decreases, when BI1 � C2, and then
increases, when BI1 � C2.

D. Nonreciprocity of light propagation

Another important result of our work is the theoretical
microscopic prediction of nonreciprocity of the propagating
light. Specifically, in broken PT -symmetry phase, i.e., when
κ < κEP, the signal field can experience smaller losses for
smaller values of κ , when the driving field propagates in the
direction 4 → 1, in comparison to the case when it propagates
in the opposite direction 1 → 4 (see Fig. 4). This stems
from the fact that when the strength of the input signal field
is increasing, by decreasing the intercavity coupling κ , the
driving field experiences large losses in the passive cavity
before passing into the active resonator. Now, because the
initially strong input signal field is strongly damped by the
passive resonator, it enters the active cavity having an intensity
which is not sufficient to induce gain saturation. As such, the
propagating field in the active cavity can even undergo notable
amplification before being detected at port 1. As a result,
the critical values of κEP only decrease when increasing the
intensity of the input signal field, since the propagating field
cannot reach high intensity in the active cavity to make the
term BI1 larger than C2 in Eq. (21) (see also Fig. 4).

We plotted Figs. 5–7 to demonstrate the aforementioned
asymmetry of the steady-state intensities in both cavities
depending on the propagation direction of the resonant signal
field. As it follows from Fig. 7, for very small values of
κ < κEP, the field intensity in the active cavity for the direction
4 → 1 can be two or three orders of magnitude larger than
the intensity in the passive cavity for the opposite propagation
direction 1 → 4. As a consequence, this asymmetric property
can lead to the observation of nonreciprocal light behavior for
small κ . Therefore, the nonreciprocity of light propagation, as
experimentally demonstrated in, e.g., Ref. [17], arises from
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FIG. 5. Dimensionless steady-state intensities I1 (green solid
curve) and I2 (yellow dashed curve) in the active and passive cavities,
respectively, as a function of the intercavity coupling κ for the driving
field propagating in the direction 1 → 4 (see Fig. 1). The panels
(a)–(d) are obtained for different values of the driving field coupling
ε and correspond to the panels in Fig. 3.

the combination of loss, gain, and gain saturation. Specifi-
cally, owing to the saturation effects, the gain experienced by
the signal entering the amplifying cavity strongly depends on
its intensity. We would like to stress again that the input signal
with a large intensity undergoes a much lower amplification
with respect to a weaker signal due to gain saturation. Hence
feeding the gain cavity with a quite strong field gives rise to
a modest amplification (see also Fig. 8). This signal is finally
strongly absorbed by the lossy cavity, before being detected.
By contrast to this, if the same signal is first sent to the lossy
cavity, then it is strongly absorbed before entering the gain
cavity. Such a small signal does not saturate the gain medium
and is strongly amplified before detection.

As Figs. 3 and 4 also indicate, in unbroken PT -symmetry
phase, for large values of the intercavity coupling κ � κEP,
the system exhibits a linear character, regardless of both
strengths of the input signal field and the propagation direction
(1 → 4 and 4 → 1). Indeed, in this case, the coupling κ

between two microcavities becomes large enough, enabling
the input signal fields to freely propagate in either direction.
Hence there is no localization of the fields in the system and
thus there is no observed nonlinearity due to gain saturation.

E. Transmission spectra

Here we focus on the spectral properties of the driving
fields that propagate through the system.

FIG. 6. Dimensionless steady-state intensities I1 (green solid
curve) and I2 (yellow dashed curve) in the active and passive cavities,
respectively, as a function of the intercavity coupling κ for the driving
field propagating in the direction 4 → 1 (see Fig. 1). The panels
(a)–(d) are obtained for different values of the driving-field coupling
ε and correspond to the panels in Fig. 4.

