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The interaction among the components of a hybrid quantum system is often neglected when considering
the coupling of these components to an environment. However, if the interaction strength is large, this
approximation leads to unphysical predictions, as has been shown for cavity-QED and optomechanical systems
in the ultrastrong-coupling regime. To deal with these cases, master equations with dissipators retaining the
interaction between these components have been derived for the quantum Rabi model and for the standard
optomechanical Hamiltonian. In this article, we go beyond these previous derivations and present a general
master equation approach for arbitrary hybrid quantum systems interacting with thermal reservoirs. Specifically,
our approach can be applied to describe the dynamics of open hybrid systems with harmonic, quasiharmonic,
and anharmonic transitions. We apply our approach to study the influence of temperature on multiphoton vacuum
Rabi oscillations in circuit QED. We also analyze the influence of temperature on the conversion of mechanical
energy into photon pairs in an optomechanical system, which has been recently described at zero temperature.
We compare our results with previous approaches, finding that these sometimes overestimate decoherence rates
and underestimate excited-state populations.
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I. INTRODUCTION

According to quantum mechanics, a closed system always
displays a reversible evolution. However, no quantum system
is completely isolated from its environment; for example,
control and readout of a quantum system requires some
coupling to the outside world, which leads to dissipation
and decoherence (see, e.g., Refs. [1–4]). Realistic quantum
systems should thus be regarded as open, taking into account
the coupling to their environments. However, using an
exact microscopic approach to include the environment (or
reservoir) with its many degrees of freedom is often not
feasible. Hence it is highly desirable to model open quantum
systems using a small number of variables. An adequate
description of the time evolution of an open quantum system
can be provided by the equation of motion for its density
matrix: a quantum master equation [5,6]. Another useful
approach is based on the Heisenberg Langevin equation (see,
e.g., Refs. [7–9]). Microscopic derivations of master equations
start from the Hamiltonian dynamics of the total density
matrix (for the system plus the environment). Then, tracing
out the reservoir degrees of freedom, and introducing some
approximations, a master equation can be derived describing
the time evolution of the reduced density matrix only for
the system [10]. It turns out that the resulting evolution, in
general, is no longer unitary, and the open quantum system
evolves into mixed states (see, e.g., Ref. [11]).

A hybrid quantum system combines two or more physical
components or subsystems [12–14], with the goal of exploit-
ing the advantages and strengths of the different systems

in order to explore new phenomena and potentially bring
about new quantum technologies. An important requirement
for the realization of a functional hybrid quantum system
is the ability to transfer, with high fidelity, quantum states
and properties between its different components. Specifically,
the effective coupling rate between the subsystems must be
large enough to allow quantum state transfers between them
within the shortest coherence time of the two subsystems [14].
This interaction regime is usually called the strong-coupling
regime [15]. Cavity quantum electrodynamics (QED) in the
strong-coupling regime has demonstrated great capability and
potential for the control and manipulation of quantum states
[3,13,15]. Further increasing the coupling strength, a hybrid
quantum system enters the ultrastrong-coupling (USC) regime
when the interaction rate becomes comparable to the transi-
tion frequency of at least one of the subsystems [3,16,17].

It has been shown that USC can give rise to several
interesting physical effects [18–34]. Ultrastrong coupling
has been achieved in a variety of cavity-QED and other
hybrid condensed-matter systems, including semiconductor
polaritons in quantum wells [35–39], superconducting quan-
tum circuits [40–53], a terahertz metamaterial coupled to
the cyclotron resonance of a two-dimensional electron gas
(2DEG) [54–58], organic molecules [59–64], and in an op-
tomechanical system, where a plasmonic picocavity was cou-
pled to vibrations in a molecule [65]. In particular, in the
case of superconducting quantum circuits, it is possible to
reach the USC regime with even just a single artificial atom
coupling to an electromagnetic resonator [40,41,52,53,66,67].
Recently, coupling rates exceeding the transition frequencies
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FIG. 1. (a) Master-equation approach valid in the weak- and
strong-coupling regimes. The light-matter coupling is neglected
while deriving the dissipators. (b) The master-equation approach
considering the light-matter coupling. As the coupling strength be-
tween the two subsystems increases, it becomes necessary to treat
dissipation effects including the coupling between the subsystems.
This can be done by developing the system operators describing the
coupling to the reservoirs in the eigenbasis of the coupled light-
matter system.

of the components (deep-strong-coupling regime [20]) have
been obtained in both a circuit-QED setup [46,50] and with a
2DEG [58].

Although the Hamiltonian of a coupled light-matter system
contains the so-called counter-rotating terms, allowing the
simultaneous creation or annihilation of an excitation in both
the matter system and the cavity mode, these terms can
be safely neglected for small coupling rates, if the compo-
nents interact resonantly or almost resonantly. However, when
the coupling strength becomes a significant fraction of the
cavity frequency (or of the emitter’s transition frequency),
this often-invoked rotating-wave approximation (RWA) is no
longer applicable and the antiresonant terms in the interaction
Hamiltonian significantly change the standard cavity-QED
physics [35]. For example, the number of excitations in the
cavity-emitter system is no longer conserved [30], even in the
absence of drives and dissipation, and the system states be-
come dressed by the presence of virtual excitations [68]. It has
also been demonstrated [69] that counter-rotating terms can
induce anomalous qubit transitions (which do not conserve
the excitation number) in a superconducting qubit-resonator
system detuned from resonance.

When deriving the master equation for a hybrid quantum
system, the interaction between the subsystems is usually
neglected when considering their coupling to the environment
[see Fig. 1(a)]. This results in the standard quantum-optical
master equation [5,6] (see Sec. II A). This procedure works
well in the weak-coupling regime, and can also be safely ap-
plied in the strong-coupling regime, when the density of states
of the reservoirs and the system-bath interaction strengths are
approximately flat (frequency independent) on the scale of
the energy-level splittings induced by the interaction between
the subsystems. However, it has been shown that when the
light-matter interaction increases up to the breakdown of the
RWA, this approach leads to unphysical predictions, e.g.,
excitations in the system even at zero temperature [21]. A
closely related problem arising in the USC regime is the
failure of standard input-output theory [22,24,70–72], which
predicts an unphysical output of photons when the hybrid
quantum system is in its ground state.

In order to overcome the problems in the description of dis-
sipation of cavity-QED systems in the USC regime, a master

equation taking into account the non-Markovian nature of the
baths has been developed [73]. Furthermore, Ref. [21] showed
that a master equation working properly in the USC regime
of cavity QED can be obtained by including the light-matter
coupling in the derivation of dissipative terms of the master
equation [see Fig. 1(b)]. This approach does not require the
introduction of non-Markovian baths. The decoherence rates
entering the modified master equation instead depend on
the bath noise spectrum evaluated at the dressed transition
frequencies of the light-matter system. Since this modified
master equation is obtained after a post-trace RWA, it can
only be applied to nonlinear interacting quantum systems with
anharmonicity larger than the transition linewidths. This pre-
vents the application of this approach to cavity-QED systems
in the USC dispersive regime (see Sec. III A), and to other
hybrid quantum systems displaying a coexistence of harmonic
(or quasiharmonic) and anharmonic transitions, e.g., optome-
chanical systems. In order to describe the losses through the
mirror of a cavity embedding matters, a master equation of
a non-Lindblad form was also derived [74]. For optomechan-
ical systems in the USC regime, an analogous dressed-state
master-equation approach has been developed [75], but it also
has limitations (see Sec. III B). A zero-temperature master
equation able to describe systems with both anharmonic and
(quasi-) harmonic transitions has been introduced to study a
cavity-QED system in the USC and dispersive regimes [76].
However, a finite-temperature master equation is an essential
tool for a precise analysis of experimental results, which, to
some degree, are always affected by thermal noise. A master
equation without the post-trace RWA has been derived to
describe a general spin-boson problem mapped into a finite-
temperature Rabi model in ultrastrong coupling in Ref. [77].

