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Controllable optical response by modifying the gain and loss of a mechanical resonator
and cavity mode in an optomechanical system
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We theoretically study a strongly driven optomechanical system which consists of a passive optical cavity and
an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which
are similar to those observed in PT -symmetric systems, are observed. We show that the optical transmission can
be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially,
we find that (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the
optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny
mechanical gain, both optomechanically induced transparency and anomalous dispersion can be observed around
a critical point, which exhibits an ultralong group delay. The time delay τ can be optimized by regulating the
optomechanical coupling strength through the control field, and it can be improved up to several orders of
magnitude (τ ∼ 2 ms) compared to that of conventional optomechanical systems (τ ∼ 1 μs). The presence of
mechanical gain makes the group delay more robust to environmental perturbations. Our proposal provides a
powerful platform to control light transport using a PT -symmetric-like optomechanical system.
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I. INTRODUCTION

Optomechanical systems explore the radiation-pressure
induced interaction between electromagnetic fields and me-
chanical systems [1–3]. These provide one of the most promis-
ing platforms to study and understand quantum-mechanical
laws on a macroscopic scale. Many breakthroughs along this
research direction have emerged in recent years [4,5]. In
particular, the demonstrations of optomechanically induced
transparency (OMIT) [6–8], absorption [9], and amplification
(OMIA) [10–12], allow the control of light propagation
at room temperature by using nano- and microfabricated
optomechanical structures.

Recently, the experimental realization of parity-time (PT )-
symmetric Hamiltonian systems has attracted extensive atten-
tion [13–18]. Although being originally explored at a highly
mathematical level [19], PT -symmetric systems have been
realized in open physical structures, especially in optical
devices that have balanced optical loss and gain [20–23].

It is known that the eigenvalues of a PT -symmetric
Hamiltonian may be real, and a phase transition to a brokenPT
phase may occur when the PT -symmetry condition is broken.
Across the transition point (i.e., in the broken-PT phase),
pairs of eigenvalues coalesce and become conjugate complex
numbers. Phase transitions have been observed in waveguides
[24–27] and microcavities [28,29]. Around the PT -phase
transition point, many unique optical phenomena (such as
loss-induced transparency [24], power oscillations violating

*rbwu@tsinghua.edu.cn
†yuxiliu@mail.tsinghua.edu.cn

left-right symmetry [25], low-power optical diodes [28], and
the single-mode laser [30–32]) have been demonstrated.

Very recently, the effects of PT symmetry and its breaking
in coupled-cavity optomechanics have been explored. Such
PT -symmetric structures are realized by coupling an active
(with optical gain) optical cavity with no mechanical mode
to a passive (lossy) optical cavity supporting a mechanical
mode [33–38]. Benefiting from the phase transition, ultralow
threshold optical chaos [39], the phonon laser [40], and
inverted OMIT [41] have been theoretically proposed.
However, for coupled-cavity PT -symmetric systems, it is
not easy to achieve high optical gain in the active cavity
to balance the loss of the passive optical cavity. Moreover,
a tunable coupling between the active and passive optical
cavities without moving the cavities is desirable to induce a
phase transition for a given gain-to-loss ratio.

Due to the fact that nontraditional control of optical fields
or mechanical oscillations is always associated with the phase
transition in a PT -symmetric system, a natural question is
whether the phenomena occurring in previously studied PT -
symmetric devices can be demonstrated in a single standard
optomechanical system by modifying the gain and loss of the
mechanical resonator and the optical cavity mode, such that it
can also exhibit a phase transition.

Thanks to recent progress in the coherent manipulation
of phonons [42–49] (e.g., phonon laser, phonon pump), it is
now clear that a considerable gain can be introduced to a
mechanical resonator. With an additional optical field serving
as the control, a controllable optomechanical coupling with
strength G can be achieved between the lossy optical cavity and
the active (i.e., with mechanical gain) mechanical resonator.
Here we show that the mechanical gain and the controllable
coupling enable the construction of a PT -symmetric-like
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optomechanical system. By modifying the gain of the me-
chanical resonator and the loss of the optical cavity mode, a
phase transition similar to the one in PT -symmetric systems
can be observed by changing the effective optomechanical
coupling strength. The photoelastic scattering and anti-Stokes
field are greatly enhanced by the mechanical gain. Such
enhancement can be used to control the transmission of an
optical probe field and improve the system robustness to
environmental perturbations. Especially, we will theoretically
show the following:

(i) For the balanced gain-loss case, tunable optical signal
amplification and absorption can be achieved. The transi-
tion from optical absorption (amplification) to amplification
(absorption) is controlled by increasing (decreasing) the
optomechanical coupling strength G.

(ii) For the unbalanced gain-loss case (even with a tiny
mechanical gain), a critical point is found in the broken
PT -symmetry regime. Ultraslow light appears around this
critical point.

(iii) With the help of the mechanical gain, the group
delay becomes much more robust to the fiber-cavity coupling
perturbations. This can help to build stable optical delay lines.

These theoretical findings enable new applications for
controlling the transmission of light beyond what is possible
with conventional optomechanical systems [6–11].

The remainder of the paper is organized as follows. In Sec. II
we introduce the theoretical model of the PT -symmetric-like
optomechanical system. In Sec. III we study the linearized and
stable optomechanical coupling which is used to control the
phase transitions in the PT -symmetric-like optomechanical
system. In Sec. IV we discuss the effects of the mechanical
gain and PT -symmetry-like structure on the control of optical
transmission. The unique control of output fields, especially
for mechanical-gain-induced optical amplification, absorption,
unconventional OMIT, ultraslow light, and enhanced system
robustness, is also demonstrated. Conclusions and discussions
are presented in Sec. VI. The detailed derivations of cavity field
damping are given in Appendix A. Different ways to obtain
the mechanical gain are discussed and shown in Appendix B.