By rewriting the complex amplitudes Ak of the fields [as in
Eq. (10)] as Ak = |Ak| exp(iφk ), one arrives at a cubic equation
for the field intensity I1 in the active cavity in the steady state
(see Appendix B for details):

λ1I3
1 + λ2I2

1 + λ3I1 + λ4 = 0, (23)

FIG. 7. Dimensionless steady-state intensity I (4→1)
1 (green solid

curve) in the active cavity for the driving field propagating in the
direction 4 → 1 from Fig. 6(d) and the steady-state intensity I (1→4)

2

(yellow dashed curve) in the passive cavity for the driving field
propagating in the direction 1 → 4 from Fig. 5(d) for lower values of
κ . For the broken-PT -symmetric phase in the nonlinear regime for
small values of κ < κEP, the steady-state intensity I (4→1)

1 is two–three
orders of magnitude larger than I (1→4)

2 , which implies nonreciprocal
light propagation.
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FIG. 8. Transmissivity T1→2 of light as a function of the input
driving field signal ε, with resonant driving frequency ω = ωc, when
there is no passive cavity in the system, i.e., κ = 0 (see Fig. 1). The
driving field coupling constant ε is related to the amplitude Ain of
the input signal via the expression ε = √

γ1Ain. The plot presents the
gain behavior in the active cavity versus the intensity of the input
signal field. With increasing strength of the input signal ε, the gain
(represented by the transmissivity T1→2) of the signal field steadily
decreases due to gain saturation. The remaining parameters used
here are the same as in Fig. 3. For details regarding the transmission
coefficients, see also Sec. III E.

with coefficients λi defined as

λ1 = B2

4
, λ2 = BF, λ4 = −ε2,

λ3 = F 2 + �2( f − 1)2, F = 1

2
( f �2 − G1), (24)

where f = 4κ2/(�2
2 + 4�2). Equation (23) has only one real

solution (see Appendix B for details), when its discriminant
is negative, which is always the case when, e.g., A ≈ �1

regardless of �2 and κ .
The transmission spectrum can be calculated as follows:

T (ω) =
∣∣∣∣Aout

Ain

∣∣∣∣
2

. (25)

To obtain the transmission spectrum T1→4(ω) at port 4 when
sending the signal from port 1, one needs to know the expres-
sions for the corresponding input-output fields. The output
field at port 4 is found as Aout = √

γ2A2. The input driving
field sent from port 1 can be expressed as Ain = ε/

√
γ1,

where, again, ε is the coupling strength between input driving
field and microresonator (Fig. 1). By rewriting the field A2 via
A1 and using Eq. (10), one finally obtains

T1→4(�) = 4κ2γ1γ2

ε2
(
�2

2 + 4�2
) I1. (26)

The same analysis can be carried out for the case when the
driving coherent field is sent from port 4 and the signal is
detected at port 1. In that case, one obtains the same cubic
equation for the field intensity I1, as in Eq. (23), but with dif-
ferent λk; k = 1, . . . , 4 (see Appendix B). The expression for
the transmission spectra T4→1(ω) then attains the following

FIG. 9. Normalized transmission spectrum T̃1→4 =
T1→4(�)/max[T1→4(�)] versus detuning � = ω − ωc, where
T1→4(�) is given in Eq. (26) (see also Fig. 1 for details), for
different values of the intercavity coupling κ: (a) κ = 0.3 MHz,
(b) κ = 0.85 MHz, (c) κ = 1.88 MHz, and (d) κ = 15 MHz with
the PT -symmetry condition A − C1 − C2 = 0 (excluding the gain
saturation term BI1). The linear regime with B = 0.05 Hz and
ε = 1 MHz (red solid curve); the nonlinear regime, according to
Eq. (22), with B = 0.05 Hz and ε = 2 GHz (green dashed curve)
and ε = 20.5 GHz (blue dash-dotted curve). Assuming the passive
cavity loss C2 = 1 MHz, the active cavity gain A = 301 MHz, and
the waveguides coupling with both cavities is γ = 1.15 MHz. The
transmission spectra in panel (a) and panel (d) exhibit Lorentzian
line shapes, when the system is well below or above from the EP,
respectively [39]. On the contrary, in panel (b) and panel (c), the
transmission spectra have squared Lorentzian line shapes, which is a
signature of the occurrence of EPs [39–41].

form:

T4→1(ω) = γ1γ2

ε2
I1. (27)

Similarly, the transmission spectrum T1→2 can be found
using the input-output relation: Aout = Ain + √

γ1A1 (see
Appendix B for details).