The main purpose of this article is to provide a general
approach for the description of dissipation in arbitrary hybrid
quantum systems with arbitrary coupling strengths between
its components. We do this by presenting a generalized master
equation able to describe systems with both harmonic and
anharmonic transitions, also valid for non-zero-temperature
reservoirs. The only key assumption in our derivation is a
weak system-bath interaction, such that the usual second-
order Born approximation can be applied (recently, different
approaches where this assumption can be relaxed have been
developed in Refs. [78–81].

In particular, we decompose the system operators in terms
of the dressed states of the hybrid quantum system and derive
the master equation without performing the usual secular
approximation. Finally, we take care of possible numerical
instabilities due to the presence of fast oscillating terms.

The outline of this article is as follows. We begin in Sec. II
by briefly reviewing the standard quantum-optical master
equation (Sec. II A) and the dressed master equation for
anharmonic systems (Sec. II B). Section II C is devoted to the
presentation of a non-Lindblad generalized master equation,
able to overcome the limitations of the dressed approach
of Sec. II B and to take into account non-zero-temperature
reservoirs. We also give a suitable solution for some numer-
ical stability problems of our generalized master equation.
In Secs. III A and III B, we apply this generalized master
equation to calculate the dynamics of a circuit-QED sys-
tem and an optomechanical system, respectively, at nonzero
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temperatures, comparing the obtained results with the stan-
dard approaches used previously. We conclude in Sec. IV. In
the Appendix A, we present more details for the derivation of
the generalized dressed master equation.

II. MASTER EQUATIONS

In this section, we introduce dissipation for hybrid quan-
tum systems following three different approaches. We start
with the standard master equation, generally used for the
description of open systems in quantum optics. Then we
introduce the dressed master equation [21]. Finally, we con-
sider a generalized dressed approach, able to describe the
dissipation of hybrid quantum systems with arbitrary coupling
strength, valid for systems displaying harmonic, quasihar-
monic, and anharmonic transitions, while also considering
non-zero-temperature reservoirs.

We begin by considering a generic system consisting of N

interacting components or subsystems. Each ith component
is weakly coupled to an independent bath, modeled as a
collection of quantum harmonic oscillators, described by the
free Hamiltonian (h̄ = 1 throughout this article)

Ĥ
(i)
B =

∑
l

νl b̂
†
i,l b̂i,l , (1)

where b̂i,l (b̂†i,l) are bosonic annihilation (creation) operators
for the lth bath mode with frequency νl of the ith reservoir.
The system-bath (denoted by the subscript SB) interaction
Hamiltonian is given by

ĤSB =
∑
i,l

αi,l (ŝi + ŝ
†
i )(b̂i,l + b̂

†
i,l ), (2)

where ŝi (ŝ†i ) are annihilation (creation) operators of the ith
subsystem, mediating the interaction with the reservoirs. We
denoted the coupling strength of the ith subsystem to the bath
mode l of the ith reservoir by αi,l . In the interaction picture,
the system-bath interaction Hamiltonian takes the form

ˆ̃HSB =
∑
i,l

αi,le
ıĤS t (ŝi + ŝ

†
i )e−ıĤS t (b̂i,le

−ıνi,l t + b̂
†
i,le

ıνi,l t ),

(3)

where ĤS is the system Hamiltonian and ı is the imaginary
unit.

A. Standard master equation

In the standard approach, the components or subsystems
are assumed to be independent while obtaining the dissi-
pation. The coupling between the components is afterwards
introduced in the system Hamiltonian. This leads to the
Schrödinger-picture standard master equation

˙̂ρ = −ı[ĤS, ρ̂] + Lbareρ̂, (4)

where ρ̂ is the density matrix of the system and

Lbareρ̂ =
∑

i

{γi[1 + n(ωi, Ti )]D[ŝi]ρ̂

+ γin(ωi, Ti )D[ŝ†i ]ρ̂}, (5)

with the generic dissipator

D[Ô]ρ̂ = 1
2 (2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂ ). (6)

In Eq. (5), the γi’s describe the leakage rates and n(ωi, Ti )
is the average thermal population of the ith reservoir at
temperature Ti and the frequency ωi at which ŝi rotates in the
interaction picture. Pure dephasing effects can be included by
adding to Eq. (5) the additional term (γφi

/2)D[d̂i]ρ̂, where
d̂i are system operators that do not change the energy of the
system and γφi

are the pure dephasing rates.
The master equation provided in Eq. (4) can be used to

describe many cavity- and circuit-QED experiments in the
weak- and strong-coupling regimes [3,5,6]. However, it has
been shown that when the coupling between the components
or subsystems increases beyond the point where the RWA
is applicable, this approach leads to unphysical predictions,
e.g., production of excitations in the system even at zero
temperature [21].

B. Master equations in the dressed picture

Master equation for anharmonic systems

In order to overcome the limitations of the standard ap-
proach, Ref. [21] developed a dressed master equation, taking
into account the coupling between all the components of the
system. They also considered that transitions in the hybrid
system occur between dressed eigenstates, not between the
eigenstates of the free Hamiltonians of the components. In the
following, we briefly show some key points of the dressed
master equation derivation. We first express the system Hamil-
tonian in the dressed basis of its energy eigenstates. We then
switch to the interaction picture, writing the system operators
as

ˆ̃Si (t ) =
∑
j,k>j

Cjk|j 〉〈k|eı�jk t , (7)

with

Cjk = 〈j |(ŝi + ŝ
†
i )|k〉, (8)

�jk = Ej − Ek, (9)

and the reservoir operators as

ˆ̃B(t ) =
∑
i,l

αi,l b̂i,le
−ıνl t . (10)

In this way, the system operators ŝi are expressed as a sum
over transition operators |j 〉〈k|, which cause transitions (with
frequency �jk) between eigenstates of the hybrid quantum
system {|j 〉, |k〉}. Note that “˜ ” identifies the operators in the
interaction picture. With these new dressed operators, Eq. (3)
can be split into two parts, one each for the dressed system
operators with positive and negative frequencies:

ˆ̃HSB =
∑

i

{ ˆ̃Si (t ) ˆ̃B†
i (t ) + ˆ̃S†

i (t ) ˆ̃Bi (t )}. (11)

Note that, as shown in Ref. [21], the fast oscillating terms
Ŝ
†
i (t )B̂†

i (t ) and Ŝi (t )B̂i (t ) have been dropped by an ini-
tial RWA and the diagonal terms arising from degenerate
transitions with j = k are neglected considering a system
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displaying parity symmetry (in this case Cjj = 0). By follow-
ing the standard procedure [5] (second-order Born approxi-
mation, Markov approximation, assuming reservoirs with a
continuum of frequencies, and performing the secular approx-
imation), as shown in detail in Ref. [21], for this simplified
version of Eq. (3), we obtain a dressed master equation that in
the Schrödinger picture can be written as

˙̂ρ = −ı[ĤS, ρ̂] + Ldressedρ̂, (12)

with the Lindbladian superoperator

Ldressedρ̂ =
∑

i

∑
j,k<j

{
�

jk

i n(�jk, Ti )D[|j 〉〈k|]ρ̂

+�
jk

i [1 + n(�jk, Ti )]D[|k〉〈j |]ρ̂}
, (13)

where the thermal populations are (kB = 1 throughout this
article)

n(�jk, Ti ) = [exp {�jk/Ti} − 1]−1 (14)

and the damping rates are

�
jk

i = 2πgi (�jk )|αi (�jk )|2|Cjk|2, (15)

with g(�jk ) being the reservoir density of states and α(�jk )
the system-reservoir coupling strength.