II. MODEL

As schematically shown in Fig. 1, we study an optome-
chanical system that consists of a passive optical cavity
and an active mechanical resonator. In the following, we
will show that this system exhibits features typical of PT -
symmetric systems [28,29]. Thus, we call it a PT -symmetric-
like optomechanical system. For conventional optomechanical
systems, however, the passive optical cavity is only coupled to
a passive mechanical resonator. The cavity field is coupled to a
strong control field and a weak probe field with frequencies ωc

and ωp, respectively. The coupling strength between the cavity
field and the control (probe) field is εc (εp). In the rotating
reference frame at the frequency ωc of the control field, the
Hamiltonian of the composite system can be written as

H = ��aa
†a + �ωmb†b − �g0a

†a(b† + b)

+ i�(εca
† + εpe

−iδt a† − H.c.), (1)

FIG. 1. (a) Schematic of a PT -symmetric-like optomechanical
system consisting of a passive optical cavity and an active mechanical
resonator. The optical cavity is driven by a strong control field of
frequency ωc and a weak probe field with frequency ωp from the left-
hand side. The coupling strengths of the control and probe fields to the
cavity modes are εc and εp, respectively. κe and κi denote, respectively,
the intrinsic and coupling loss of the optical cavity. a is the intracavity
field, aout is the output field, and q represents the displacement of the
movable mirror which forms the optical cavity. A mechanical gain γ is
introduced to the mechanical resonator supporting a mechanical mode
with frequency ωm. (b) The equivalent coupled-harmonic-resonator
model with gain and loss for the PT -symmetric optomechanical
system. The passive cavity field with a total loss rate of κ and the
active mechanical mode with gain γ are coupled with a controllable
optomechanical coupling strength G.

where a (a†) is the annihilation (creation) operator of the cavity
field with frequency ωa in the absence of the mechanical
resonator, b (b†) is the annihilation (creation) operator of
mechanical mode with resonance frequency ωm, �a = ωa −
ωc (δ = ωp − ωc) is the frequency detuning between the cavity
(probe) field and the control field, and g0 is the single-photon
optomechanical coupling strength. The amplitudes of the
control and the probe fields are normalized to the photon
flux at the input of the cavity, i.e., εc = √

Pcκe/�ωc and
εp = √

Ppκe/�ωp, where Pc (Pp) is the power of the control
(probe) field, and κe is the external loss rate.

We now consider the single-mode cavity field of frequency
ωa and interaction with a reservoir (or bath). The reservoir is
assumed to consist of many harmonic oscillators with closely
spaced frequencies νk which are described by the annihilation
(creation) operator mk (m†

k). The free Hamiltonian HR of
the reservoir and the interaction Hamiltonian HI between the
cavity field and the reservoir are given by

HR = �
∑
k

νkm
†
kmk, (2)

HI = �
∑
k

gk(m†
ka + a†mk). (3)

By using the Weisskopf-Wigner approximation (see the de-
tailed derivations in Appendix A), the cavity field can be
viewed as a damped harmonic oscillator with an intrinsic
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damping constant,

κi = 2π [g(ωa)]2D(ωa). (4)

Here, g(ωa) is the coupling constant evaluated at k = ωa/c and
D(ωa) = L3ω2

a/2π2c3 is the mode density of the reservoir at
frequency ωa. Without loss of generality, we assume that the
total loss of the cavity is κ , which is the sum of the intrinsic
loss rate κi and the external coupling loss rate κe. The coupling
strength between the external field and the cavity is defined
by η = κe/(κi + κe), which can be continuously adjusted in
experiments. When the coupling parameter η � 1, the system
is in the undercoupling regime, when η � 1, the system is in
the overcoupling regime, and when η = 1/2, the system is in
the critical-coupling regime [50,51].

The mechanical gain γ can be obtained, for example, by an
external pump-induced population inversion. The underlying
mechanism is either similar to conventional laser amplification
with inverted two-level systems or an optically driven three-
level scheme (see the detailed discussion in Appendix B). In the
main text, we do not discuss in detail how this gain parameter
can be controlled, but rather focus on how its value affects the
dynamics of the probe light.

Under these conditions and by neglecting quantum noise,
we employ the semiclassical Langevin equations of motion (by
setting o = 〈ô〉, where o is any optical or mechanical operator),

ȧ = −
(
i�a + κ

2

)
a + ig0a(b† + b) + εc + εpe

−iδt , (5)

ḃ = −
(
iωm − γ

2

)
b + ig0a

†a. (6)

We are interested in the linear response of the driven
optomechanical system to the weak probe field. So, under
the condition εc � εp, Eqs. (5) and (6) can be linearized by
expanding the operators around their mean values, a = α + δa

and b = β + δb:

δ̇a = −
(
i� + κ

2

)
δa + iG(δ†b + δb) + εpe

−iδt , (7)

δ̇b = −
(
iωm − γ

2

)
δb + i(Gδ†a + G∗δa), (8)

where G = g0α is the effective optomechanical coupling
strength, and � = �a − g0(β∗ + β) is the effective detuning
between the cavity field and the control field. The mean values
α and β in the steady state can be calculated as

α = εc

i� + κ
2

, (9)

β = ig0|α|2
iωm − γ

2

. (10)

We now assume that the optical cavity is driven in the
red-sideband regime (e.g., � = ωm). Under the resolved side-
band limit with ωm � (κ,γ ), the rotating-wave approximation
[6–10] can be applied for Eqs. (7) and (8), which leads to

δ̇a = −
(
i� + κ

2

)
δa + iGδb + εpe

−iδt , (11)

δ̇b = −
(
iωm − γ

2

)
δb + iG∗δa. (12)

For simplicity, we move into another interaction picture by
introducing δa = Ae−iδt , δb = Be−iδt , f → f e−iδt , and ξ →
ξe−iδt , so Eqs. (11) and (12) become

Ȧ =
(
−iω1 − κ

2

)
A + iGB + εp, (13)

Ḃ =
(
−iω2 + γ

2

)
B + iG∗A, (14)

where ω1 = � − δ, and ω2 = ωm − δ.
Then, we take the expectation values of the operators in