As an example, in Fig. 9 we plot the normalized transmis-
sion spectrum T̃1→4 = T1→4(�)/max[T1→4(�)] for the PT -
symmetric condition A − C1 − C2 = 0, for different values of
the intercavity coupling κ , and for different intensities of the
driving field (i.e., by varying ε) in both linear (BI1/C2 � 1)
and nonlinear (BI1/C2 ≈ 1) regimes [for details regarding the
nonlinearity condition, see Eq. (22)]. One can observe an
increasing spectral line broadening of the transmitted light for
stronger driving fields ε in the nonlinear regime, indicating
rising losses due to the gain saturation for small values of
κ [green dashed and blue dash-dotted curves in Fig. 9(a)].
Moreover, the transmission spectra in Figs. 9(b) and 9(c)

053806-8



SCULLY-LAMB QUANTUM LASER MODEL FOR … PHYSICAL REVIEW A 99, 053806 (2019)

display a squared Lorentzian line shape, which is characteris-
tic for EPs [39–41]. Also, in the nonlinear case, the splitting of
the supermodes occurs for larger κ > κEP and more intensive
fields [Figs. 9(b) and 9(c)]. A similar behavior is observed in
the transmission spectrum T4→1.

IV. COMPARISON WITH EXPERIMENTAL
RESULTS OF REF. [17]

For simplicity, when plotting the graphs in this section,
we assume that the losses in both cavities are comprised
mainly by the losses due to the coupling of the cavities to
the waveguides �i = Ci + γi = γi, i = 1, 2, i.e., we set the
intrinsic losses Ci to zero. The latter assumption also implies
that the system considered has a broken PT symmetry, i.e.,
A − C1 − C2 
= 0, according to Eq. (20). At the same time,
the total losses in the system are expected to be larger than the
gain, i.e., (A − γ1 − γ2) < 0. Also, the active microcavity is
assumed to operate near the threshold A ≈ γ1 > γ2.

In this section, we discuss possible applications of the
semiclassical Scully-Lamb laser theory in the prediction of
some nontrivial light behavior that was experimentally ob-
served in Refs. [17,18]. In those papers, the authors ex-
perimentally studied a system of coupled PT -symmetric
whispering-gallery microcavities, i.e., a system that is identi-
cal to that presented in Fig. 1 and which is the focus of the the-
oretical study of this work. Below, we theoretically reproduce
some of the experimental graphs of Ref. [17] in a qualitative
rather than quantitative way (meaning that we make some
additional assumptions regarding the system parameters, used
in constructing the graphs here). Nevertheless, as was just
mentioned, a qualitative comparison can be made and positive
conclusions can be inferred regarding the applicability of
the Scully-Lamb laser model, in its semiclassical limit, to
explain some of the results of Ref. [17]. We note that in the
construction of the graphs shown here, which are presented in
Figs. 10–13, we do not invoke PT symmetry in the system
(see also the text below).

For clarity, in the captions of some of our figures we
indicate the corresponding experimental plots of Ref. [17]
that we try to theoretically reproduce. Also, in order to stress
the similarity between the figures reproduced here and the
original experimental graphs of Ref. [17], we keep the axis
scales of the plots to be the same as those given in Ref. [17].