As shown by several studies [21–24,29,71,82–85], the
Lindbladian in Eq. (13) can correctly describe the dynamics
of anharmonic cavity-QED systems in the USC regime. At
T = 0, rather than exciting the system, the dissipators give
relaxation to the true dressed ground state. At T �= 0, these
dissipators correctly describe the relaxation to the thermal-
equilibrium density matrix for the interacting system [71].
However, because of the secular approximation used in the
derivation of Eq. (13), this standard approach is not able to
describe dissipation or decoherence in open quantum systems
with mixed harmonic-anharmonic or quasiharmonic spec-
tra [21], e.g., for cavity QED in the dispersive regime and
cavity optomechanics.

C. Generalized master equation

1. Derivation

In this section, we extend the previous treatment in order
to derive a generalized dressed master equation able to de-
scribe both harmonic and mixed harmonic-anharmonic sys-

tems coupled to non-zero-temperature reservoirs. Moreover,
the present derivation is not limited to systems with parity
symmetry.

We start expressing the system Hamiltonian in the dressed
basis of its energy eigenstates. We then switch to the interac-
tion picture, writing the system operators as

ˆ̃Si (t ) =
∑

ε′−ε=ω

�̂(ε)(ŝi + ŝ
†
i )�̂(ε′)e−ıωt

=
∑

ε′−ε=ω

Ŝi (ω)e−ıωt , (16)

and the reservoir operators as in Eq. (10), labelling the
eigenvalues of ĤS by ε and denoting the projectors onto the
respective eigenspaces by �̂(ε) ≡ |ε〉〈ε|. Recall that the tilde
symbol identifies interaction-picture operators. In this way,
the system operators ŝi are expressed as a sum over transition
operators, which cause transitions (with transition frequency
ω) between energy eigenstates of the hybrid quantum sys-
tem. For ω > 0, Ŝi (ω) is a positive-frequency operator that
takes the system from an eigenstate with higher energy to
one with lower energy. Conversely, for ω < 0, Ŝi (ω) is a
negative-frequency operator which produces a transition to a
higher-energy eigenstate. In the following, to emphasize these
properties, we introduce the notation

Ŝ
(+)
i (ω) = Ŝi (ω) for ω > 0,

Ŝ
(−)
i (ω) = Ŝi (−ω) for ω > 0, (17)

Ŝ
(0)
i = Ŝi (ω) for ω = 0.

With these new dressed operators, Eq. (3) can be rewritten in
a way that makes it easy to derive the Born-Markov master
equation for the system:

ˆ̃HSB =
∑

i

ˆ̃Si (t )[ ˆ̃B†
i (t ) + ˆ̃Bi (t )]. (18)

Following the standard procedure (see the Appendix A)
the generalized dressed master equation can be obtained eval-
uating the double integrals in Eq. (A4) of the Appendix A
without assuming parity symmetry, and evaluating the two
integrals without introducing the secular approximation ω =
ω′. In this case, we obtain a Liouvillian superoperator L that,
considering all the different subsystems, in the Schrödinger
picture, can be written in the general form

Lgmeρ̂ = 1

2

∑
i

∑
ω,ω′

{�i (−ω′)n(−ω′, Ti )[Ŝi (ω
′)ρ̂(t )Ŝi (ω) − Ŝi (ω)Ŝi (ω

′)ρ̂(t )] + �i (ω)n(ω, Ti )[Ŝi (ω
′)ρ̂(t )Ŝi (ω)

− ρ̂(t )Ŝi (ω)Ŝi (ω
′)] + �i (ω)[n(ω, Ti ) + 1][Ŝi (ω)ρ̂(t )Ŝi (ω

′) − Ŝi (ω
′)Ŝi (ω)ρ̂(t )]

+�i (−ω′)[n(−ω′, Ti ) + 1][Ŝi (ω)ρ̂(t )Ŝi (ω
′) − ρ̂(t )Ŝi (ω

′)Ŝi (ω)]}, (19)

where

�i (ω) = 2πgi (ω)|αi (ω)|2, (20)

and “gme” refers to generalized master equation.
Equation (19) contains several terms since both the transi-

tion frequencies ω and ω′ can be positive, negative, and zero,

although both �i (ω) and n(ω, Ti ) are nonzero for positive
frequencies only. Moreover, only a few of these terms are
relevant in order to correctly describe the system dynamics.
Indeed, the terms with oscillation frequencies significantly
larger than the damping rates �i of the system provide neg-
ligible contributions when integrating the master equation.
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Equation (19) also contains terms with ω′ = ω = 0, origi-
nating from diagonal transition operators or, more generally,
operators describing zero-frequency transitions. These terms
give rise to additional pure dephasing contributions. Note
that these terms can be regarded as a generalization of those
appearing in the master equation for optomechanical systems
in the USC regime [75].

Expanding Eq. (19), we obtain terms oscillating at frequen-
cies ±(ω′ ± ω) arising from products of Ŝ

(−)
i and Ŝ

(+)
i . We

also obtain terms oscillating at frequencies −ω′, +ω arising
from products of Ŝ

(−)
i or Ŝ

(+)
i with Ŝ

(0)
i and nonoscillating

terms arising from products between zero-frequency operators
Ŝ

(0)
i . Moreover, considering a system with well separated

energy levels (ω � �i), the terms oscillating at ±(ω + ω′),
+ω, and −ω′ can be considered as rapidly oscillating and
can be neglected. Including only those terms providing non-
negligible contributions to the dynamics, the Liouvillian in
Eq. (19) can be written as

Lgmeρ̂ = 1

2

∑
i

∑
(ω,ω′ )>0

{
�i (ω

′)n(ω′, Ti )[Ŝ
(−)
i (ω′)ρ̂(t )Ŝ (+)

i (ω) − Ŝ
(+)
i (ω)Ŝ (−)

i (ω′)ρ̂(t )] + �i (ω)n(ω, Ti )[Ŝ
(−)
i (ω′)ρ̂(t )Ŝ (+)

i (ω)

− ρ̂(t )Ŝ (+)
i (ω)Ŝ (−)

i (ω′)] + �i (ω)[n(ω, Ti ) + 1][Ŝ (+)
i (ω)ρ̂(t )Ŝ (−)

i (ω′) − Ŝ
(−)
i (ω′)Ŝ (+)

i (ω)ρ̂(t )]

+�i (ω
′)[n(ω′, Ti ) + 1][Ŝ (+)

i (ω)ρ̂(t )Ŝ (−)
i (ω′) − ρ̂(t )Ŝ (−)

i (ω′)Ŝ (+)
i (ω)] + �+

i (Ti )
[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(0)
i ρ̂(t )

]
+�

′+
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − ρ̂(t )Ŝ (0)
i (ω′)Ŝ (0)

i

] + �−
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − ρ̂(t )Ŝ (0)
i Ŝ

(0)
i

]
+�

′−
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(0)
i ρ̂(t )

]}
, (21)

with

�
′±
i (Ti ) =

∫ t

0
dτ

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]e±ıντ ,

(22)

�±
i (Ti ) =

∫ t

0
dτ

∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

±ıντ . (23)

We also observe that, for the particular case of an Ohmic
bath, where

gi (ν)|αi (ν)|2 = γiν

2πfi

, (24)

with γi and fi being, respectively, the damping and the
frequency of the considered subsystem, we obtain

�i (ω) = γiω

fi

, (25)

and all the pure dephasing rates give the same result:

�
′±
i (Ti ) = �±

i (Ti ) = �(Ti ), (26)

�(Ti ) = γi

4fi

Ti. (27)

In the next section, we apply this generalized dressed master
equation to two hybrid quantum systems, comparing the ob-
tained numerical results with previous approaches.