Eqs. (13) and (14), and under the steady-state condition 〈Ȧ〉 =
〈Ḃ〉 = 0, one has

〈A〉 =
(
iω2 − γ

2

)
εp(

iω1 + κ
2

)(
iω2 − γ

2

) + |G|2 , (15)

〈B〉 = iG∗εp(
iω1 + κ

2

)(
iω2 − γ

2

) + |G|2 . (16)

From Eqs. (13) and (14), we can see that if the optical
cavity is driven by a strong control field, the interaction
between the cavity field and the mechanical resonator can
be linearized, so that the system can be treated as two coupled
harmonic oscillators with frequencies ω1 and ω2, respectively.
The resulting effective Hamiltonian of the linearized PT -
symmetric-like optomechanical system is then written as

Heff = �ω1A
†A + �ω2B

†B − �(GA†B + G∗B†A)

+ �εp(A + A†). (17)

Taking the cavity loss κ and mechanical gain γ into consider-
ation, we obtain a non-Hermitian Hamiltonian as follows:

Hnon = �

(
ω1 − i

κ

2

)
A†A + �

(
ω2 + i

γ

2

)
B†B

− �(GA†B + G∗B†A) + �εp(A + A†). (18)

The equivalent physical model corresponding to Eq. (18) is
shown in Fig. 1(b). The passive cavity mode (photon) and
active mechanical mode (phonon) are coupled, forming a
PT -symmetric physical system [19,20,28–31,39–41]. The ef-
fective coupling rate G = g0α between modes A and B can be
continuously adjusted by tuning the power of the control field.
Such controllable coupling parameter G can be used to gen-
erate phase transitions similar to standard PT -symmetric sys-
tems, which will be discussed in detail in the following section.

From the above discussions, we summarize the two key
requirements for realizing such a PT -symmetric-like op-
tomechanical system. One is to obtain mechanical gain under
experimentally feasible conditions, which will be discussed in
Appendix B. The other is to obtain an effective optomechanical
coupling strength G which is controlled by the power of the
control field. Below we mainly discuss the behavior of the
phase transition in the PT -symmetric-like optomechanical
system studied here.

III. PHASE TRANSITION IN OPTOMECHANICAL
SYSTEM BY MODIFYING GAIN AND LOSS

It is well known that PT -symmetric systems can exhibit a
phase transition (e.g., spontaneous PT -symmetry breaking).
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The transition from the PT -symmetry phase (real spectrum)
to the brokenPT -symmetry (complex spectrum) phase occurs
when a continuously adjusted parameter (controlling the
degree of the system Hamiltonian non-Hermiticity) exceeds
a critical value [19,28,29]. In our system, such a control
parameter is the effective optomechanical coupling strength G.
The continuous adjustment of G can be realized by changing
the amplitude of the control field. Because optical bistability
may occur when the control field is sufficiently strong [52,53],
the following discussion will be restricted to cases with
achievable effective optomechanical coupling G before the
system loses its stability.

A. Effective optomechanical coupling

From Eqs. (9) and (10), the mean intracavity photon number
Ia = |α|2 in the steady state satisfies

Ia

[
κ2

4
+ (�a − 2χIa)2

]
= |εc|2, (19)

where χ = g2
0/ωm. Since Eq. (19) is cubic in Ia, the system

may exhibit bistability in a certain parameter regime. To
see clearly when the system exhibits bistable behavior, we
derive the bistability condition by imposing the condition that
∂|εc|2/∂Ia = 0, which results in

κ2

4
+ �2

a − 8χ�aIa + 12χ2I 2
a = 0. (20)

The system becomes bistable when the discriminant of the
above quadratic equation is positive, which gives

4�2
a − 3κ2 > 0. (21)

Since the cavity is driven in the red-sideband regime with
�a = ωm, and under the resolved-sideband limit with ωm � κ ,
we conclude that the system becomes bistable when the control
field is sufficiently strong. Recall that εc = √

Pcκe/�ωc, and
the threshold Pthr of bistability for the control optical field can
be solved as

Pthr = �ωcI
+
a

κe

[
κ2

4
+ (�a − 2χI+

a )2

]
, (22)

where

I+
a = 4ωm + √

4ω2
m − 3κ2

12χ
. (23)

In Fig. 2, the intracavity mean photon number Ia versus
the input power P of the control field is illustrated using
experimentally realizable parameters [54]. It is shown that the
system exhibits optical bistability. The threshold of bistability
for the control field is very low. In our case, for parameters
given in Fig. 2, Pthr = 1.87 nW. The bistability can be observed
by scanning the input pump power in two directions. For
example, by gradually increasing the pump power from zero to
a sufficiently strong pump power, about 4.3 μW, one finds the
lower bistable point. The hysteresis then follows the arrow and
jumps to the upper branch. The other unstable point can be ob-
tained by gradually decreasing the input pump power to lower
values, which appears at 1.87 nW. Note that the position of the
bistable points strongly depends on the detuning �a between
the cavity field and the control field. As indicated in Ref. [52],
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FIG. 2. Plot of the mean photons number Ia versus the power
P of the control optical pump (μW) for a cavity-pump detuning
of �a = ωm. Three different colors are used to represent the lower,
middle, and upper branch, respectively. The other system parameters
are g0/2π = 230 Hz, ωm/2π = 10.69 MHz, κ/2π = 0.17 MHz, and
η = 0.76.

the lower branch is always stable. So, in the following, we
choose P < 4.3 μW, which supports stable solutions.

