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Single-photon-driven high-order sideband transitions in an ultrastrongly coupled
circuit-quantum-electrodynamics system
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We report the experimental observation of high-order sideband transitions at the single-photon level in a
quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the
coupling strength reaching 10% of the resonator’s fundamental frequency, we obtain clear signatures of higher
order red-sideband and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi
coupling. Our observation advances the understanding of ultrastrongly coupled systems and paves the way to
study high-order processes in the quantum Rabi model at the single-photon level.
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I. INTRODUCTION

Superconducting quantum circuits exhibit macroscopic
quantum coherence (see, e.g., Refs. [1–7]) and can be designed
to have exotic properties that cannot be realized or even do
not occur in natural atomic systems [8]. For instance, the
unique geometry of superconducting quantum circuits enables
the realization of ultrastrong coupling in qubit-resonator
systems with the coupling strength g reaching a considerable
fraction of the resonator frequency ωr : g/ωr � 0.1 [9,10].
With current technological advances, ultrastrong coupling has
indeed been demonstrated in recent experiments with super-
conduting flux qubits inductively coupled to superconducting
resonators [11–13]. In this ultrastrong-coupling regime, the
well-known Jaynes-Cummings model breaks down because
the rotating-wave approximation is no longer applicable, and
the quantum Rabi model is thus required to describe the
energy spectrum and the system dynamics [14,15]. Also,
the ultrastrong-coupling regime can lead to fast quantum
computation schemes [16,17] and a plethora of interesting
quantum optics phenomena [18–25].

Despite its fundamental importance and wide interests,
the experimental application of the ultrastrong coupling to
quantum information processing remains challenging. It is
known that higher-order processes can be achieved with an
intense driving field [26], but it is difficult to implement these
processes with a very weak driving field (i.e, at a few-photon
level), since it requires large intrinsically built-in nonlinearity

*litf@tsinghua.edu.cn
†ltian@ucmerced.edu
‡Present address: National Institute of Information and Communica-

tions Technology, 4-2-1, Nukuikitamachi, Koganei, Tokyo 184-8795,
Japan.

§jqyou@csrc.ac.cn

of the system. In contrast to the previous observation of
power-enhanced high-order processes created by intensifying
the driving field, the high-order sideband transitions in our
experiment can be realized at the single-photon-driven level
and are mainly contributed by the ultrastrong Rabi coupling.
The single-photon-driven first-order sideband transition (ωd =
ωq ± ωr ) was observed in both strongly and ultrastrongly cou-
pled qubit-resonator systems [27,28], where ωd , ωq , and ωr are
frequencies of the driving field, qubit, and resonator, respec-
tively. When intensifying the driving field, two-photon-driven
first-order sideband transition (2ωd = ωq + ωr ) was also
observed in a strongly coupled qubit-resonator system [29,30].
However, in the present experiment, using a suitably designed
ultrastrongly coupled qubit-resonator circuit and a very weak
driving field, we are able to resolve up to the third-order side-
band transitions (ωd = ωq ± sωr , s = 0,1,2,3) at the single-
photon level, where the high-order sideband transitions are
mainly due to the ultrastrong Rabi coupling. Also, two-photon-
driven second-order sideband transitions (2ωd = ωq ± sωr ,
s = 0,1,2) can be observed by increasing the power of the driv-
ing field. Both the experimental results and the theoretical anal-
yses reveal that the ultrastrong Rabi coupling is the main cause
of the high-order sideband transitions presented in our work.

II. QUBIT-RESONATOR CIRCUIT

Our quantum circuit comprises a superconducting flux
qubit inductively coupled to a coplanar waveguide resonator
with suitably designed modes (for details, see Appendix A).
The superconducting flux qubit consists of four Josephson
junctions with three of the junctions designed to be identical
and the fourth junction reduced by a factor of 0.6 in area.
The qubit is operated near the optimal flux bias point with
an applied external flux �x = δ�x + �0/2, where �0 is the
magnetic flux quantum and δ�x is a small offset from the
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FIG. 1. (a) The transmission (i.e., the normalized |S21|) spectrum of the λ/2 mode as a function of the flux bias δ�x and probe frequency
ωp/2π . The probe power is Pp ≈ −138 dBm, corresponding to an average photon number of n1 ≈ 1.17 in the resonator. (b) The spectrum
of the λ mode with Pp ≈ −135 dBm and average photon number n2 ≈ 0.24. (c) The spectrum of the 3λ/2 mode with Pp ≈ −132 dBm and
average photon number n3 ≈ 0.19. The solid curves are the numerical fits of the spectra with respect to its ground-state energy using the full
Hamiltonian H .

optimal flux bias point �0/2. The qubit Hamiltonian can
be written as Hq = (ετz + δτx)/2, where δ is the quantum
tunneling between the local potential wells, ε = 2Ipδ�x is
the offset energy induced by the flux bias, with Ip being the
maximal persistent current, and τz,x are the Pauli operators in
the persistent-current basis {| �〉,| �〉} [31]. Below we use the
eigenbasis of the qubit {|g〉,|e〉} and write the Hamiltonian as
Hq = h̄ωqσz/2, with ωq = √