2. Stability problems

We observe that the dissipator in Eq. (21) is not in Lindblad
form and, consequently, properties like the positivity of the
density matrix and the conservation of the probability cannot
be guaranteed. Furthermore, in this framework, some useful
theorems [86] on the steady-state behavior have not been
proven yet.

Actually, a careful inspection of Eq. (21) shows that it can
be regarded as approximately Lindblad-like. Specifically, if

we consider the interaction picture, each term of Eq. (21) (ex-
cept the last) oscillates at frequencies ±(ω − ω′). If (ω − ω′)
is significantly larger than the damping rates �i of the system,
these terms provide negligible contributions when integrating
the master equation. Hence |ω − ω′| can be assumed to be of
the order of the system linewidths. It is thus reasonable to as-
sume for the thermal populations of the reservoirs n(ω, Ti ) 	
n(ω′, Ti ) and for the dampings �i (ω) 	 �i (ω′). This analysis
shows that, within a very good approximation, the dissipator
in Eq. (21) can be regarded to be in Lindblad form.

Although the fast oscillating terms arising in Eq. (21),
produced from transitions with high frequency differences
(not present after the post-trace RWA), should not provide a
significant contribution for |ω − ω′| > �i , they can strongly
increase the computation time and lead to computational
instabilities. In order to overcome these difficulties, we use
numerical filtering with a steplike function that sets to zero
all the dissipator terms involving frequency differences higher
than a certain value �. More specifically, the filtered Liouvil-
lian takes the form

Lfilt
gmeρ̂ = Lgmeρ̂ × F (ω,ω′), (28)

where the filter function F (ω,ω′) can be written in a general-
ized form as

F (ω,ω′) = �(|ω − ω′|) − �(|ω − ω′| − �), (29)

with � the Heaviside step function and � the bandwidth of
the filter.

III. DISSIPATION IN THE USC REGIME

In this section, we apply the generalized master equation
presented in the previous section to study the influence of
temperature on the dynamics of two open hybrid quantum
systems in the USC regime. Specifically, we reexamine the
dynamics of the two systems presented in Refs. [27] and [87].
The first example is a circuit-QED system in the dispersive
regime, displaying multiphoton quantum Rabi oscillations.
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For this setup, we also compare the results obtained with
the generalized master equation to those obtained using the
dressed approach for anharmonic systems [21].

The second example is an optomechanical system with
coexisting harmonic and anharmonic spectra. Specifically, we
consider an ultra-high-frequency mechanical oscillator ultra-
strongly coupled to a microwave resonator. Very recently, con-
sidering zero-temperature reservoirs, it has been shown [88]
that this system is promising for the observation of the dy-
namical Casimir effect (DCE), which converts mechanical
energy into photon pairs [89]. Here we analyze the influence
of temperature on this fundamental quantum effect. Moreover,
in order to understand the impact of the generalized master
equation on the dynamics of hybrid quantum systems, we
compare the obtained numerical results with those obtained
using a previously developed approach for USC optomechan-
ics [75]. Note that all the numerical results are displayed in
the laboratory frame.

A. Circuit QED beyond the RWA

In this circuit-QED example, we study a flux qubit coupled
to a single-mode resonator [27]. The bare qubit Hamiltonian
can be written as

Ĥq = ωqσ̂z/2, (30)

where the qubit resonance frequency is ωq =√
�2 + (2Ipδ�x )2, with � the qubit energy gap, Ip the

persistent current corresponding to the minima of the qubit
potential, and δ�x the flux offset. The bare resonator
Hamiltonian is

Ĥc = ωcâ
†â, (31)

where ωc is the frequency of the resonator mode and â (â†) is
the bosonic annihilation (creation) operator for that mode. The
total quantum system is described by the generalized quantum
Rabi Hamiltonian

ĤS = Ĥq + Ĥc + gX̂[cos(θ )σ̂x + sin(θ )σ̂z], (32)

where the flux dependence is encoded in cos(θ ) = �/ωq ,
X̂ = â + â†, and σ̂x , σ̂z are Pauli matrices.

As shown in Ref. [27], the lowest energy levels of this
system display a well-known avoided level crossing arising

for ωq 	 ωc (vacuum Rabi splitting). This avoided crossing
is due to the coherent coupling of the states |e, 0〉 and |g, 1〉,
where g (e) indicates the ground (excited) state of the qubit
and the second entry in the kets represents the photon number.
However, when the RWA breaks down, the counter-rotating
terms in Eq. (32) must be taken into account and the total
number of excitations in the system is no longer conserved
[41,69]. As a consequence, the coherent coupling between
states with different numbers of excitations, not allowed in the
standard Jaynes-Cummings model [90,91], becomes possible
through virtual transitions mediated by the counter-rotating
terms [31]. This generates several additional avoided level
crossings between states with different excitation numbers,
e.g., between |e, 0〉 and |g, 2〉 [27].

For our numerical calculations, we consider, as in
Ref. [27], ωc/2π = 4.0 GHz and a resonator-qubit coupling
strength g/ωc = 0.157. We focus on the avoided crossing
arising at ωq 	 2ωc between the states |ψ±〉 	 1√

2
(|e, 0〉 ±

|g, 2〉). We set ωq/2π = 7.97 GHz (obtained using the qubit
parameters �/h = 2.25 GHz, 2Ip = 1.97 nA, and δ�x =
3.88 �0); this is where the splitting reaches its minimum [27].
The minimum splitting 2�eff provides a direct measurement
of the effective resonant coupling �eff between the states
|e, 0〉 and |g, 2〉.

In order to probe this avoided crossing, we consider, as in
Ref. [27], the case where the qubit is directly excited by a
Gaussian π pulse,

Ĥp = E (t ) cos(ωt )σ̂x, (33)

where E (t ) = � exp[−(t − t0)2/2τ 2]/(τ
√

2π ). Here, τ is the
standard deviation and �/ωc = (π/3) × 10−1 the amplitude
of the pulse. The center frequency of the pulse corresponds
to the middle of the avoided crossing considered here. Specif-
ically, ω = (ω3,0 + ω2,0)/2, with ωi,j = ωi − ωj , where we
labeled the energy values and the eigenstates of the hybrid
system as ωl and |l〉, with l = 0, 1, . . . , such that ωk > ωj for
k > j .

The system dynamics is then evaluated using the general-
ized master equation (gme)

˙̂ρ = −ı[ĤS + Ĥp, ρ̂] + Lgmeρ̂, (34)

where, considering an Ohmic bath, the Liouvillian dissipator
can be written as

Lgmeρ̂ =
∑

(ω,ω′ )>0

1

2

{
γω′

ωq

n(ω′, Tγ )[P̂ (−)(ω′)ρ̂P̂ (+)(ω) − P̂ (+)(ω)P̂ (−)(ω′)ρ̂] + γω

ωq

[n(ω, Tγ ) + 1][P̂ (+)(ω)ρ̂P̂ (−)(ω′)

− P̂ (−)(ω′)P̂ (+)(ω)ρ̂] + γω

ωq

n(ω, Tγ )[P̂ (−)(ω′)ρ̂P̂ (+)(ω) − ρ̂P̂ (+)(ω)P̂ (−)(ω′)] + γω′

ωq

[n(ω′, Tγ ) + 1]

× [P̂ (+)(ω)ρ̂P̂ (−)(ω′) − ρ̂P̂ (−)(ω′)P̂ (+)(ω)] + κω′

ωc

n(ω′, Tκ )[Â(−)(ω′)ρ̂Â(+)(ω) − Â(+)(ω)Â(−)(ω′)ρ̂]