We now consider the case when the system is driven by
a relatively low pump power. As shown in Fig. 3, the pump
power P is chosen to be below 650 nW, in which regime, we
have

Ia ≈ 4κe

�ωc

P

κ2 + 4�2
a

. (24)

That is, when the pump power is low, the intracavity photon
number is approximately proportional to the pump power.
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FIG. 3. Mean photon number Ia versus the power P of the control
optical pump (μW) for different cavity-pump detunings (�a). The
solid curves represent the exact solutions calculated from Eq. (19),
and the dashed curves represent the solutions of the approximating
expression given in Eq. (24). The detuning parameters are chosen
as �a = 0.5ωm for the blue-solid and black-dashed curves, �a = ωm

for the red-solid and green-dashed curves, and �a = 1.5ωm for the
yellow-solid and cyan-dashed curves. The other system parameters
used here are the same as those used in Fig. 2.
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FIG. 4. Effective optomechanical coupling strength G versus the
control optical power P (μW) for different cavity-pump detunings
(�a). The detuning parameters are chosen as �a = 0.5ωm for the
blue-dashed line, �a = ωm for the red-solid curve, and �a = 1.5ωm

for the orange-dashed-dotted curve. The other system parameters
used here are the same as in Fig. 2.

Figure 3 depicts the relation between the intracavity photon
number and the pump power using Eqs. (19) and (24),
respectively. These two results agree well. It is easy to find
that under a fixed pump power, the intracavity photon number
goes up when the cavity-pump laser detuning �a decreases.

The dependence of the effective optomechanical coupling
strength G = g0α on the pump power P is shown in Fig. 4. It is
seen that G can be much larger than the cavity field dissipation
rate κ . Thus, a strong control field can induce a strong coupling
G between the cavity field and the mechanical mode. In
addition, due to the dynamical backaction, the control field
will also affect the mechanical dissipation rate. Nevertheless,
it can be compensated by the controllable mechanical gain
introduced by the control field as well.

B. Coupling strength controlled phase transition

A PT -symmetric system can experience a phase transition,
which has been shown to lead to the observations of interesting
and counterintuitive phenomena [19,20,28–31,39–41]. We
now discuss how phase transition can take place in a PT -
symmetric-like optomechanical system. From Eq. (18), we
can obtain an effective non-Hermitian Hamiltonian as

H̃eff = �

(
ω1 − i

κ

2

)
A†A + �

(
ω2 + i

γ

2

)
B†B

− �(GA†B + G∗B†A), (25)

in which the weak probe field is omitted. The coupling of these
two resonators leads to two supermodes, A+ = (A + B)/

√
2

and A− = (A − B)/
√

2, with the eigenfrequencies ω+ and ω−
given by

ω± = 1

2
(ω1 + ω2) − i

4
(κ − γ )

±
√

G2 −
[
− i

2
(ω1 − ω2) − κ + γ

4

]2

. (26)

Experimentally, we can tune the resonances of the resonators
to be degenerate, i.e., ω1 = ω2 = ωo, in which case the
eigenfrequencies in Eq. (26) of the supermodes become

ω± = ωo − i

4
(κ − γ ) ±

√
G2 −

(
κ + γ

4

)2

, (27)

where the expression in the square-root quantifies the compe-
tition between the coupling strength and the loss and gain of
the resonators. The real (imaginary) part of ω± quantify the
frequencies (dissipation) of these two supermodes.

The real and imaginary parts of eigenfrequencies ω±
versus coupling strength G are plotted in Figs. 5(a) and 5(b),
respectively. We first consider the case in which the gain and
loss are strictly balanced [see red-solid and cyan-dashed curves
in Figs. 5(a) and 5(b)]. There are two different regimes: (i)
the strong coupling regime when G > (κ + γ )/4 (similarly,
G > κ/2 or G > γ/2, when setting κ = γ ), and (ii) the weak
coupling regime when G < (κ + γ )/4 (similarly, G < κ/2
or G < γ/2, when setting κ = γ ), which correspond to the
PT -symmetric regime and the broken PT -symmetric regime,
respectively, as in standard PT systems.

In the PT -symmetric regime, the coupling between
the optical resonator and the mechanical resonator creates
two separate supermodes with different frequencies ωo ±√

G2 − [(κ + γ )2/16], respectively. But these two super-
modes have identical linewidths (κ − γ )/4, which reduces to
zero linewidth at exact balance of gain and loss (i.e., κ = γ ).

In the broken PT -symmetric regime, these two super-
modes are degenerate with same frequency ω0 but differ-
ent linewidths −(κ − γ )/4 ±

√
[(κ + γ )2/16] − G2, which

reduces to ±
√

κ2/4 − G2 or ±
√

γ 2/4 − G2 (i.e., exact gain
and loss balance).

At the critical point G = (κ + γ )/4, both the resonance
frequencies and the linewidths of these two supermodes
coincide. This critical point is the PT phase transition point or
the exceptional point (EP) [19,20,28–31,39–41]. As shown in
Figs. 5(a) and 5(b), by increasing the effective optomechanical
coupling rate G, one can realize the transition from the broken
to the unbrokenPT -symmetric phase, and the phase transition
point occurs at G = (κ + γ )/4.

In contrast, if both the cavity field and the mechanical mode
are passive and have the same loss κ , the supermodes always
have different frequencies ωo ± G but identical linewidth κ/2
[see black-solid and blue-dashed curves in Figs. 5(a) and 5(b)].
Also, the frequency separation is proportional to the coupling
strength G, and no phase transition will be observed for this
passive-passive coupling case.

We now consider the general case in which the gain and
loss are not exactly balanced. Two examples with r = 2 and
r = 4 are shown in Figs. 5(c) and 5(d), respectively. The
critical coupling strength is given by Gc = γ (1 + r)/4, which
implies that a stronger coupling strength G is required for
a PT phase transition for the case of a higher loss-gain
ratio r . In contrast with Figs. 5(a) and 5(b), the frequencies
ω± cannot be purely real in the unbalanced case. When
the coupling is weak, i.e., G < (κ + γ )/4, two degenerated
supermodes appear with different linewidths (one with gain
and the other with loss). When the coupling is strong enough,
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FIG. 5. The real and imaginary parts of eigenfrequencies ω± versus coupling strength G are plotted in (a) and (b), respectively. The red-solid
and cyan-dashed curves in (a) and (b) represent the case with balanced gain and loss. The black-solid and blue-dashed curves in (a) and (b)
represent the case without mechanical gain. The real and imaginary parts of eigenfrequencies ω± for the unbalanced gain-to-loss case are
plotted in (c) and (d), respectively. The red-solid and cyan-dashed curves are calculated with κ = 2γ . The black-dotted and yellow-dash-dotted
curves are calculated with κ = 4γ . Different background colors are used to represent the broken and unbroken PT -symmetric regimes.