ε2 + δ2/h̄.
To be galvanically connected to the coplanar waveguide

resonator [32], the flux qubit shares a common wire (length
34.8 μm, width 800 nm, and thickness 60 nm) with the
resonator’s center conductor. The Hamiltonian of the resonator
is Hr = ∑

n h̄ωn(a†
nan + 1/2), where a

†
n (an) is the creation

(annihilation) operator of the nth resonator modes (i.e., the
nλ/2 mode) and ωn is the corresponding resonance frequency.
With a transmission measurement, we determine the resonance
frequencies of the lowest three modes of the resonator as
ω1/2π = 3.143 GHz, ω2/2π = 6.361 GHz, and ω3/2π =
9.420 GHz. Because of the inhomogeneity of the resonator due
to the presence of the qubit, these frequencies are not perfect in-
teger multiples of ω1 [33]. Within our parameter range, the λ/2
mode is dispersively coupled to the flux qubit with a frequency
far below the quantum tunneling δ (i.e., the energy gap at the
degeneracy point) of the qubit, and the λ, 3λ/2 modes can be
tuned to be on resonance with the qubit by adjusting the mag-
netic flux bias δ�x . The dipolar coupling between the qubit and
the resonator has the form of Hint = ∑

n h̄gn(a†
n + an)τz, with

h̄gn = MIpIr,n, where M is the mutual inductance and Ir,n

is the vacuum center-conductor current of the nth resonator
mode near the flux qubit. The qubit is attached to the thin
segment of the center conductor in the middle of the resonator,
where the current distributions of both λ/2 and 3λ/2 modes
have antinodes and produce maximum coupling with the qubit.
The λ mode has a node at this position with nearly negligible
coupling to the qubit and will be omitted from our discussion.
The full Hamiltonian of this system is hence H = Hq + Hr +
Hint. The uncoupled states of this system can be expressed
as |qN1N3〉, with q = {g,e} representing the qubit eigenstates
and Nn being the photon number in the nth resonator mode.

III. TRANSMISSION SPECTRA

In measuring the transmission spectrum of the qubit-
resonator system, we apply a single probe source of frequency

ωp to the resonator via a vector network analyzer and measure
the resonator output at the probe frequency. In the experiment,
a low-power probe source is used to avoid producing any ap-
preciable effects on the qubit-resonator system. Figure 1 shows
the (color-coded) transmission spectra in the neighborhood of
the resonance frequencies of the λ/2, λ, and 3λ/2 mode, re-
spectively. The measured spectral structures in these plots cor-
respond to the transition frequencies between the ground and
excited states. To find the magnitudes of the coupling strength
gn, we calculate the eigenstates of the full Hamiltonian H

numerically and fit the measured data to the calculated energy
splittings. The calculated transition frequencies are plotted
as black curves in Fig. 1 with g1/2π = 306 MHz, g2/2π =
5 MHz, and g3/2π = 521 MHz. These coupling strengths
give the coupling ratios g1/ω1 = 9.74%, g2/ω2 = 0.08%, and
g3/ω3 = 5.53%.

IV. SINGLE-PHOTON-DRIVEN HIGH-ORDER
SIDEBAND TRANSITIONS

With ultrastrong Rabi coupling, single-photon-driven high-
order sideband transitions can be observed in transmission
spectroscopic measurements by using a weak pump field
at frequency ωd to drive the qubit through the resonator.
The pump Hamiltonian has the form Hd = 
d,q cos (ωdt)τz

in the persistent-current basis, with 
d,q being the driving
strength. A separate probe field with its frequency fixed at
the resonance frequency of one of the resonator modes is
applied to demonstrate the spectroscopic response of the
coupled qubit-resonator system in the presence of the pump
field. The transmission spectra are measured by monitoring the
amplitude and the phase of the transmitted probe tone [11,34].
In Fig. 2, we show the measured transmission spectra of the
probe field at a probe frequency ω3 of the 3λ/2 mode [Fig. 2(b)]
and at a probe frequency ω1 of the λ/2 mode [Figs. 2(d)
and 2(f)], respectively. Note that Figs. 2(b), 2(d), and 2(f)
present some vertical banding as a function of the flux bias, and
the data in the measured transmission spectra become noisier
at low flux bias. In fact, when the flux bias δ�x approaches the
degenerate point of the qubit, the resonance frequencies of the
resonator shift [see Figs. 1(a) and 1(c)], due to the ultrastrong
coupling between the qubit and the resonator. This makes the
measured signals weaker at low flux bias than at high flux
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FIG. 2. [(a), (c), (e)] The energy levels of the coupled qubit-resonator system as a function of the flux bias δ�x using parameters extracted
from Fig. 1. The energy levels in the dispersive regime are labeled in terms of the uncoupled states |qN1N3〉. In panel (a), the red (magenta)
arrows labeled as zm (fm) indicate the single-photon-driven zeroth-order qubit (first-order red-sideband) transition. In panel (c), the red (orange)
arrows labeled as zm (sm, s ′

m) indicate the single-photon-driven zeroth-order qubit (second-order red-sideband and cross-mode sideband)
transition. In panel (e), the magenta (green) arrows labeled as fm (tm) indicate the single-photon-driven first-order (third-order) red-sideband
transition and the black arrow labeled as b1 indicates the single-photon-driven first-order blue-sideband transition. [(b), (d), (f)] The transmission
(normalized |S21|) spectrum as a function of the flux bias δ�x and driving frequency ωd/2π . In panel (b), for probe frequency of the 3λ/2 mode
with probe power Pp ≈ −132 dBm (average photon number n3 ≈ 0.19). The red-circle lines are due to the single-photon-driven zeroth-order
qubit transition |g00〉 ↔ |e00〉, corresponding to the red arrows in panel (a). The magenta-square lines are due to the single-photon-driven
first-order red-sideband transition |g01〉 ↔ |e00〉, corresponding to the magenta arrows in panel (a). [(d),(f)] Probe frequency of the λ/2
mode with probe power Pp ≈ −128 dBm (average photon number n1 ≈ 11.7). In panel (d), the red-circle (orange-cross) lines are due to
the single-photon-driven zeroth-order qubit (second-order red-sideband and cross-mode sideband) transition. In panel (f), the magenta-square
(green-triangle) lines are the single-photon-driven first-order (third-order) red-sideband transition and the black-cross denoted short line
indicates the single-photon-driven first-order blue-sideband transition. The power of the driving field on the resonator is Pd ≈ −92 dBm for
panel (b) and Pd ≈ −97 dBm for panels (d) and (f). The effective field to drive the flux qubit is much reduced in the dispersive regime of the
qubit-resonator system and the resulting average photon number in the resonator is far less than one (see Fig. 6 in Appendix B). (g) A linecut
of the background-subtracted transmission spectrum in panel (d) at ωd/2π = 9.78 GHz, where the first-order blue sideband transitions purely
due to the counter-rotating terms are marked with the blue arrows.

bias, thus yielding noisier data at low flux bias and also the
appearance of the vertical banding versus the flux bias.