+ κω

ωc

[n(ω, Tκ ) + 1][Â(+)(ω)ρ̂Â(−)(ω′) − Â(−)(ω′)Â(+)(ω)ρ̂] + κω

ωc

n(ω, Tκ )[Â(−)(ω′)ρ̂Â(+)(ω)

− ρ̂Â(+)(ω)Â(−)(ω′)] + κω′

ωc

[n(ω′, Tκ ) + 1][Â(+)(ω)ρ̂Â(−)(ω′) − ρ̂Â(−)(ω′)Â(+)(ω)]

}
. (35)
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FIG. 2. Dynamics of anomalous two-photon vacuum Rabi os-
cillations. Results obtained using the generalized-master-equation
approach, varying the temperature of both subsystems. (a) Time evo-
lution of the mean cavity photon number 〈Â(−)Â(+)〉 after the arrival
of a Gaussian π pulse to the qubit. The system starts in the ground
state. (b) Two-photon correlation function for the cavity, obtained
with the same parameters and conditions. After the arrival of the
pulse, independent of the temperature of the reservoirs, the system
undergoes vacuum Rabi oscillations showing the reversible exchange
of photon pairs between the qubit and the resonator. However,
when raising the temperature, due to the increasing decoherence,
the oscillations become more damped and the correlation function
reaches higher stationary values due to larger incoherent, thermal
contributions. Note that the second and the fifth dips are shallower
because of some spurious effects generated by other transitions
excited by the coherent pulse. All parameters for the simulations are
given in the text. �eff on the x axis indicates the effective resonant
coupling.

Here κ and γ are the qubit and cavity damping rates, respec-
tively, Â(+) and Â(−) are the positive- and negative-frequency
dressed cavity operators (ŝi = â), and P̂ (+) and P̂ (−) are
the positive- and negative-frequency dressed qubit operators
(ŝi = σ̂−). We neglected the very small pure dephasing term in
the dissipator [see Eq. (21)]and we did not apply any filtering
procedure.

Figure 2 displays the dynamics of the mean cavity photon
number 〈Â(−)Â(+)〉 (a) and of the zero-delay two-photon cor-
relation function G

(2)
A (t, t ) = 〈Â(−)(t )Â(−)(t )Â(+)(t )Â(+)(t )〉

(b) after the arrival of a Gaussian π pulse, evaluated for dif-
ferent temperatures and starting the dynamics with the system
in its ground state. We used Tγ /ωc = Tκ/ωc and the decoher-
ence rates γ /ωc = κ/ωc = 3.75 × 10−4. Note that the output

FIG. 3. Comparison between the results obtained using the
generalized-master-equation approach (red solid curves) and the
standard dressed master equation (black dashed curves). (a) Time
evolution of the mean cavity photon number 〈Â(−)Â(+)〉 at temper-
ature T/ωc = 0.75 with all other parameters the same as in Fig. 2.
(b) Two-photon correlation functions, obtained with the same param-
eters and conditions. After the arrival of the pulse, both approaches
show the system undergoing two-photon Rabi oscillations and re-
laxing to thermal equilibrium. However, with the standard dressed
master equation, the coherence losses are slightly overestimated
(because of the post-trace RWA), so the oscillations are more damped
and the stationary value is reached sooner.

photon flux is proportional to 〈Â(−)Â(+)〉. At T = 0 our ap-
proach reproduces the two-photon vacuum Rabi oscillations
shown in Ref. [27]. Here we study the influence of nonzero
temperature on the this anomalous atom-cavity energy ex-
change. Increasing the temperature, the oscillations become
more damped and the energy exchange becomes less effective.
This effect is even more pronounced for the two-photon corre-
lation G

(2)
A (t, t ), which displays a stronger thermal sensitivity.

These results help to set a limit on the system temperature for
the observation of two-photon vacuum Rabi oscillations.

In order to further show the impact of the generalized
approach presented in this paper on the dissipative dynamics
of cavity-QED systems in the USC regime, we compare the
numerical results obtained with the generalized dressed mas-
ter equation with those obtained using the standard dressed
approach of Ref. [21].

Figure 3 shows the mean cavity photon number (a) and
the two-photon correlation function (b) evaluated using the
generalized dressed master equation (red solid curves) and the
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standard dressed master equation [21] (black dashed curves),
calculated with the atom and cavity reservoirs at temperature
T/ωc = 0.75. Both approaches show the system undergoing
multiphoton Rabi oscillations and the signals reaching the
same stationary values, corresponding to the equilibrium ther-
mal populations.

We observe that the standard approach overestimates de-
coherence effects. In the dispersive regime of cavity QED,
pairs of photonlike transitions partially overlap, reducing de-
coherence effects during the time evolution. This effect is
completely neglected in the standard dressed master equation.
Further calculations, not shown here, indicate that these dis-
crepancies increase with temperature. These effects lead to an
overestimation of the coherence losses of the system, which
also can be seen in the behavior of the two-photon correlation
function [Fig. 3(b)].

It is also important to note that the generalized master
equation is able to overcome another limit of validity of
the standard dressed approach. As reported in Ref. [21],
the standard dressed master equation breaks down in the
limit of high excitation numbers, where more transitions
might accidentally have the same frequency. The general-
ized master equation can handle such degenerate transitions
well.

B. Cavity optomechanics beyond the RWA

1. Full optomechanical Hamiltonian

In Sec. III A, we demonstrated that our generalized ap-
proach is able to correctly describe systems with quasihar-
monic spectra. In this section, we explore a mixed harmonic-
anharmonic behavior, considering a simple optomechanical
system [87], where a single cavity mode of frequency ωc is
coupled by radiation pressure to a single mechanical mode of
a mirror vibrating at frequency ωm.

Denoting the mechanical bosonic operators b̂, b̂† and the
cavity bosonic operators â, â†, the system Hamiltonian can be
written as [92]

ĤS = Ĥ0 + V̂om + V̂DCE, (36)

where

Ĥ0 = ωcâ
†â + ωmb̂†b̂ (37)

is the unperturbed Hamiltonian,

V̂om = gâ†â(b̂ + b̂†) (38)

is the standard optomechanical interaction Hamiltonian,
and

V̂DCE = g

2
(â2 + â†2)(b̂ + b̂†) (39)

describes the emission of photon pairs induced by the me-
chanical motion predicted by the DCE [89,93,94]. When
treating most optomechanics experiments until now, V̂DCE

has been neglected. This is a very good approximation
when the mechanical frequency is much smaller than the
cavity frequency (which is the most common experimental

situation), because V̂DCE connects bare states with an energy
difference 2ωc ± ωm which then is much larger than the
coupling strength g. With this approximation, the resulting
Hamiltonian, Ĥ0 + V̂om, conserves the number of photons and
can be analytically diagonalized. However, when considering
ultra-high-frequency mechanical oscillators, with resonance
frequencies in the GHz spectral range, coupled to a microwave
resonator, V̂DCE, which does not conserve the photon number,
cannot be neglected any more [87].

As shown in Ref. [87], such a system displays an energy-
level spectrum with a ladder of avoided level crossings arising
from the coherent coupling induced by V̂DCE between the
states |n, kn〉 and |n + 2, (k − q )n+2〉, occurring when the
energies of the initial and final states coincide (2ωc 	 qωm).
Here the first number in the ket denotes photon number and
the second denotes phonon number (with the photon number
as a subscript since the photons displace the mechanical
Fock state). For example, with q = 1, we have the standard
resonance condition for the DCE (2ωc 	 ωm [95]), in which
case V̂DCE gives rise to a resonant coupling between the states
|0, k〉 and |2, (k − 1)2〉 with k � 1, converting a phonon into
a photon pair.