G > (κ + γ )/4, the supermodes exhibit different frequencies
but identical linewidths.

IV. CONTROLLABLE OPTICAL OUTPUT FIELD IN
PT -SYMMETRIC-LIKE OPTOMECHANICAL SYSTEM

According to the input-output theory [55], the output optical
field from the optomechanical cavity is given by

〈aout〉 + εc + εpe
−iδt = κe〈a〉, (28)

from which the transmission coefficient at the frequency of
the probe field (ωp) can be derived as (normalized to the input
power of optical probe field)

tp = κe〈A〉 − εp

εp
= κe〈A〉

εp
− 1

= ηκ
(
iω2 − γ

2

)
(
iω1 + κ

2

)(
iω2 − γ

2

) + |G|2 − 1, (29)

and the corresponding power transmission coefficient is
given by

T =
∣∣∣∣∣ ηκ

(
iω2 − γ

2

)
(
iω1 + κ

2

)(
iω2 − γ

2

) + |G|2 − 1

∣∣∣∣∣
2

. (30)

Without loss of generality, in the following discussions the
effective detuning � between the cavity field and the control
field is fixed at the frequency of the mechanical resonator, i.e.,
� = ωm. So, ω1 = ω2 = ωm − δ = −�′, where �′ represents
the frequency detuning between the probe field and the cavity
field. Equation (30) can then be further expressed as

T =
∣∣∣∣∣ ηκ

(
i�′ + γ

2

)
(
i�′ − κ

2

)(
i�′ + γ

2

) + |G|2 + 1

∣∣∣∣∣
2

. (31)

By using Eq. (31), in the following we will discuss how
to achieve controllable optical amplification, absorption,
and group delay in the PT -symmetric-like optomechanical
system.

A. Balanced gain-to-loss case

We first consider a system with balanced gain and loss. The
transmission coefficient T versus the detuning �′ is calculated
and shown in Fig. 6(a) for conventional optomechanical sys-
tems (represented by a black-dashed curve) and the proposed
PT -symmetric-like optomechanical system (represented by
a red-solid curve), respectively. Here, the optomechanical
coupling strength G = 0.4κ is assumed in both systems.
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FIG. 6. The transmission coefficient T and the dispersion Im(tp) versus detuning �′ with G/κ = 0.4 are plotted in (a) and (b), respectively.
(c) Optical amplification with different coupling strengths G (G/κ = 0.4778,0.4833, and 0.4889). (d) The logarithm of the transmission
coefficient T with �′ = 0. The depicted results are for the balanced gain and loss condition (i.e, κ = γ ). The other system parameters are
γm = 1 MHz, κ/γm=900, and η = 0.5. We use words “Passive-passive” (“Passive-active”) to represent conventional optomechanical systems
(PT -symmetric-like optomechanical system), respectively. Parameter γm is the mechanical dissipation rate for conventional optomechanical
systems.

For conventional optomechanical systems, an Autler-
Townes-splitting-like spectrum is observed [56–58]. However,
for our PT -symmetric-like optomechanical system, a remark-
able probe amplification can be established between the two
Autler-Townes absorption dips, where the peak is located at
�′ = 0. The dispersion [determined by the imaginary part of
tp, i.e., Im(tp)] behavior for both cases are also studied and
shown in Fig. 6(b). Around the parameter regime �′ = 0, the
conventional optomechanical systems exhibit an anomalous
dispersive behavior (represented by a black-dashed curve)
while the PT -symmetric-like optomechanical system exhibits
a normal dispersion (represented by a red-solid curve).

To see how this amplification is affected by the coupling
strength G, the transmission coefficient T versus detuning �′
for different coupling strengths G (e.g., G/κ = 0.4778,G/κ =
0.4833,G/κ = 0.4889) are calculated and shown in Fig. 6(c).
We can see that the amplification can be controlled by changing
the coupling strength G. Also, the amplification is very
sensitive to G when the system is brought to the vicinity of the
phase transition point G = 0.5κ . As shown in Fig. 6(d), the

black-dashed curve represents conventional optomechanical
system, in which the transmission coefficient monotonically
increases to one without any signal amplification. However,
for the PT -symmetric-like optomechanical system (the red-
solid curve), strong amplification is achieved near the phase
transition point. Additionally, a perfect optical absorption can
be achieved (e.g., T = 10−5) in the broken PT -symmetry
regime.

Note that aPT -symmetric-like optomechanical system can
be used to realize strong optical amplification with a red-
detuned control field. According to Eq. (31), the transmission
coefficient T at �′ = 0 can be given by

T =
∣∣∣∣∣ (2η − 1) κγ

4 + |G|2
|G|2 − κγ

4

∣∣∣∣∣
2

, (32)

which indicates a strong amplification near the phase transition
point G = √

κγ /2. The huge amplification at this point is
clearly seen in Fig. 6(d). Figure 6 clearly shows that both
tunable optical signal amplification and tunable absorption
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FIG. 7. (a) Schematic diagram explaining the various frequencies
and the processes of pumping and probing. The system is driven by a
control field at a frequency ωc, which is red-detuned from the cavity
resonant frequency ωa by about the mechanical resonant frequency
ωm. A weak probe field with frequency (i.e., ωp = ωc + δ) is used to
probe the cavity response. (b) Energy-level diagram explaining the
enhanced raman scattering and stimulated-emission-like process in
the PT -symmetric-like optomechanical system. The product states
|nc,nm〉 are characterized by nc cavity photons and nm mechanical
phonons. Also, κ (γ ) represents the loss (gain) of the cavity
(mechanical) mode, respectively.

can be observed in the PT -symmetric-like optomechanical
system. The transition from optical absorption (amplification)
to amplification (absorption) is controlled by increasing
(decreasing) the optomechanical coupling strength G.