To identify each transition, in Figs. 2(a), 2(c), and 2(e), we
show the energy levels of the total qubit-resonator system as a
function of the flux bias δ�x with the colored arrows labeling
the corresponding sideband transitions in the presence of the
pump field. In these plots, besides the main peaks at the pump
frequency ωd = ωq (see the red-circle denoted lines) that cor-
respond to the direct single-photon transition |g00〉 ↔ |e00〉
(denoted by z1 and z2), we also observe single-photon-driven
high-order sideband transitions due to the ultrastrong Rabi
coupling. With a Schrieffer-Wolff transformation [18,35], we

can identify the single-photon-driven higher-order sideband
transitions in the dispersive regime when the qubit frequency
is far off resonance from the resonator frequencies and
compare the transitions with the measured spectra (see detailed
discussions in Appendix B).

In Fig. 2(b), spectral features are observed at the pump
frequency ωd = ωq − ω3, as indicated by the magenta-square
denoted lines f1, f2, and f3. With a pump field on the
σz component of the qubit, one can have effective qubit
resonances at ωq ∓ sωr , with s being an integer [36]. In the
dispersive regime, due to the combination of single-photon
pumping and the qubit-resonator interaction, the observed
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spectral lines corresponding to the single-photon-driven first-
order red-sideband transition |g01〉 ↔ |e00〉, are enabled by
shifting the driving frequency from ωq to ωq −ωr .

The effective Hamiltonian derived with the Schrieffer-
Wolff transformation is Heff = R

(1)
3 (σ+a3 + a

†
3σ−), with the

coupling coefficient R
(1)
3 = −
d,q cos θg3/�

−
3 , where �±

3 =
ωq ± ω3 and |�±

3 | � g3. The transitions induced by these
effective couplings are also labeled in Fig. 2(a).

Single-photon-driven higher-order sideband transitions are
shown in Figs. 2(c)–2(f), where the transmission spectrum
is measured at the frequency of the λ/2 mode with the
probe tone being 4 dB higher and the driving tone being
5 dB lower than the signals used in Fig. 2(b). Here single-
photon-driven red-sideband transitions [see the arrows in
Figs. 2(c) and 2(e)] up to the third order (ωd = ωq − sω1,
with s = 1,2,3) are observed, as indicated by the corre-
sponding colored lines in Figs. 2(d) and 2(f). The peaks
at ωd = ωq − ω1 (labeled by f1 and f2) are dominated by
the single-photon-driven first-order red-sideband transition,
as analyzed above. The peaks at ωd = ωq − 2ω1 are a mix-
ture of the single-photon-driven second-order red-sideband
transition |g20〉 ↔ |e00〉 (labeled by s1 and s2) induced by
the effective coupling Heff = R

(2)
1 (σ+a2

1 + a
†2
1 σ−) and a cross-

mode sideband transition |g01〉 ↔ |e10〉 (labeled by s′
1 and

s′
2) by the effective coupling Heff = R

(2)
1̄3 (σ+a

†
1a3 + a

†
3a1σ−).

These two transitions have comparable frequencies because
the cross sideband frequency ω3 − ω1 ≈ 2ω1 in our device.
Expressions for the coupling constants R

(2)
1 and R

(2)
1̄3 can be

found in Appendix B. The single-photon-driven third-order
red-sideband transition |g30〉 ↔ |e00〉 (labeled by t1 and t2)
is observed at a pump frequency ωd = ωq − 3ω1. It originates
from the effective coupling Heff = R

(3)
1 (σ+a3

1 + a
†3
1 σ−) with

R
(3)
1 = 2
d,q cos θ (g1/�

−
1 )

2
(g1/�

+
1 )/3, which reveals that

this transition depends on the counter-rotating terms. In addi-
tion to the red sidebands, the single-photon-driven first-order
blue-sideband is also observed, which represents the transition
|g00〉 ↔ |e10〉 as indicated by the black arrow and the black-
cross line (labeled by b) in Figs. 2(e) and 2(f). This transition
is induced by the effective coupling Heff = B

(1)
1 (σ+a

†
1 + a1σ−)

with B
(1)
1 = −
d,q cos θg1/�

+
1 , which is purely due to the

counter-rotating terms. In Fig. 2(g), we also show a line
cut of the transmission spectrum in Fig. 2(d) extracted at
ωd/2π = 9.78 GHz, so as to clearly exhibit this transition.

As indicated in Figs. 2(a), 2(c), and 2(e), all sideband
transitions observed in Figs. 2(b), 2(d), and 2(f) involve the
qubit states from |g〉 to |e〉, as well as the Fock states of the
resonator from |0〉 to |n〉, |n〉 to |0〉, or |n〉 to |n′〉, where
n, n′ = 1, 2, . . . . This implies that excited-state populations
of the resonator are needed for these sideband transitions.
In Fig. 2(b), where the first-order sideband transitions are
observed, the average photon number is estimated to be
n3 ≈ 0.19 for the probe field in resonance with the 3λ/2
mode of the resonator. In Figs. 2(d) and 2(f), where up to
the third-order sideband transitions are observed, the average
photon number is then estimated to be n1 ≈ 11.7 for the probe
field in resonance with λ/2 mode of the resonator. These
given values of the average photon number of the probe field
indeed reveal the possible population of the excited states
in the resonator. Also, thermal fields may contribute to the

excited-state population of the resonator, but they are not
as important as the probe field in our experiment (see the
discussions in Sec. VI as well).