For example, in Fig. 10, which corresponds to the exper-
imentally obtained Fig. 1(f) in Ref. [17], the transmission
spectrum T1→2 is shown when only the WG1 and the mi-
croresonator R1 are coupled in the system and κ = 0, i.e., only
the first resonator is considered. Thus, by coupling the signal
sent from port 1 to the active cavity, one obtains a substantial
signal amplification, when detecting the output signal at port
2. In this case, the active cavity just enhances the incoming
field. The inset of Fig. 10 demonstrates that amplification does
not occur if there is no input signal.

In Fig. 11, which corresponds to the experimentally ob-
tained Fig. 3 in Ref. [17], we show the transmission spectra for
the light propagating in the directions 1 → 4 and 4 → 1 in the
linear regime, i.e., the laser cavity is assumed to be below the
lasing threshold A < γ1. One can see the linear response of the
propagating signal when the intercavity coupling coefficient κ

FIG. 10. Transmission spectrum T1→2 assuming that there is
coupling only between the WG1 and the active microcavity R1; the
active cavity gain is A = 20.4 MHz and the power of the driving
field is P = 100 nW. The inset shows the transmissivity when the
power of the driving field is P = 0. Here and in the graphs below,
the resonance wavelength of both cavities is set as λc = 1550 nm.
Moreover, we assume that all losses in both cavities are encompassed
by the waveguide couplings, i.e., �i = Ci + γi ≈ γi, i = 1, 2, and
their values are fixed along with the gain saturation coefficient, i.e.,
γ1 = 25 MHz, γ2 = 10 MHz, and B = 0.1 Hz. This figure qualita-
tively reproduces the experimentally obtained Fig. 1(f) in Ref. [17].

is lower or larger than κcr, where κcr denotes the critical point,
when the supermodes start splitting. We note that, in Fig. 11,
a linear behavior of the transmitted light is already observed
in the unbalanced gain-loss regime, i.e., when PT symmetry
is broken in the system.

Figure 12, which corresponds to the experimentally ob-
tained Fig. S6 in Ref. [17], displays the transmitted spectrum
T1→2 versus the detuning � = ω − ωc, for various values of
the gain A and the intercavity coupling κ . One can see the
appearance of the supermodes splitting in the system with the
increasing values of κ . Conversely, for smaller values of κ ,
the two supermodes coalesce resulting in only one peak in the
spectrum.

FIG. 11. Transmission spectrum T4→1 (red curve) and T1→4 (blue
curve inside the captions) in the linear regime when (a) A = 21 MHz,
κ = 1 MHz, and P = 100 nW and (b) A = 21 MHz, κ = 20 MHz,
and P = 100 nW. This figure qualitatively reproduces the experimen-
tally obtained Fig. 3 in Ref. [17].
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FIG. 12. Transmission spectrum T1→2 when there is a coupling between the microresonators R1 and R2 for (a) A = 21 MHz, κ = 1 MHz,
(b) A = 24 MHz, κ = 4 MHz, and (c) A = 25.5 MHz, κ = 8 MHz. The power of the input signal is P = 100 nW. This figure qualitatively
reproduces the experimentally obtained Fig. S6 in Ref. [17].

Nonreciprocity of light propagation

Here, to complement Sec. III D, we further discuss the
theoretical microscopic prediction of nonreciprocity of the
propagating light in the considered coupled active-passive
microresonators system as shown Fig. 13, which corresponds
to the experimentally obtained Fig. 4 in Ref. [17]. It is seen
that there is an enhancement in the transmitted light from
port 4 to port 1 and tending to zero transmission T1→4 in
the opposite direction for small values of κ , meaning that the
system starts behaving nonreciprocally. The latter nonlinear

effect was observed in Ref. [17], but, naturally, could not
be explained based on the linear rate equations used there.
Utilizing the semiclassical laser theory, one can attain the
needed nonlinear term arising from the laser gain saturation
in the active microcavity. Moreover, this nonreciprocity is
observed without invoking PT symmetry, because it can be
already observed when the gain and loss are unbalanced in
the system (see Fig. 13). The inset of Fig. 13(f) indicates that
the observed nonlinearity is not caused by the lasing initiated
by spontaneous emission in the active cavity.