The physical mechanism of photon amplification in the
PT -symmetric-like optomechanical system is illustrated by
the driving-strategy and simplified energy-level transition pic-
tures in Figs. 7(a) and 7(b), respectively. As shown in Fig. 7(a),
the system is driven by a strong control field at frequency ωc,
which is red-detuned from the cavity resonant frequency ωa by
about the mechanical resonant frequency ωm. A weak probe
field at the frequency ωp = ωc + δ probes the modified cavity
resonance. The strong control field exerts a radiation pressure
on the oscillating mirror that induces a controllable coupling
between the cavity and mechanical modes. Simultaneously,
the vibrating mechanical mode photoelastically generates
an optical grating that is capable of scattering the control
optical field [59–61]. Therefore, the Stokes and anti-Stokes
fields [red-shaded areas in Fig. 7(a)] build up at ωc ± ωm

around the strong-driving field. Since the system works in
the resolved-sideband regime, ωm > (κ,γ ), the Stokes field
at ωc − ωm is strongly suppressed because it is off-resonant
with the cavity, whereas the anti-Stokes field at ωc + ωm is
enhanced.

Note that the PT -symmetric-like optomechanical system
proposed in this work differs from conventional optomechan-
ical systems by the controllably introduced mechanical gain.

The generation of such mechanical gain can be viewed as
a continuous coherent phonon bath pumping the mechani-
cal mode, which in turn greatly enhances the photoelastic
scattering and the anti-Stokes field. Since the probe field is
resonant to the anti-Stokes scattered optical field, it allows
for stimulated-emission-like photon amplification of the probe
field, which is analogous to the stimulated emission in atoms.
Here, the probe response is controlled by the control field
and the mechanical gain. The resulting stimulated emission of
the intracavity field forms an amplification window when the
two-photon resonance condition is met.

One can also understand the effect of photon amplification
through the energy-level transition picture. As shown in
Fig. 7(b), the optomechanical states consist of product states
|nc,nm〉, where nc and nm are the numbers of cavity photons
and mechanical phonons, respectively. Here, a pure cavity
mode excitation is represented by a black vertical arrow
increasing only the number of photons in the cavity. In
contrast, a control field tuned at ωc � ωa − ωm (optimal
detuning) creates (annihilates) one photon (phonon) number
by one, which is represented by a green diagonal arrow. The
photons of the control field are up-converted and scattered
into the anti-Stokes line at ωc + ωm, approximately matching
the cavity resonant frequency ωa. The mechanical gain and
the coherent phonon pump are shown by the red diagonal
arrow. The mechanical gain supports enough phonons for the
consumption during the anti-Stokes scattering process. Thus,
the photoelastic scattering and the anti-Stokes field are greatly
enhanced. Because the probe field is coherently resonant with
the anti-Stokes field, a stimulated-emission-like process is
observed, as well as strong amplification of the probe field.

From the above discussion we see that the physical mecha-
nism of mechanical-gain-induced strong optical amplification
is totally different from the Raman process [62] or four-wave
mixing [63], which rely on the optical nonlinear response of
the medium. The strong third-order nonlinear susceptibility is
also not needed here. Our method is suitable for any spectral
band and for optical signals with different wavelength. It
can also exhibit a broadband optical amplification [64]. The
great amplification discussed here is enabled by the enhanced
photoelastic-scattering and anti-Stokes field around the phase
transition point.

B. Unbalanced gain-to-loss case

Optomechanically induced transparency is useful for slow-
ing and switching probe lights, and it may be further developed
for on-chip optical pulse storage. The underlying physics of
OMIT is similar to electromagnetically induced transparency
(EIT) in atomic physics. Group delay is the most prominent
feature of EIT. As is well known in conventional optomechan-
ical systems, the group delay time τ is mainly determined
by the mechanical dissipation rate γm (τ ∼ 1/γm). Despite
significant advances in the performance of optomechanical
devices in the past few years, the realization of both high
optical transmission and long group delay still remain a
challenge [6–8]. Due to the resolved-sideband condition, a
high mechanical frequency is required, which inevitably leads
to a high mechanical dissipation rate, and thereby small group
delay. Even though the optical transmission can be increased

013843-8



CONTROLLABLE OPTICAL RESPONSE BY MODIFYING . . . PHYSICAL REVIEW A 95, 013843 (2017)

−2 −1 0 1 2
0

1

2

3

4

5

6

Δ /κ

T

−5 0 5
0

2

4

6

Δ /γm

Passive-passive
Passive-active

(a)

−2 −1 0 1 2

−1

−0.5

0

0.5

1

1.5

Δ´´

´ ´

/κ

Im
(t

p
)

−5 0 5

−1

−0.5

0

0.5

1

Δ /γm

  Passive−passive

  Passive−active

(b)

FIG. 8. The transmission coefficient T and the dispersion Im(tp) versus detuning �′ are plotted in (a) and (b), respectively. The blue-dashed
curve (red-solid curve) represents conventional optomechanical system (PT -symmetric-like optomechanical system). The other system
parameters are γm = 1 MHz, G/γm = 20, κ/γm = 900, γ /γm = 1, and η = 0.5. We use word “Passive-passive” (“Passive-active”) to represent
conventional optomechanical systems (PT -symmetric-like optomechanical system), respectively. Parameter γm is the mechanical dissipation
rate for conventional optomechanical systems.

by a larger optomechanical cooperativity, the broadening of
the transparency window indicates further decrease in group
delay. In the following, we will discuss an OMIT-like spectrum
in the PT -symmetric-like optomechanical system. In contrast
to conventional optomechanical systems, a small gain for the
mechanical mode is introduced (|γ | = γm), so that the system
works in the deeply unbalanced gain and loss regime. We will
show that even a small amount of mechanical gain may greatly
enhance the transmission center peak, which corresponds to a
much sharper change in the dispersion curve and hence to an
ultralong group delay.