Note that the magnitude of the sth-order single-photon-
driven sideband transition has linear dependence on the
qubit-driving strength 
d,q as that of the zeroth-order process
(i.e., the direct transition of the qubit states by the pumping
field). Also, it has power-law dependence on the coupling
ratio as (gn/�

±
n )s , as explained in detail in Appendix B.

Thus, at the single-photon level to observe the zeroth-order
process by using a very weak pumping field, the high-order
processes can also be demonstrated with a sufficiently strong
qubit-resonator coupling. This is the case in our experiment,
where the qubit-resonator coupling is ultrastrong and the
high-order processes are observed at the quantum limit. As
shown in Appendix B, in the dispersive regime, the average
photon number of the driving field is even much less than one
in the resonator. Therefore, the transmission spectra in Fig. 2
reveal that the effects are mostly connected to the ultrastrong
Rabi coupling of the qubit-resonator system.

It is worthwhile to mention that the numerical fittings do
not overlap perfectly with the slope of the experimental spectra
for all regions of the flux biases, as shown in Figs. 2 and 3.
For large flux biases, i.e., |δ�x | � 8 m�0, small deviations
appear between the fitting lines and the measured spectra. For
these, there are two reasons. One is the presence of higher
resonator modes in the real system, which cannot be captured
numerically due to computational limitations. The other reason
is that the two-level approximation for the flux qubit is not
good enough at larger flux biases. Close to the degenerate
point, the two-level approximation works well and we have
a nearly perfect two-level system that can be well described
by Pauli operators. However, away from the degenerate point,
higher levels start to affect the system’s dynamics.

V. TWO-PHOTON-DRIVEN HIGH-ORDER
SIDEBAND TRANSITIONS

To further illustrate that our high-order sideband transitions
are induced by the ultrastrong coupling rather than the driving
power, here we show the spectroscopy measurement with
the driving power increased to Pd ≈ −92 dBm in Fig. 3(a)
and Pd ≈ −82 dBm in Fig. 3(b), respectively. In addition
to the single-photon-driven first-, second-, and third-order
sideband transitions, we can clearly resolve two-photon-
driven high-order red-sideband transitions at 2ωd = ωq − sω1,
with s = 0,1 in Fig. 3(a) and s = 0,1,2 in Fig. 3(b). Also,
the two-photon-driven first-order blue-sideband transition at
2ωd = ωq + ω1 is visible. The observation of two-photon-
driven sideband processes with s = 0,1,2 rather than single-
photon-driven higher-order processes with s = 4,5,6, . . . by
intensifying the driving field further reveal that the single-
photon-driven high-order sideband transitions in Fig. 2 depend
more significantly on the qubit-resonator coupling strength.
This indicates that as the coupling strength becomes larger,
it is easier to observe the single-photon-driven higher-order
sideband transitions with a relatively weak driving field.

As shown in Fig. 3, the single-photon-driven high-
order sideband transitions can also be induced by inten-
sifying the driving field, but when increasing the driving
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FIG. 3. The transmission spectroscopy (normalized |S21|) as a
function of the flux bias δ�x and driving frequency ωd/2π probed
at the frequency of λ/2 mode with power of Pp ≈ −133 dBm,
which contributes an average photon number n1 ≈ 3.34 into the
resonator. With the driving power increased to (a) Pd ≈ −92 dBm and
(b) Pd ≈ −82 dBm, the two-photon-driven sideband transitions
(2ωd = ωq ± sω1) become visible, as indicated by the yellow arrows
for the two-photon qubit transitions with s = 0, the red arrows for the
two-photon first- and second-order red-sideband transitions, and the
black arrows for the two-photon first-order blue-sideband transitions.
For clarity, here we only show in Fig. 3(b) the numerical fitting of
the two-photon-driven first-order sideband transitions as labeled by
the yellow, red, and black curves for 2ωd = ωq , 2ωd = ωq − ω1, and
2ωd = ωq + ω1, respectively.

power, multiphoton-driven high-order sideband transitions
(i.e., mωd = ωq ± sωn, with m = 1,2,3, . . . ) will also occur
(in Fig. 3, two-photon-driven high-order sideband transi-
tions 2ωd = ωq ± sω1 indeed occurred when intensifying
the driving field). Moreover, in addition to the complicated
spectral features, the peaks related to the single-photon-driven
high-order sideband transitions become blurred by increasing
the driving power [see Fig. 3(b)]. Therefore, the existence of
ultrastrong Rabi coupling is a necessary condition to observe
the high-order sideband transitions in Fig. 2 at the quantum
limit of the single-photon level.

VI. DISCUSSIONS AND CONCLUSIONS

Higher-order processes at the few-photon level can play
an important role in quantum information processing. In prin-
ciple, the generation of higher-order processes requires large
nonlinearity in the system, which can be either intrinsically

built-in or externally induced. When driven strongly, the sys-
tem generates nonlinearity externally as in classical nonlinear
optics. Therefore, high-order sideband transitions may be
demonstrated using strong driving on a system with small
coupling strength. However, in the present work, we demon-
strate that the higher-order processes can also be produced in
the weak limit of driving field (i.e., at the few-photon level)
on the qubit, where the nonlinearity mainly comes from the
intrinsic properties of the ultrastrongly coupled system. In fact,
it is clearly analyzed in Appendix B that in the dispersive limit,
the magnitudes of the single-photon-driven sth-order sideband
processes have both a linear dependence on the amplitude of
the driving field on the qubit and a power-law dependence on
the coupling ratio as (gn/�

±
n )s . When the coupling strength is

not strong enough, the higher-order sideband transitions can be
very weak and become hard to implement with a weak driving
field on the qubit. Therefore, our experimental observation of
the high-order sideband transitions at the single-photon-driven
level reveals the importance of the ultrastrong coupling.