FIG. 13. Transmission spectrum T1→4 [T4→1] versus detuning � = ω − ωc for (a) [(d)] no amplification A = 0 MHz, κ = 1 MHz, (b) [(e)]
A = 25 MHz, κ = 20 MHz, and (c) [(f)] A = 25 MHz, κ = 0.2 MHz. The power of the input signal is P = 1 μW. Graphs (c) and (f) clearly
show nonreciprocality of light propagation. The insets of panels (e) and (f) show the spectra assuming no input signal. This figure qualitatively
reproduces the experimentally obtained Fig. 4 in Ref. [17].
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V. CONCLUSIONS

We have applied the quantum Scully-Lamb laser theory
to a pair of PT -symmetric coupled whispering-gallery mi-
crocavities, i.e., a system which consists of both active and
passive microring cavities, such that gain and losses are bal-
anced in the system. It has been shown that, in the nonlinear
regime, or more precisely, under the condition in which the
gain saturation in the active cavity is comparable to the losses
in the passive cavity, the intense intracavity fields of the steady
state lead to the modification of the eigenmodes and of the EPs
of the PT -symmetric system. Namely, the imaginary part of
the eigenspectrum acquires an extra negative term due to the
gain saturation effects. This effect leads to the shift of the EP
either to lower or larger values depending on the gain satu-
ration B and the propagation direction of the driving fields.
Starting from the master equation for this coupled system,
including dissipation, gain, and gain saturation, and applying
the semiclassical approximation, we are able to describe the
experimental results obtained in Refs. [17,18]. In particular,
this approach is able to reproduce the observed nonreciprocal
light propagation in the coupled system of whispering-gallery
microcavities. We have also shown that the gain saturation
mechanism in the active cavity is crucial for the observation
of light nonreciprocity. Moreover, we have found that the uni-
directional light propagation can be observed even when the
PT -symmetry condition is not fulfilled. It should be stressed
that neither PT symmetry nor its breaking is required for
nonreciprocity. The nonreciprocity observed in our system is
a result of a nonlinearity and, in the broken PT regime, such
nonlinearity can be observed at much lower input intensity.

In summary, we proposed, applied, and validated the
Scully-Lamb laser model, with the non-Lindbladian master
equation, for coupled resonators with losses, gain, and gain
saturation. Although we studied nonreciprocity and excep-
tional points applying the semiclassical approximation, this
master equation allows for a quantum description of the cavity
fields. This approach constitutes a promising tool for the
study of quantum optical effects in coupled resonators with
balanced (or unbalanced) gain and losses.
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APPENDIX A: DERIVATION OF THE MASTER
EQUATION IN EQ. (2)

To make this article self-consistent, in this Appendix we
present a derivation of the quantum laser master equation,
given in Eq. (2), for the Scully-Lamb laser model based
on the derivation of Yamamoto and Imamoğlu in Ref. [36].
This derivation bears a phenomenological character and, as
such, naturally allows one to incorporate all the terms of the
interaction Hamiltonian of the fields without the need to solve
the Schrödinger equation directly. Another derivation of the
master equation (2) can be found in Ref. [37].

The active cavity is represented by a general four-level
laser system in which the two intermediate energy levels are
coupled by the laser mode (see Fig. 14). In this limit, the
uppermost level of the atom may be adiabatically eliminated
to give an effective three-level system. The latter assumption
is valid as long as the decay rate from the uppermost state |1〉
to the upper laser level |e〉 is much faster than all other rates
in the atom-field system. In this limit, one has an effective
incoherent pumping rate r from the atomic ground state |0〉
into |e〉. Additionally, the laser mode in the active cavity is
coupled to the passive microresonator.