When V̂DCE is taken into account, the system Hamiltonian
does not conserve the number of photons (the phonon number
is not conserved even in the standard optomechanical Hamil-
tonian). For example, the ground state of ĤS contains photons,
i.e., 〈E0|â†a|E0〉 �= 0. Therefore, in analogy to USC cavity
QED, a careful treatment of dissipation and input-output the-
ory is required. If the standard photon and phonon operators
were used to describe the interaction with the outside world,
unphysical effects would arise.

2. Impact of temperature on the dynamical Casimir effect

It has been shown [87] that this system can be used to
demonstrate the conversion of mechanical energy into photon
pairs (DCE). The calculations in Ref. [87] were performed us-
ing a dressed master equation without the post-trace RWA, de-
veloped only for the case of zero-temperature reservoirs. Here
we instead apply the generalized master equation presented in
Sec. II C, in order to study the influence of temperature on the
energy conversion from phonons to photons.

For our numerical calculation we consider a normalized
optomechanical coupling g/ωm = 0.1, a mechanical damping
rate γ /ωm = 0.05, and a cavity damping rate κ = γ /2. We
focus on the avoided level crossing between the states |0, 2〉
and |2, 02〉 at ωm 	 ωc. We consider the resonant condi-
tion, corresponding to the minimum level splitting: ωc/ωm =
1.016.

As in Ref. [87], we consider a continuous coherent drive of
the mechanical oscillator,

Ĥd = �(b̂ e−ıωmt + b̂†eıωmt ), (40)

with frequency resonant with the oscillating mirror and am-
plitude � = γ /2. The dynamics giving rise to the DCE is
then described by the filtered generalized master equation
(� = 10γ )

˙̂ρ = −i[ĤS + Ĥd, ρ̂] + Lfilt
gmeρ̂, (41)
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FIG. 4. Results for the DCE at different temperatures, obtained using the generalized-master-equation approach. (a), (b) System dynamics
for ωc 	 ωm, under coherent mechanical pumping, in perfect cooling conditions Tγ = Tκ = 0, starting the dynamics from the ground state.
(c), (d) The same, but with Tγ /ωm = Tκ/ωm = 0.5 and the initial state being the thermal state with T/ωm = 0.5. The blue dashed curves show
the mean phonon number 〈B̂ (−)B̂ (+)〉 in (a), (c) and the phonon-phonon correlation function g

(2)
B (t, t ) in (b), (d). The red solid curves describe

the mean cavity photon number 〈Â(−)Â(+)〉 in (a), (c) and the zero-delay normalized photon-photon correlation function g
(2)
A (t, t ) in (b), (d).

All parameters for the simulations are given in the text.

where the Liouvillian superoperator can be written as

Lfilter
gme ρ̂ =

∑
(ω,ω′ )>0

1

2
{γ n(ω′, Tγ )[B̂ (−)(ω′)ρ̂B̂ (+)(ω) − B̂ (+)(ω)B̂ (−)(ω′)ρ̂] + γ [n(ω, Tγ ) + 1][B̂ (+)(ω)ρ̂B̂ (−)(ω′)

− B̂ (−)(ω′)B̂ (+)(ω)ρ̂] + γ n(ω, Tγ )[B̂ (−)(ω′)ρ̂B̂ (+)(ω) − ρ̂B̂ (+)(ω)B̂ (−)(ω′)] + γ [n(ω′, Tγ ) + 1]

× [B̂ (+)(ω)ρ̂B̂ (−)(ω′) − ρ̂B̂ (−)(ω′)B̂ (+)(ω)] + κn(ω′, Tκ )[Â(−)(ω′)ρ̂Â(+)(ω) − Â(+)(ω)Â(−)(ω′)ρ̂]

+ κ[n(ω, Tκ ) + 1][Â(+)(ω)ρ̂Â(−)(ω′) − Â(−)(ω′)Â(+)(ω)ρ̂] + κn(ω, Tκ )[Â(−)(ω′)ρ̂Â(+)(ω)

− ρ̂Â(+)(ω)Â(−)(ω′)] + κ[n(ω′, Tκ ) + 1][Â(+)(ω)ρ̂Â(−)(ω′) − ρ̂Â(−)(ω′)Â(+)(ω)]}F (ω,ω′), (42)

where Â(+) and Â(−) are the positive- and negative-frequency
dressed cavity operators (ŝi = â), and B̂ (+) and B̂ (−) are the
positive- and negative-frequency dressed mechanical opera-
tors (ŝi = b̂).

In Fig. 4, we show the photonic and phononic populations,
〈Â(−)Â(+)〉 and 〈B̂ (−)B̂ (+)〉, and the relative two-photon and
two-phonon correlation functions,

g
(2)
A (t, t ) = 〈Â(−)(t )Â(−)(t )Â(+)(t )Â(+)(t )〉

〈Â(−)(t )Â(+)(t )〉2
, (43)

g
(2)
B (t, t ) = 〈B̂ (−)(t )B̂ (−)(t )B̂ (+)(t )B̂ (+)(t )〉

〈B̂ (−)(t )B̂ (+)(t )〉2
. (44)

Figures 4(a) and 4(b) display the results of calculations done
with zero-temperature reservoirs for both subsystems and
starting the dynamics from the ground state. Figures 4(c)
and 4(d) display the results of calculations for reservoirs
with Tγ /ωm = Tκ/ωm = 0.5 and with the system initially in
thermal equilibrium with those reservoirs.

At T = 0, with the system starting in its ground state, the
photonic and phononic populations start from zero and, due
to the coherent pumping, reach nonzero stationary values. The
photonic correlation function g

(2)
A (t, t ) is initially much higher

than two, suggesting photon-pair emission. As time goes on,
g

(2)
A (t, t ) decreases significantly due to losses which affect the

photon-photon correlations, and also due to the increase of
the mean photon number [note that g

(2)
A (t, t ), owing to the

squared denominator, is an intensity-dependent quantity]. The
mechanical correlation function g

(2)
B (t, t ), on the contrary, has

an almost constant value [g(2)
B (t, t ) ≈ 1], showing that the

mechanical system is mainly in the coherent state produced
by the pumping.

For reservoirs with nonzero temperature, the phonon and
photon populations, starting from their thermal-equilibrium
values, equilibrate to lower steady-state values. This reduction
of both populations originates from the increase of the decay
rate of the coherent contributions with increasing temperature.
We also note that the difference between the two steady-state
values is reduced at higher temperatures, due to the thermal

053834-9



ALESSIO SETTINERI et al. PHYSICAL REVIEW A 98, 053834 (2018)

contributions. At T �= 0, a fraction of the observed photons,
as expected, does not come from the mechanical-to-optical
energy conversion, but, trivially, from the photonic thermal
reservoir.

This picture is confirmed by comparing the dynamics of
the higher-order correlation functions [Figs. 4(c) and 4(d)].
Specifically, at higher temperature, we observe a strong de-
crease of g

(2)
A (t, t ), showing that a reduced fraction of pho-

tons is emitted in pairs. However, the photon-photon cor-
relation functions remains, even in the steady state, higher
than the thermal value g

(2)
A (t, t ) = 2. The phonon-phonon

correlation starts from a value 	2 corresponding to the initial
incoherent thermal state and, as time goes on, decays to a
stationary value higher than one due to the incoherent ther-
mal excitations provided by the interaction with the thermal
reservoirs.