1. Optomechanically induced-transparency-like spectra

The transmission coefficient T versus detuning �′ is
calculated and shown in Fig. 8(a), where the optomechanical
coupling strength is taken as G = 0.22κ . For conventional
optomechanical systems (the blue-dashed curve), one can
obtain an EIT-like spectrum [6–10]. However, for our
PT -symmetric-like optomechanical system (the red-solid
curve), a remarkable probe amplification is observed near
�′ = 0. The center peak is calculated and shown in the
inset of Fig. 8(a). The dispersion curves for conventional
optomechanical systems and the PT -symmetric-like
optomechanical system are shown in Fig. 8(b), where we see
that both exhibit anomalous dispersion. The enhancement of
the optical transmission [see the red-solid curve in Fig. 8(a)]
leads to an abrupt variation of the dispersion [see the red-solid
curve in Fig. 8(b)] and therefore a large optical group delay
of the outgoing optical field. The center dispersion variation
is shown in the inset of Fig. 8(b).

Next, we discuss how the coupling strength G affects the
enhancement of the group delay of the optical field. The trans-
mission coefficient T versus detuning �′ for different cou-
pling strengths G (e.g., G/γm = 14,G/γm = 14.5,G/γm =
14.9,G/γm = 16) are shown in Fig. 9(a), which clearly show
that the height of the center peak is sensitive to the coupling

strength G. Combined with the dispersion curves shown in
Fig. 9(b), we see that both the center peaks of the transmission
and variation of the dispersion can be greatly enhanced with a
properly chosen G. Also, the enhancement of the transmission
[see Fig. 9(a)] and fast variation of the dispersion [see Fig. 9(b)]
are not linearly dependent on the coupling strength G; that is,
there is a critical value of G beyond which leads to a decrease
in the enhancement.

In contrast with conventional optomechanical systems,
the PT -symmetric-like optomechanical system possesses one
critical point (Gcp = √

κγm/2) in the broken PT -symmetry
regime. When G is set to bring the system to the vicinity
of the critical point, an enhancement of the probe field and
sharp variation of the dispersion can be achieved. Here, the
critical point is located at Gcp/γm = 15. As shown in Fig. 9(b),
the increment � is introduced to quantify the abruptness of the
dispersions, and therefore the length of the group delay. The
group delay can be intuitively judged by the value of �. The
larger the positive � is, the longer the group delay is.

To clearly see the strong enhancement of T and � around
the critical point, the transmission coefficient T and fast
dispersion variation � versus coupling strength G are shown
in Figs. 9(c) and 9(d), respectively. Here, the detuning �′ is
set to zero so that the enhancement is strongest. As shown
in Fig. 9(c), with G increasing and exceeding the critical
point (Gcp/γm = 15), the value of T corresponding to the
conventional case (see the black-dashed curve) is gradually
approaching one, which means the system always exhibits
the OMIT phenomenon. However, for the PT -symmetric-like
optomechanical system (see the red-solid curve), with G

increasing, the system first behaves like the conventional case
showing OMIT in the parameter regime G/γm < 11. But, as
G approaches the vicinity of the critical point, a significant
enhancement is observed in the transmission coefficient, which
means that electromagnetically induced amplification (EIA)
occurs. As shown in Fig. 9(d), a strong enhancement for �

is also observed at the vicinity of the critical point (see the
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FIG. 9. The transmission coefficient T and dispersion Im(tp) versus the detuning �′ with different coupling strengths G/γm = (14,14.5,14.9
and 16) are plotted in (a) and (b), respectively. The logarithm of the transmission coefficient T and the dispersion variation � versus G with �′ =
0 are plotted in (c) and (d). The electromagnetically induced-transparency (EIT) regime (corresponding to T < 1) and the electromagnetically
induced-amplification (EIA) regime (corresponding to T > 1) are labeled below and on the dash-dotted line (corresponding to T = 1)
in (c), respectively. The other system parameters are γm = 1 MHz, κ/γm = 900, γ /γm = 1, and η = 0.5. We use word “Passive-passive”
(“Passive-active”) to represent conventional optomechanical systems (PT -symmetric-like optomechanical system), respectively. Parameter γm

is the mechanical dissipation rate for conventional optomechanical systems.

red-solid curve). Such enhancement for T and � can be easily
understood by setting γ → γm in Eq. (32). The critical point
appears when the denominator of Eq. (32) becomes zero.

Physically, such strong enhancement of T and � originates
from the small mechanical-gain-induced strong photoelastic
scattering and anti-Stokes field. In other words, the op-
tomechanical interaction and the anti-Stokes field are greatly
enhanced around the critical point in our PT -symmetric-like
optomechanical system. It is also noted that in our system the
control field is always red-detuned.

2. Ultralong group delay

We now show how the enhanced optical transmission
coefficients T and the dispersion variation � can be used
to control the optical transmission. It is well known that the
optical transmission in an EIT window experiences a dramatic
reduction in its group velocity, which is also true for the light
transmitted in the OMIT window for conventional optome-
chanical systems [6–10]. We now investigate the group delay of
the optical signal in our PT -symmetric-like optomechanical

system. The optical group delay of the transmitted light is
defined as

τ = dθ

dωp
, (33)

where θ = arg[tp(ωp)] is the phase of the output field at
the frequency ωp. The phase θ and group delay τ versus
detuning �′ for the conventional optomechanical system and
the PT -symmetric-like optomechanical system are plotted
in Figs. 10(a) and 10(b), where an optomechanical coupling
strength of G/γm = 16 is assumed. It is clearly shown that the
tiny mechanical gain leads to faster variation of the phase [see
the red-solid curve in Fig. 10(a)]. For conventional optome-
chanical systems [see the black-dashed curve in Fig. 10(b)],
the maximum group delay is 0.4 μs, which can be prolonged
to 14 μs with mechanical gain (see the red-solid curve).
Furthermore, as shown in Fig. 10(c), such mechanical gain
can lead to a much faster variation of the phase by decreasing
the coupling strength G. Also, as shown in Fig. 10(d), the
group delay can be further extended under a weaker coupling
strength G.
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FIG. 10. Phase θ and group delay τ for conventional (see the black-dashed curve) and PT -symmetric (see the red-solid curve)
optomechanical systems versus �′ with G/γm = 16 are plotted in (a) and (b), respectively. (c) Phase θ and (d) group delay τ versus detuning
�′ for PT -symmetric optomechanical systems with three different coupling strengths G/γm = (15.1,15.4,15.8). Here, γ /γm = 1 and η = 0.3
are assumed. (e) Group delay τ (at �′ = 0) versus G for different mechanical gains γ /γm = (1,4,9). (f) Group delay τ versus detuning �′