When applying driving microwave powers to the resonator
at the level of −90 dBm or higher, though the effective
driving field on the qubit is weak (see Appendix B), there
can be a considerable amount of heat generated in the
attenuator anchored to the mixing chamber stage of the dilution
refrigerator. Even when the temperature of the plate itself does
not change, hot electrons may radiate thermal fields which
could drive the resonator and create excitations that would
explain the appearance of higher-order sidebands at higher
powers. In fact, similar techniques of increasing the effective
resonator temperature were used in other experiments (see,
e.g., Ref. [37]) as a way to study higher-level transitions
in qubit-resonator systems. However, in our experiment,
only single-photon-driven high-order sideband transitions are
observed in the experimental results shown in Fig. 2. If the ther-
mal fields were important, more sideband transitions driven by
multiple photons, as seen in Fig. 3, would appear in the case of
Fig. 2. Actually, such features do not occur in Fig. 2. Moreover,
our spectra in Fig. 2 do not show the many transitions between
dressed states, as observed in Ref. [37] owing to the thermal
excitations. These indicate that the thermal fields do not play
an appreciable role in our experiment.

In Fig. 2(b), there are tiny features for some other
transitions, which appear in the near-resonance regions of
the resonator modes. Moreover, the spectra in the on-
resonance regions become more complicated owing to the very
large driving power. This is beyond the scope of studies in the
present work, because we only focus on the dispersive regimes.
It will be extensively studied in our future work.

In conclusion, we have observed high-order sideband
transitions in an ultrastrongly coupled qubit-resonator system
at the single-photon level. These transitions, including
red-sideband transitions up to the third order and first-order
blue-sideband transition, are mainly induced by the ultrastrong
Rabi coupling rather than the strong pump power. Also, we
demonstrated the two-photon-driven high-order sideband
transitions in this ultrastrongly coupled system by intensifying
the driving field. Our results provide better understanding
of high-order processes in the ultrastrong Rabi model at the
single-photon-driven level.
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APPENDIX A: FABRICATION AND DEVICE
CHARACTERIZATION

The coplanar waveguide resonator is fabricated by electron-
beam lithography and reactive ion etching on a 3-in. thermally
oxidized silicon wafer covered with a 50-nm-thick d.c.-
magnetron sputtered niobium film [Fig. 4(a)]. The center con-
ductor of the resonator is 20 μm wide and its gap to the ground
plane is 11.6 μm, so that a 50-
 characteristic impedance is
obtained. The resonator with a length of 16 mm is defined by
two identical interdigital coupling capacitors [Fig. 4(b)] with a
numerically simulated capacitance of about 7 fF. In the middle
of the center conductor, a 100-μm−long niobium film is
replaced by an aluminium strip which connects to the flux qubit
[Fig. 4(c)]. The aluminum part is fabricated using electron-
beam lithography and Al/AlOx/Al shadow evaporation tech-
niques. The thicknesses of the bottom and top layers are 25
and 35 nm. For the flux qubit, three of the Josephson junctions
have an area 500 ×400 nm and the other junction is 205 ×400
nm, reduced by a factor of 0.6 [Figs. 4(d) and 4(e)]. The area

FIG. 4. (a) Optical image of the superconducting λ/2 coplanar waveguide resonator and schematic representation of the experimental
setup. The transmission through the cavity at frequency ωp is measured using a vector network analyser (VNA). A second microwave signal at
frequency ωd is used for qubit spectroscopy measurement. The input signal is attenuated and filtered at various temperature stages and coupled
into the resonator through the capacitor. Two isolators and low-pass filters (LPF) are used to protect the sample from the cryoamplifier’s
noise. (b) Optical image of one of the two identical coupling capacitors of the resonator, as indicated by the blue rectangle area in panel (a).
(c) Scanning electron microscope (SEM) image of the galvanically connected flux loop (the red and green rectangular areas are shown in panels
(d) and (e), respectively). The shared arm between the flux qubit and the resonator’s center line is 34.8 μm long and 800 nm wide. (d) SEM
image of the left two Josephson junctions in the flux qubit loop. (e) SEM image of the right two Josephson junctions in the flux qubit loop.
(f) Transmission spectra of the λ/2 resonator mode, which is measured at 20 mK. The black continuous line shows the Lorentzian fit to the
transmission power spectrum. The resonance frequency ω1/2π = 3.143 GHz and FWHM of 2.07 MHz are obtained by the fitting. (g), Qubit
transition frequency ωq from spectroscopy measurement vs relative magnetic flux bias δ�x . The data are recorded at a probe power Pp ≈ −143
dBm (corresponding to an average photon number n1 ≈ 0.19 in the resonator). The probe frequency is equal to the frequency of the λ/2 mode.
The black continuous line represents a numerical fit to the qubit Hamiltonian Hq yielding the parameters δ/h = 6 GHz and Ip = 265 nA.
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of the qubit loop is 34.8 ×3.3 μm. The 34.8-μm−long shared
arm generates ultrastrong qubit-resonator coupling.

The quantum circuit is characterized at a temperature of
20 mK in a BlueFors LD-400 dilution refrigerator. A trans-
mission measurement is conducted to measure the resonator
properties in the low-power limit of the probe field. As shown
in Fig. 4(f), the λ/2 mode has a resonant frequency of 3.143
GHz and full width at half maximum (FWHM) of 2.07 MHz.
By a transmission spectroscopy measurement [Fig. 4(g)], the
dependence of the qubit frequency on the applied external flux
is obtained.