Furthermore, in Fig. 4(d), the photon-photon and the
phonon-phonon correlation functions do not start from the
same initial value. This effect is due to the V̂DCE term which,
owing to its nonbilinear form, modifies the thermodynamic
equilibrium of the initial state of the system. The V̂DCE contri-
bution leads to a separation of the correlation-function values
with size proportional to the temperature. This separation thus
vanishes trivially for T = 0, when the V̂DCE term becomes
negligible.

The results obtained clearly show that the generalized
dressed master equation provided here is able to describe dis-
sipation in hybrid quantum systems with coexisting coherent
phases (provided, e.g., by means of a continuous drive) and
incoherent phases (provided, e.g., by thermal reservoirs or
thermal-like pumping). The behavior of the one- and two-
photon correlation functions show that signatures of the DCE
can be observed even in the presence of a non-negligible
amount of thermal noise. It thus demonstrates that this ef-
fect can be observed in a real experimental setup, where
perfect cooling conditions cannot be reached. Although the
number of Casimir photon pairs produced depends on the
thermal noise injected into the system, our results here show
that the DCE remains detectable even at relatively high
temperatures.

3. Comparison to other approaches

As already mentioned in the Introduction, and demon-
strated in Ref. [21], the use of a master equation with a dissi-
pator not taking into account the interaction between the sub-
systems can lead to unphysical results. Hu et al. derived [75]
a dressed master equation specifically developed to describe
dissipation in optomechanical systems characterized by the
standard optomechanical Hamiltonian, ĤS = Ĥ0 + V̂om, in
the USC regime. Here we show that this master equation fails
when considering the complete optomechanical Hamiltonian
ĤS = Ĥ0 + V̂om + V̂DCE.

In Fig. 5, we display results obtained describing the dy-
namics of our optomechanical system in perfect cooling con-
ditions, without any pumping, with the master equation pro-
vided in Ref. [75], including the V̂DCE term as a perturbation
in the dynamics. In these conditions, evaluating the dynamics
with the system initially in the ground state (an eigenstate
of the system), zero population is expected in the states

FIG. 5. State populations obtained using the master-equation
approach of Ref. [75]. The red (blue) solid curve shows the time
evolution of the population of the one-photon state |1, 0〉 (the one-
phonon state |0, 1〉) labeled ρ22(t ) [ρ11(t )] under perfect cooling
conditions Tγ = Tκ = 0 and without any pumping. The initial state
is the ground state |0, 0〉. All other parameters are the same as in
Fig. 4. In these conditions, without any external driving or thermal
excitations, the system is expected to remain in the ground state.
However, the plot clearly shows a nonzero population in both the
one-photon and one-phonon states. This indicates that this approach
is not able to correctly describe optomechanical systems when the
V̂DCE contribution no longer can be neglected.

with one photon, |1, 0〉, and one phonon, |0, 1〉. However,
Fig. 5 clearly shows nonzero populations. This anomalous
effect occurs because, due to the additional V̂DCE term, the
number of photons is no longer conserved and consequently
the eigenstates of the Hamiltonian changes. In this case,
the master equation provided in Ref. [75] does not describe
interactions between subsystems and reservoirs in terms of
the correct eigenstates, which leads to an unphysical evolution
of the initial ground state. This result shows once more the
importance of expressing the system operators in the basis
of the system eigenstates when describing interactions with
reservoirs to derive a correct master equation.

IV. CONCLUSIONS

We have presented a generalized dressed master equation,
valid for arbitrary open hybrid quantum system interacting
with thermal reservoirs and for arbitrary strength of the cou-
pling between the components of the hybrid system. Our
approach was derived within the Born-Markov approxima-
tion, including the pure dephasing terms and without per-
forming the usual post-trace RWA. Therefore, our approach
is able to handle dynamics in systems with both harmonic,
quasiharmonic, and anharmonic transitions. Moreover, this
approach is not limited to systems displaying parity symmetry.
Unfortunately the dissipator obtained includes rapidly oscil-
lating terms that can cause numerical instabilities. In order to
fix this problem, we introduced a filtering procedure which
eliminates the fast-oscillating terms which do not contribute
to the coarse-grained dynamics. This filtering has the added
benefit of reducing computation times.

We applied our generalized approach to study the influence
of temperature on multiphoton vacuum Rabi oscillation in a
circuit-QED system in the dispersive regime. We compared
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our results with those obtained using the dressed master
equation of Ref. [21]. We found that both approaches describe
multiphoton Rabi oscillations and reach the same stationary
state (the thermal equilibrium). However, the standard master
equation overestimates decoherence effects since it does not
take into account the partial overlap of photonlike transitions,
which reduces the decoherence during the time evolution.

We also studied the influence of temperature on the con-
version of mechanical energy into photon pairs (DCE) in an
optomechanical system, recently described in Ref. [87] for
zero-temperature reservoirs. In this case, we showed that the
DCE can be observed also in the presence of a significant
amount of thermal noise.

Finally, we demonstrated that the master-equation ap-
proach provided in Ref. [75] for optomechanical systems
with ultrastrong coupling fails when considering the full
optomechanical Hamiltonian including the V̂DCE term. Specif-
ically, under these conditions, the master equation provided in
Ref. [75] does not describe interactions between the compo-
nents and reservoirs correctly in terms of transitions between
eigenstates of the hybrid system. Because of this shortcoming,
that approach leads to an unphysical evolution of the initial
ground state to excited states even at zero temperature and
without any external pumping. This example clearly shows
that the general master-equation approach provided here is

necessary to describe dissipation of general open hybrid quan-
tum systems interacting with thermal reservoirs.
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APPENDIX: DERIVATION OF THE DRESSED
MASTER EQUATION

Starting from the system-bath Hamiltonian in Eq. (18),
and following the standard procedure [5], i.e., performing
the second-order Born approximation, the Markov approxi-
mation, and considering reservoirs with a continuum of fre-
quencies, we obtain

˙̃̂ρ(t ) =
∫ t

0
dt ′[ ˆ̃Si (t

′) ˆ̃ρ(t ′) ˆ̃Si (t ) − ˆ̃Si (t ) ˆ̃Si (t
′) ˆ̃ρ(t ′)]〈 ˆ̃B†

i (t ) ˆ̃Bi (t
′)〉 +

∫ t

0
dt ′[ ˆ̃Si (t ) ˆ̃ρ(t ) ˆ̃Si (t

′) − ˆ̃ρ(t ′) ˆ̃Si (t
′) ˆ̃Si (t )]〈 ˆ̃B†

i (t ′) ˆ̃Bi (t )〉

+
∫ t

0
dt ′[ ˆ̃Si (t

′) ˆ̃ρ(t ) ˆ̃Si (t ) − ˆ̃Si (t ) ˆ̃Si (t
′) ˆ̃ρ(t ′)]〈 ˆ̃Bi (t ) ˆ̃B†

i (t ′)〉 +
∫ t

0
dt ′[ ˆ̃Si (t ) ˆ̃ρ(t ′) ˆ̃Si (t

′) − ˆ̃ρ(t ′) ˆ̃Si (t
′) ˆ̃Si (t )]〈 ˆ̃Bi (t

′) ˆ̃B†
i (t )〉,

(A1)

where 〈 ˆ̃B†
i (t ) ˆ̃Bi (t ′)〉 and 〈 ˆ̃B†

i (t ′) ˆ̃Bi (t )〉 are the reservoir correlation functions

〈 ˆ̃B†
i (t ) ˆ̃Bi (t

′)〉 =
∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

ıν(t−t ′ ), (A2)

〈 ˆ̃Bi (t ) ˆ̃B†
i (t ′)〉 =

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]e−ıν(t−t ′ ), (A3)

with g(ν) being the reservoir density of states and α(ν) the system-reservoir coupling strength. Substituting Eqs. (A2) and (A3)
into Eq. (A1), and performing the change of variable τ = t − t ′, we obtain