The interaction Hamiltonian ĤI , describing two such cou-
pled active-passive microresonator systems, is given by

ĤI = ig(σ̂+â1 − σ̂−â†
1) + iκ (â1â†

2 − â†
1â2). (A1)

Specifically, the second term in Eq. (A1) describes the linear
interaction between the modes in the active (a1) and passive
(a2) resonators, while the first term describes the interaction
between the mode a1 with only two levels (|g〉 and |e〉)
within the standard Jaynes-Cummings model. The operators
σ̂k , k = +,−, are spin-raising and spin-lowering operators of

FIG. 14. Four-level atom laser scheme in an active microresonator.
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the atom in the active medium, respectively. The constants g,
κ denote the coupling strength between the atom and the field
in the laser cavity and between the two fields propagating in
two different cavities, respectively. We also assumed that the
atomic and active cavity field resonances coincide.

The quantum Liouville equation for the density operator ρ̂

in the interaction picture, which describes the atom-field-field
dynamics, is

d

dt
ρ̂ = 1

ih̄
[ĤI , ρ̂]. (A2)

In the active cavity, the optical gain is provided by the excited
atoms, which are pumped by an external field. The interaction
between the atom and an external pumping field, that provides
an inverse population in our effective three-level atom laser
(depicted in Fig. 14), can be described by the following
equation:

d

dt
ρ̂ = − r

2
(σ̂00ρ̂ + ρ̂σ̂00 − 2σ̂e0ρ̂σ̂0e), (A3)

where σ̂00 = σ̂0eσ̂e0 and σ̂0e (σ̂e0) is the spin operator for the
atomic transition from |0〉 (|e〉) to |e〉 (|0〉). The coefficient r
accounts for the pumping rate of the atom.

To include spontaneous emission and the emission caused
by external dephasing processes into an external reservoir
field, we need to add in Eq. (A2) the following terms:

d

dt
ρ̂ = −γsp

2
(σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂− − 2σ̂−ρ̂σ̂+)

−γd

2
(σ̂eeρ̂σ̂gg + σ̂ggρ̂σ̂ee), (A4)

where γsp and γd , are, respectively, the rates of spontaneous
emission and the emission imposed by additional dephasing
processes.

Now, collecting together Eqs. (A2)–(A4), one arrives at the
master equation for the density operator ρ̂,

d

dt
ρ̂ = 1

ih̄
[ĤI , ρ̂] − 1

2

2∑
i=1

CiL̂
d
i (ρ̂)

− r

2
(σ̂00ρ̂ + ρ̂σ00 − 2σ̂e0ρ̂σ̂0e)

−γsp

2
(σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂− − 2σ̂−ρ̂σ̂+)

−γd

2
(σ̂eeρ̂σ̂gg + σ̂ggρ̂σ̂ee), (A5)

where we introduced a Lindbladian damping superoperator as
L̂d

i (Ô) = â†
i âiÔ + Ôâ†

i âi − 2âiÔâ†
i .

To obtain the master equation for the reduced field density
operator ρ̂ f , which describes the dynamics of the optical fields
in the cavities, one has to trace out the density operator ρ̂ in
Eq. (A5) over the atom states. Namely,

d

dt
ρ̂ f = Tra

[
d

dt
ρ̂

]
=

∑
i=0,e,g

〈i| d

dt
ρ̂|i〉, (A6)

d

dt
ρ̂ f = 1

ih̄
[Ĥf , ρ̂ f ] − 1

2

2∑
i=1

CiL̂
d
i (ρ̂ f )

+ g(â1ρ̂ge − â†
1ρ̂eg − ρ̂geâ1 + ρ̂egâ†

1), (A7)

where the Hamiltonian Hf accounts for the field interaction
between active and passive cavities, i.e., it is the second term
in Eq. (A1). The operator ρ̂ge = 〈g| d

dt ρ̂|e〉, from Eq. (A5),
obeys the following equation:

d

dt
ρ̂ge = g(ρ̂ggâ†

1 − â†
1ρ̂ee) − γT

2
ρ̂ge, (A8)

where γT = γsp + γd is the total decay rate of the atom. The
same relation, given in Eq. (A8), also holds true for the
operator ρ̂eg = 〈e|ρ̂|g〉.