APPENDIX B: HIGH-ORDER SIDEBAND TRANSITIONS
IN THE DISPERSIVE LIMIT

1. The ultrastrongly coupled system under a resonator driving

In the persistent-current basis {| �〉,| �〉} of the supercon-
ducting flux qubit, the dynamics of the coupled qubit-resonator
system is governed by the Hamiltonian

H = 1

2
(ετz + δτx) +

∑
n=1,3

[h̄ωna
†
nan + h̄gn(a†

n + an)τz]. (B1)

When applying a pump field of frequency ωd to the coplanar
waveguide resonator, the total Hamiltonian becomes

Ht = H + Hd,

Hd =
∑
n=1,3


r,n cos ωdt (a†
n + an), (B2)

with 
r,n being the Rabi frequency of the driving field on the
nth mode of the resonator.

To analyze the effect of the driving field on the flux
qubit, we displace the field operator using a time-dependent
displacement operator

D(t) = exp X(t), X(t) =
∑
n=1,3

[αn(t)a†
n − α∗

n(t)an]. (B3)

The displaced Hamiltonian now reads

H ′ = D†(t)HtD(t) − iD†(t)∂tD(t)

= Ht + [Ht,X(t)] + 1

2
[[Ht,X(t)],X(t)] + · · ·

− iD†(t)D(t)∂tX(t)

= 1

2
(ετz + δτx) +

∑
n=1,3

[h̄ωna
†
nan + h̄gn(a†

n + an)τz]

+
∑
n=1,3

gn[αn(t) + α∗
n(t)] τz, (B4)

where αn(t) is chosen to be

αn(t) = −
r,n

2

(
1

ωn − ωd

e−iωd t + 1

ωn + ωd

eiωd t

)
, (B5)

which satisfies the following equation:

∂tαn(t) = −iωnαn(t) − i
r,n cos ωdt. (B6)

Then the last term gn[αn(t) + α∗
n(t)] τz in Eq. (B4), which

represents the effective driving field on the qubit, can now be

written as 
d,q cos ωdt τz, with


d,q = 
q,1 + 
q,3,


q,n = gn 
r,n

(
1

ωd − ωn

− 1

ωn + ωd

)
, (B7)

where |
q,n| is the effective Rabi frequency of the driving field
on the flux qubit via the nth mode of the resonator. When the
linewidth of the cavity mode is considered, ωn in Eq. (B5) is
replaced by ωn + iκn/2, where κn is the total photon damping
rate of the nth cavity mode, which can be written as the sum
of the individual contributions from the external and internal
channels, i.e., κn = κn,in + κn,ex [38]. Here in our system, the
loss rate associated with the waveguide-resonator interface
κn,ex is much larger than the loss rate inside the resonator
κn,in, i.e., κn,ex ≈ κn � κn,in, and thus we ignore κn,in for the
following numerical estimation. We measured the total cavity
photon loss rates of κ1/2π ≈ 2.07 MHz, κ2/2π ≈ 9.90 MHz,
and κ3/2π ≈ 18.01 MHz for the λ/2, λ, and 3λ/2 modes,
respectively.

In this case, the qubit driving term becomes

2 gn 
r,n ωn

[
ω2

d − ω2
n − κ2

n

/
4(

ω2
d − ω2

n − κ2
n

/
4
)2 + ω2

dκ
2
n

cos ωdt

+ ωdκn(
ω2

d − ω2
n − κ2

n

/
4
)2 + ω2

dκ
2
n

sin ωdt

]
, (B8)

where the second term in Eq. (B8) can be safely ignored since
κn 
 {ωn,ωd}, and 
q,n then reads


q,n = 2 gn 
r,n ωn

ω2
d − ω2

n − κ2
n

/
4(

ω2
d − ω2

n − κ2
n

/
4
)2 + ω2

dκ
2
n

. (B9)

Since 
r,n can be directly expressed in terms of the driving
power as [39]


r,n =
√

Pdκn,ex

2 h̄ωn

, (B10)


q,n can then be written as


q,n = gn

√
2 Pd ωnκn,ex

h̄

ω2
d − ω2

n − κ2
n

/
4(

ω2
d − ω2

n − κ2
n

/
4
)2 + ω2

dκ
2
n

.

(B11)

Note that the effective Rabi frequency |
q,n| of the driving
field on the qubit depends not only on the driving power Pd

but also on the frequency detuning ωn − ωd . In the dispersive
region of the measured spectra where the sideband transitions
appear, the driving frequency ωd is largely detuned from
the frequency ωn of the resonator, i.e., |ωn − ωd | � gn. The
effective Rabi frequency |
q,n| of the driving field on the
qubit is much reduced compared to the Rabi frequency 
r,n

of the driving field on the resonator, i.e., |
q,n| 
 
r,n.
In Fig. 5, the effective Rabi frequencies |
q,n| (n = 1,3)
are plotted as a function of the corresponding frequency
detunings ωn − ωd . Indeed, |
q,n| is greatly reduced when
|ωn − ωd | � gn, indicating that the effective driving power
on the qubit is extremely weak in this dispersive regime,
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FIG. 5. Rabi frequency of the driving field on the flux qubit for
(a) the λ/2 mode and (b) 3λ/2 mode. Each inset is a close-up
of the near-resonance region between the driving field and the
corresponding mode.

as compared to the driving power originally applied to the
resonator.