˙̃̂ρ(t ) =
∑

i

∑
ω,ω′

[
Âi

ω,ω′ (t ) + B̂i
ω,ω′ (t ) + Ĉi

ω,ω′ (t ) + D̂i
ω,ω′ (t )

]
, (A4)

where

Âi
ω,ω′ (t ) =

∫ t

0
dτ e−ı(ω+ω′ )t eıω′τ [Ŝi (ω

′) ˆ̃ρ(t )Ŝi (ω) − Ŝi (ω)Ŝi (ω
′) ˆ̃ρ(t )]

∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

ıντ ,

B̂i
ω,ω′ (t ) =

∫ t

0
dτ e−ı(ω+ω′ )t eıωτ [Ŝi (ω

′) ˆ̃ρ(t )Ŝi (ω) − ˆ̃ρ(t )Ŝi (ω)Ŝi (ω
′)]

∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

−ıντ ,

(A5)

Ĉi
ω,ω′ (t ) =

∫ t

0
dτ e−ı(ω+ω′ )t eıωτ [Ŝi (ω) ˆ̃ρ(t )Ŝi (ω

′) − Ŝi (ω
′)Ŝi (ω) ˆ̃ρ(t )]

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]e−ıντ ,

D̂i
ω,ω′ (t ) =

∫ t

0
dτ e−ı(ω+ω′ )t eıω′τ [Ŝi (ω) ˆ̃ρ(t )Ŝi (ω

′) − ˆ̃ρ(t )Ŝi (ω
′)Ŝi (ω)]

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]eıντ .

Assuming that the integrands decay on a much shorter time scale than that of the reservoir correlation functions, we can extend
the τ integration to infinity. Evaluating both the integrals without performing any approximation except for the Born-Markov
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approximation, the master equation in the Schrödinger picture can be written

˙̂ρ = −i[ĤS, ρ̂] + Lgmeρ̂, (A6)

with the Lindbladian superoperator that in the most general form can be written as

Lgmeρ̂ = 1

2

∑
i

∑
ω,ω′

{�i (−ω′)n(−ω′, Ti )[Ŝi (ω
′) ˆ̃ρ(t )Ŝi (ω) − Ŝi (ω)Ŝi (ω

′)ρ̂(t )] + �i (ω)n(ω, Ti )

× [Ŝi (ω
′)ρ̂(t )Ŝi (ω) − ρ̂(t )Ŝi (ω)Ŝi (ω

′)] + �i (ω)[n(ω, Ti ) + 1][Ŝi (ω)ρ̂(t )Ŝi (ω
′) − Ŝi (ω

′)Ŝi (ω)ρ̂(t )]

+�i (−ω′)[n(−ω′, Ti ) + 1][Ŝi (ω)ρ̂(t )Ŝi (ω
′) − ρ̂(t )Ŝi (ω

′)Ŝi (ω)]}. (A7)

Both �i (ω) and n(ω, Ti ) are nonzero only for ω > 0; thus, using the definitions in Eq. (17), Eq. (A7) can be written as

Lgmeρ̂ = 1

2

∑
i

∑
(ω,ω′ )>0

{
�i (ω

′)n(ω′, Ti )[Ŝ
(−)
i (ω′)ρ̂(t )Ŝ (+)

i (ω) − Ŝ
(+)
i (ω)Ŝ (−)

i (ω′)ρ̂(t )] + �i (ω)n(ω, Ti )[Ŝ
(−)
i (ω′)ρ̂(t )Ŝ (+)

i (ω)

− ρ̂(t )Ŝ (+)
i (ω)Ŝ (−)

i (ω′)] + �i (ω)[n(ω, Ti ) + 1][Ŝ (+)
i (ω)ρ̂(t )Ŝ (−)

i (ω′) − Ŝ
(−)
i (ω′)Ŝ (+)

i (ω)ρ̂(t )] + �i (ω
′)[n(ω′, Ti ) + 1]

× [Ŝ (+)
i (ω)ρ̂(t )Ŝ (−)

i (ω′) − ρ̂(t )Ŝ (−)
i (ω′)Ŝ (+)

i (ω)] + �i (ω
′)n(ω′, Ti )[Ŝ

(−)
i (ω′)ρ̂(t )Ŝ (−)

i (ω) − Ŝ
(−)
i (ω)Ŝ (−)

i (ω′)ρ̂(t )]

+�i (ω
′)[n(ω′, Ti ) + 1][Ŝ (−)

i (ω)ρ̂(t )Ŝ (−)
i (ω′) − ρ̂(t )Ŝ (−)

i (ω′)Ŝ (−)
i (ω)] + �i (ω)n(ω, Ti )[Ŝ

(+)
i (ω′)ρ̂(t )Ŝ (+)

i (ω)

− ρ̂(t )Ŝ (+)
i (ω)Ŝ (+)

i (ω′)] + �i (ω)[n(ω, Ti ) + 1][Ŝ (+)
i (ω)ρ̂(t )Ŝ (+)

i (ω′) − Ŝ
(+)
i (ω′)Ŝ (+)

i (ω)ρ̂(t )]

+�i (ω
′)n(ω′, Ti )

[
Ŝ

(−)
i (ω′)ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(−)
i (ω′)ρ̂(t )

] + �i (ω
′)[n(ω′, Ti ) + 1]

[
Ŝ

(0)
i ρ̂(t )Ŝ (−)

i (ω′) − ρ̂(t )Ŝ (−)
i (ω′)Ŝ (0)

i

]
+�i (ω)n(ω, Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (+)

i (ω) − ρ̂(t )Ŝ (+)
i (ω)Ŝ (0)

i

] + �i (ω)[n(ω, Ti ) + 1]
[
Ŝ

(+)
i (ω)ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(+)
i (ω)ρ̂(t )

]
+�+

i (Ti )
[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(0)
i ρ̂(t )

] + �
′+
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − ρ̂(t )Ŝ (0)
i (ω′)Ŝ (0)

i

]
+�−

i (Ti )
[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − ρ̂(t )Ŝ (0)
i Ŝ

(0)
i

] + �
′−
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(0)
i ρ̂(t )

]}
, (A8)

with thermal populations

n(ω, Ti ) = [exp {ω/Ti} − 1]−1, (A9)

damping rates

�i (ω) = 2πgi (ω)|αi (ω)|2, (A10)

and pure dephasing damping rates

�
′±
i (Ti ) =

∫ t

0
dτ

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]e±ıντ ,

(A11)

�±
i (Ti ) =

∫ t

0
dτ

∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

±ıντ . (A12)

Specifically, the terms in the first four lines of Eq. (A8)
oscillate at frequencies ±(ω − ω′). If (ω − ω′) is significantly
larger than the damping rates �i of the system, these terms

provide negligible contributions when integrating the master
equation. In the generalized approach, these terms are then
eliminated by the numerical filtering. The terms in the next
four lines of Eq. (A8) oscillate at ±(ω′ + ω). These terms are
clearly rapidly oscillating and thus provide negligible con-
tributions. The terms in the following four lines, oscillating
at +ω, −ω′, are fast oscillating when considering systems
displaying well-separated energy levels with ω � �i and,
in these cases, can be neglected. Finally, the terms in the
last four lines arise from degenerate transitions and describe
pure dephasing. The contribution of these terms becomes
negligible at very low temperatures in the particular case
of Ohmic baths. Furthermore, it is important to note that,
applying the post-trace RWA without considering any parity
symmetry of the system, Eq. (A7) can be rewritten in a form
equal to the standard dressed master equation as in Ref. [21],
with a few additional terms provided by the zero-frequency
operators Ŝ

(0)
i �= 0.
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