Assuming γT � C1,C2, κ , one eliminates ρ̂ge and ρ̂eg in the
adiabatic approximation, i.e., d

dt ρ̂ge = 0. Thus one obtains

ρ̂ge = 2g

γT
(ρ̂ggâ†

1 − â†
1ρ̂ee). (A9)

Substituting ρ̂ge and ρ̂eg in Eq. (A9) into Eq. (A7) one obtains

d

dt
ρ̂ f = 1

ih̄
[Hf , ρ̂ f ] − 1

2

2∑
i=1

CiL̂
d
i (ρ̂ f )

−2g2

γT

(
L̂d

1 (ρ̂gg) + L̂a
1 (ρ̂ee)

)
, (A10)

where La
i (Ô) = âiâ

†
i Ô + Ôâiâ

†
i − 2â†

i Ôâi is the Lindbladian
amplification superoperator.

Moreover, ρ̂ee and ρ̂gg satisfy the following equations:

d

dt
ρ̂ee = 2g2

γT

(
2â1ρ̂ggâ†

1−â1â†
1ρ̂ee−ρ̂eeâ1â†

1

)−γspρ̂ee+rρ̂00,

d

dt
ρ̂gg = 2g2

γT

(
2â†

1ρ̂eeâ1 − â†
1â1ρ̂gg − ρ̂ggâ†

1â1
) + γspρ̂ee.

(A11)

If the population of the lower-energy level |g〉 is very low, i.e.,
the energy quickly decays into the ground state |0〉, and if the
gain saturation is weak, then one may write

ρ̂gg 
 0, ρ̂00 
 ρ̂ f . (A12)

Applying standard perturbation techniques to Eq. (A11), one
arrives at

ρ̂ee 
 r

γsp
ρ̂ f − 2g2r

γT γ 2
sp

(â1â†
1ρ̂ f + ρ̂ f â1â†

1). (A13)

Combining now Eqs. (A12), (A13), and Eq. (A10), one
attains the master equation for the two field operator in the
interaction picture

d

dt
ρ̂ f = 1

ih̄
[Ĥf , ρ̂ f ] − A

2
L̂a

1 (ρ̂ f ) − 1

2

2∑
i=1

CiL̂
d
i (ρ̂ f )

+ B

2
[(â1â†

1)2ρ̂ f + 2â1â†
1ρ̂ f â1â†

1 + ρ̂ f (â1â†
1)2

− 2â†
1ρ̂ f â1â†

1â1 − 2â†
1â1â†

1ρ̂ f â1], (A14)

with

A = 4g2r

γT γsp
, B = A2

2r
, (A15)
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where the coefficient A stands for the linear gain and B is the
gain saturation coefficient.

For the case of the ideal laser system with γd = γsp = 0,
one can attain the quantum laser master equation within the
Scully-Lamb laser theory. In the weakly saturated regime, the
spontaneous emission on the laser transition can be discarded
and one obtains Ref. [36]

ρ̂gg 
 2g2

�2
â†

1ρ̂eeâ1 = 2rg2

�3
â†

1ρ̂ f â1,

ρ̂ee 
 r

�
ρ̂ f − rg2

�3
[â1â†

1ρ̂ f + ρ̂ f â1â†
1], (A16)

where � is a total decay rate of the states |g〉 and |e〉 into
the ground state |0〉 of the atom. Substituting the equations
in (A16) into Eq. (A10), we obtain

d

dt
ρ̂ f = 1

ih̄
[Ĥf , ρ̂ f ] − A

2
L̂a

1 (ρ̂ f ) − 1

2

2∑
i=1

CiL̂
d
i (ρ̂ f )

+
[

B

8
{ρ̂ f (â1â†

1)2 + 3â1â†
1ρ̂ f â1â†

1 − 4â†
1ρ̂ f â1â†

1â1}

+ H.c.