2. Average photon number calibration

The average number of photons in the resonator that come
from the driving field can be calculated from [38,40]

n̄d,n = κn,ex/2

(ωn − ωd )2 + κ2
n/4

Pd

h̄ωd

, (B12)

where we have used the same external loss rate for both sides of
the resonator because they are nearly symmetric in our setup.
It is clear from Eq. (B12) that the mean number n̄d,n of the
intracavity photons for the nth mode, which are injected by
the driving field, has a Lorentzian line shape centered around
the frequency ωn of the nth mode with a width of κn,ex.
Therefore, although the driving field may provide thousands
of photons into the resonator when it is on resonance with
the resonator mode, the intracavity photon number n̄d,n drops
dramatically when the detuning |ωn − ωd | is getting larger.
We see from Fig. 6 that even for a small detuning (i.e.,
|ωn − ωd | is on the order of gn), the mean number of the
intracavity photons injected by the driving field is already
reduced to a single-photon level, and for a large detuning with

FIG. 6. Average number of photons in the resonator that come
from the driving field. (a) λ/2 mode and (b) 3λ/2 mode. Each inset
is a zoom of the off-resonance region between the driving field and
the corresponding mode.

|ωn − ωd | � gn, the average photon number n̄d,n is almost
zero. It indicates that in our experiment the power of the
driving filed is irrelevant to the high-order effects observed
in the dispersive regime of the transmission spectra, where
the negligible photons are injected by the driving field. This
provides a clear and convincing evidence that the observed
high-order processes are measured at the quantum limit of
single or even fewer photon level.

3. Schrieffer-Wolff transformation and higher-order couplings

In the qubit eigenbasis {|g〉, |e〉}, the displaced Hamiltonian
Eq. (B4) can now be rewritten as

H̃ =1

2
h̄ωqσz + 
d,q cos ωdt (cos θσz − sin θσx)

+
∑
n=1,3

[h̄ωna
†
nan + h̄gn(a†

n + an)(cos θσz − sin θσx)],

(B13)

which includes both a σz component and a σx component.
The σz component in the pump Hamiltonian induces periodic
oscillations of the qubit frequency, which produces effective
qubit resonances at frequencies ωq ∓ sωd , with s being an
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integer. When one of the effective resonances is near the
frequency of a resonator mode, energy exchange between the
qubit and the resonator will be enabled by the pump field.
As a result, spectral lines in addition to the qubit frequency
can be observed. The σx component in the pump Hamiltonian
flips the qubit state when the pump frequency is on resonance
with the qubit frequency. Furthermore, when combined with
(higher-order) qubit-resonator coupling, it can also induce
high-order transitions at appropriate pump frequencies. Below
we analyze the possible transitions in the qubit-resonator
system in the dispersive limit with |�±

n | � gn, where �±
n =

ωq ± ωn. In this limit, although the qubit and resonator modes
cannot exchange energy directly due to frequency mismatch,
higher-order processes can be induced by the Rabi coupling
even for a very weak pumping field.

We apply a generalized Schrieffer-Wolff transformation to
the Hamiltonian H̃ ,

H̃eff = U †H̃U, (B14)

where the displacement operator U is

U = exp

{ ∑
n=1,3

[λn,−(σ−a†
n−σ+an)+λn,+(σ−an − σ+a†

n)]

}
,

(B15)

with λn,± = −gn sin θ/�±
n [18,35]. We then divide the Hamil-

tonian H̃eff into terms of different orders of the small parameter
λn,±,

H̃eff = H0 +
∑

s

H̃ (s). (B16)

In this expression,

H0 = 1

2
h̄ωqσz +

∑
n=1,3

(Hn + Hac) (B17)

describes the uncoupled system Hamiltonian modified by the
Stark and Bloch-Siegert shifts

Hac = − h̄

2
[gn sin θ (λn,− + λn,+)(2a†

nan + 1)σz]. (B18)

The term H̃ (s) is to the sth order of λn,±, which contains a
time-dependent factor cos ωdt due to the pump field.

To gain more insight into the physics of the above higher-
order terms, we now consider the Hamiltonian H̃eff in the
interaction picture of H0 with

σ± → σ±e±iωq t , a†
n → a†

ne
iωnt , an → ane

−iωnt . (B19)

Below we study different order couplings under the rotating-
wave approximation by neglecting all fast oscillating terms.

a. Zeroth-order term H̃ (0)

With a pump frequency ωd = ωq and under the rotating-
wave approximation, the zeroth-order term becomes

H̃ (0) = X(0)
n σx, (B20)

with X(0)
n = −
d,q sin θ/2, which generates a transition be-

tween the two qubit states. This transition gives the measured
qubit spectrum in Fig. 2.

b. First-order term H̃ (1)

At the pump frequency ωd = ωq ∓ ωn, the driving on the
σz component of the qubit yields an effective Hamiltonian
describing the first-order red (“−”) or blue (“+”) sideband
transitions.

Another contribution to the first-order couplings occurs
at the pump frequency ωd = ωn. Here the driving on the
σx component of the qubit, together with the qubit-resonator
coupling, produces an indirect driving on the resonator modes.
The effective driving on the resonator then reads

Heff = Z(1)
n (an + a†

n)σz, (B21)

with

Z(1)
n = 
d,q

2
sin θ (λn,− + λn,+). (B22)

c. Second-order term H̃ (2)

The σz-component driving generates second-order terms in the
forms of

Heff = Z(2)
n

(
a2

n + a†2
n

)
σz, (B23)

with

Z(2)
n = −
d,q cos θλn,−λn,+ (B24)

at the pump frequency ωd = 2ωn, which are two-photon
processes. The σz component also generates cross-mode
coupling terms between different resonator modes in the forms
of

Heff = Z
(2)
1̄3 (a†

3a1 + a
†
1a3)σz, (B25)

with

Z
(2)
1̄3 = −
d,q cos θ (λ1,−λ3,− + λ1,+λ3,+), (B26)

at ωd = ω3 − ω1, and

Heff = Z
(2)
13 (a†

3a
†
1 + a1a3)σz, (B27)

with

Z
(2)
13 = − cos θ (λ1,−λ3,+ + λ1,+λ3,−) (B28)

at ωd = ω3 + ω1, respectively. These terms cause effective
couplings between different resonator modes with the fre-
quency difference compensated by the pump frequency.

The σx-component driving generates second-order cou-
pling terms between the qubit and the resonator modes, which
are responsible for the second-order single-photon-driven
sideband transitions observed in the measurement. Similarly,
higher order terms can be analyzed. In particular, at the
frequency ωd = ωq − 3ω1, a third-order single-photon-driven
red-sideband transition can be generated. Discussions on these
sideband terms will be straightforward using our approach.

4. Sideband transitions

In the above, we have analyzed possible higher order terms
induced by the pump field and the qubit-resonator coupling.
Here, we discuss dominant contributions among all terms that
are directly connected to the measured red- and blue-sideband
transitions in the experiment.

012325-9



ZHEN CHEN et al. PHYSICAL REVIEW A 96, 012325 (2017)

First, at pump frequencies ωd = ωq − sωn (s = 1,2,3), the
interaction terms that are not rapidly oscillating are described
by the effective Hamiltonian

H
(s)
n,red = R(s)

n

(
a†

n

s
σ− + as

nσ+
)
, (B29)

with the coefficients

R(1)
n = −
d,q cos θλn,−, (B30)

R(2)
n = −
d,q

2
sin θ λn,−(λn,− + λn,+), (B31)

R(3)
n = 2
d,q

3
cos θ λ2

n,−λn,+. (B32)

We denote these terms as the sth-order single-photon-driven
red-sideband transition for the nλ/2 mode. These terms
generate exchanges between the states |g,Nn〉 and |e,Nn − s〉
with amplitudes ∝ λs

n,±, which can effectively convert a qubit
excitation into s photon excitations of frequency ωn. Note
that if there are no counter-rotating terms in the Hamiltonian,
λn,+ = 0 in the displacement operator U given in Eq. (B15).
Thus, the third-order process related to the nonzero coefficient
in Eq. (B32) is due to the existence of the counter-rotating
terms.

Similarly, when driving at ωd = ωq + sωn (s = 1,2,3), we
obtain single-photon-driven blue-sideband transition for the
nλ/2 mode with

Hn,blue = B(s)
n

(
a†

n

s
σ+ + as

nσ−
)
, (B33)

where the coefficients are

B(1)
n = −
d,q cos θλn,+, (B34)

B(2)
n = −
d,q

2
sin θλn,+(λn,− + λn,+), (B35)

B(3)
n = 2
d,q

3
cos θ λn,−λ2

n,+. (B36)

It couples the states such as |g,Nn〉 and |e,Nn + s〉 and
produces a qubit excitation and s photon excitations in the
nλ/2 mode simultaneously. Obviously, the blue-sideband tran-
sitions related to the nonzero coefficients in Eqs. (B34)–(B36)
are also due to the existence of the counter-rotating terms in
the Hamiltonian, because these coefficients are proportional to
either λn,+ or λ2

n,+.
Interestingly, within our measured spectral range,

the single-photon-driven second-order terms also include
a cross-mode red-sideband transition when driving at

TABLE I. Sideband transition coefficients normalized to the
driving strength 
d,q .

ωq/2π (GHz) 6.85 14.53

X
(0)
1 −4.4×10−1 X

(0)
3 −2.1×10−1

R
(1)
1 3.5×10−2 R

(1)
3 3.8×10−2

R
(2)
1 −3.1×10−3 R

(2)
3 −4.4×10−4

R
(3)
1 −4.5×10−5 R

(3)
3 −9.7×10−6

B
(1)
1 1.3×10−2 B

(1)
3 8.2×10−3

B
(2)
1 −1.2×10−3 B

(2)
3 −9.5×10−5

B
(3)
1 −1.7×10−5 B

(3)
3 −1.6×10−6

R
(2)
1̄3 9.5×10−3 R

(2)
13 −2.8×10−4

B
(2)
13̄ 3.5×10−3 B

(2)
1̄3̄ −1.1×10−4

ωd = ωq ± ω1 − ω3 with the coupling Hamiltonian

H
(2)
c,red = σ−a

†
3

(
R

(2)
1̄3 a1 + R

(2)
13 a

†
1

) + H.c., (B37)

and a single-photon-driven cross-mode blue-sideband transi-
tion when driving at ωd = ωq ± ω1 + ω3

H
(2)
c,blue = σ−a3

(
B

(2)
13̄ a

†
1 + B

(2)
1̄3̄ a1

) + H.c. (B38)

The coupling coefficients for these cross-mode sideband
transitions are

R
(2)
1̄3 = −
d,q

2
sin θ [λ1,+(λ3,− + λ3,+) + λ3,−(λ1,− + λ1,+)],

R
(2)
13 = −
d,q

2
sin θ [λ1,−(λ3,− + λ3,+) + λ3,−(λ1,− + λ1,+)],

B
(2)
13̄ = −
d,q

2
sin θ [λ1,−(λ3,− + λ3,+) + λ3,+(λ1,− + λ1,+)],

B
(2)
1̄3̄ = −
d,q

2
sin θ [λ1,+(λ3,− + λ3,+) + λ3,+(λ1,− + λ1,+)].

(B39)

The single-photon-driven cross-mode red-sideband transitions
are |e10〉 ↔ |g01〉 and |e00〉 ↔ |g11〉. The single-photon-
driven cross-mode blue-sideband transitions are |e11〉 ↔
|g00〉 and |e01〉 ↔ |g10〉. Note that other cross-mode sideband
transitions could appear if we include higher-order terms in the
effective Hamiltonian.

The amplitude of the sth-order sideband transition depends
on λs

n,± with λn,± 
 1, and thus it decreases very quickly as
the order s increases. For illustration, we choose ωq/2π =
6.85 GHz and ωq/2π = 14.53 GHz to calculate the coupling
coefficients for the first mode and the third mode, respectively,
as shown in Table I. Here, the first-order transitions have
normalized amplitudes ∼1×10−2 and the amplitudes of the
third-order transitions decrease to ∼1×10−5.
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