]
, (A17)

where the gain and gain saturation coefficients are now ex-
pressed as

A = 2g2r

�2
, B = 4g2

�2
A. (A18)

Note a typo in the prefactor of the gain saturation coefficient
B in Eq. (A18) in Ref. [36]. Namely, there is a prefactor 1,
instead of 4.

We may also add the Hamiltonian term related to the
coupling between the cavity field â1 and the external driv-
ing coherent classical field into the master equation. Such a
Hamiltonian can be given by

Ĥdrv = iε[â1 exp(iωl t ) − â†
1 exp(−iωl t )], (A19)

where the coupling constant ε ≡ √
γ1P/(h̄ωl ) accounts for

the coupling between the driving external coherent field with
power P and the cavity field â1. By rewriting the field
Hamiltonian Ĥf in the Schrödinger picture, we finally arrive
at Eq. (2).

APPENDIX B: DERIVATION OF EQ. (23) AND SOME
EXACT FORMULAS FROM SEC. III E

Working in the reference frame where the phase of the driv-
ing field is zero, and by expressing the complex amplitudes in
the rate equations in Eq. (10) as Ak = |Ak|eiφk , one obtains the

following equations for the steady state:

i�|A1| + G1

2
|A1| − κ|A2|ei(φ2−φ1 ) − B

2
|A1|3 − εe−iφ1 = 0,

i�|A2| − �2

2
|A2| + κ|A1|e−i(φ2−φ1 ) = 0. (B1)

Replacing now |A2| exp[i(φ2 − φ1)] by |A1| in the second
equation of Eq. (B1) and inserting it into the first equation,
we attain(

i� + G1

2
− 2κ2

�2 − 2i�

)
|A1| − B

2
|A1|3 − ε exp (−iφ1) = 0.

(B2)
Separating the real and imaginary parts in Eq. (B2) and
equalizing them to zero, one arrives at

cos φ1 = |A1|
2ε

(G1 − f �2 − B|A1|2),

sin φ1 = |A1|�
ε

( f − 1), (B3)

where f is given in Eq. (24). Utilizing now the standard
trigonometric relation cos2 φ1 + sin2 φ1 = 1 and collecting
together the coefficients at each order of the real amplitude,
we finally obtain the cubic equation for the field intensity
I1 = |A1|2, given in Eq. (23).

The unique real solution of the steady-state intensity I1,
given in Eq. (23), is

I1 = 1

6λ1x

[
x2 − 2λ2x + 4λ2

2 − 12λ1λ3
]
, (B4)

where

x3 = 12
√

3
(
27λ2

1λ
2
4 − 18λ1λ2λ3λ4 + 4λ1λ

3
3

+ 4λ3
1λ4 − λ2

2λ
2
3

)1/2 + 36λ1λ2λ3 − 108λ2
1λ4 − 8λ3

2,

(B5)

with the coefficients λk introduced in Eq. (24). For the
transmission spectra T4→1, given in Eq. (27), the steady-state
intensity I1 has the same solution as in Eq. (B4), and with
the same coefficients λk in Eq. (24), except the coefficient λ4,
which reads now as

λ4 = − f ε2. (B6)

By combining together the input-output relation Aout = Ain +√
γ1A1 with the solution for the phase of the complex ampli-

tude A1 in Eq. (B3), one can straightforwardly find the trans-
mission spectrum T1→2, after applying Eq. (25), as follows:

T1→2 = 1 + 2γ1I1

ε2

(γ1

2
− F

)
− γ1BI2

1

ε2
, (B7)

where F is given in Eq. (24).
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