for different coupling parameters η = (0.1,0.3,0.6 and 0.9) with G/γm = 15.1 and γ /γm = 1. The other system parameters are γm = 1 MHz,
and κ/γm = 900. We use word “Passive-passive” (“Passive-active”) to represent conventional optomechanical systems (PT -symmetric-like
optomechanical system), respectively. Parameter γm is the mechanical dissipation rate for conventional optomechanical systems.

To obtain the optimum group delay (maximum τ ), the
changes of the group delay τ versus coupling strength G with
fixed detuning �′ = 0, are plotted and shown in Fig. 10(e).
Three cases with different mechanical gain [i.e., γ /γm =
(1,4,9)] are considered. The optimum group delay is always
located at the critical point Gcp = √

κγ /2. Compared to the
group delay of the conventional optomechanical system [see
the black-dashed curve in Fig. 10(b)], a huge enhancement by
four orders of magnitude of τ is obtained around such critical
point [see the black-circle curve in Fig. 10(e)]. Figure 10(e)
also shows that the position of the critical point can be
controlled by adjusting the mechanical gain.

In conventional optomechanical systems, the OMIT and
the group delay are sensitive to the coupling parameter
η between the incoming optical field and the cavity field
mode. When η is set to weak coupling (e.g., η = 0.1,0.3)
and overcoupling (e.g., η = 0.6,0.9), the corresponding time
delays are τ = 0.11,0.43,1.48, and 8.47 (μs), respectively.
Due to environmental disturbances, the coupling may vary
(i.e., η may change between zero and one). Thus, conventional
optomechanical systems are not robust against the change of
coupling parameter η. However, as shown in Fig. 10(f), for our

PT -symmetric-like optomechanical system, the group delay τ

is not very sensitive to the variations in the coupling parameter.
These findings open a new direction for controlling the
transmission of light beyond what is possible in conventional
optomechanical systems [6–10].

V. CONCLUSIONS

In summary, we have theoretically studied a PT -
symmetric-like optomechanical system consisting of a me-
chanical mode with gain and a lossy optical cavity mode.
By varying the controllable optomechanical coupling strength
G, a phase transition is observed for both balanced and
unbalanced gain-to-loss cases. We theoretically show the
following.

(i) For the balanced gain-to-loss case, an amplification
window between two Autler-Townes absorption dips appears.
The largest amplification is located at the PT phase transition
point. Additionally, by changing the coupling strength G, a
perfect optical absorbtion is also obtained. The transition from
optical absorption (amplification) to amplification (absorption)
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is controlled by increasing (decreasing) the optomechanical
coupling strength G.

(ii) For the unbalanced gain-to-loss case and even with a
tiny mechanical gain, a huge enhancement of the height of the
OMIT-like window and the dispersion variation � are obtained
near the critical point in the broken PT -symmetry regime.

(iii) The group delay τ of the signal in the PT -symmetric-
like optomechanical system can be optimized by tuning the
optomechanical coupling strength G and improved up to
several orders of magnitude (τ ∼ 2 ms) compared to that
of the conventional optomechanical system (τ ∼ 1 μs). The
maximum group delay is located at the critical point, which
can be controlled by the value of mechanical gain.

(iv) The group delay becomes much more robust to the
change of the coupling strength η between the incoming fields
and the optical cavity mode. This can support a stable optical
delay.

Note that coherent conversions between microwave and
optical fields were demonstrated in a recent experiment [65].
The mechanical gain can be introduced by a blue-detuned
optical pump field. For optomechanical microwave cavities, a
controllable coupling between the passive cavity mode and the
active mechanical resonator can be achieved with the help of
a strong microwave control field (i.e., the control field in our
system). So, thePT -symmetric-like optomechanical system is
also realizable in the microwave regime for electromechanics.
Our theoretical model discussed here can also be generalized
to the microwavePT -symmetric-like optomechanical system.

These features enable new applications which are hard to
realize in conventional optomechanical systems. Our study
shows that this PT -symmetric-like optomechanical system
could be a powerful platform to control optical signal trans-
mission for PT -symmetric structures.
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APPENDIX A: TREATMENT OF DAMPING VIA
OSCILLATOR RESERVOIR

We study the damping of the cavity field with eigenfre-
quency ωa (described by the annihilation operator a) through
an interaction with a reservoir, which is assumed to consist
of many harmonic oscillators described by the annihilation

(creation) operator mk (m†
k) with frequencies νk. We further

assume a very general type of system-reservoir coupling of
the type XXk, which contains terms as m

†
ka, a†mk, amk,

a†m†
k. Using the rotating-wave approximation, the complete

Hamiltonian reads [66,67]

Hc = H0 + HI, (A1)

H0 = �ωaa
†a + ∑

k
�νkm

†
kmk, (A2)

HI = �
∑
k

gk(m†
ka + a†mk). (A3)

Here, H0 consists of the energy of the free cavity field and the
reservoir modes, and HI represents the interaction energy. The
commutation relations of these operators are given by

[a,a†] = 1, (A4)

[mj,m
†
k] = δjk, (A5)

[a,m
(†)
k ] = 0. (A6)

We note that in Eq. (A6) the field operators commute
with the reservoir operators. The equation of motion for an
arbitrary operator o is obtained by commuting with Hc; using
the commutation in Eqs. (A4)–(A6), we have

ȧ = −iωaa − i
∑
k

gkmk, (A7)

ṁk = −iνkmk − igka. (A8)

Equation (A8) can be formally integrated to yield

mk(t) = mk(0)e−iνkt − igk
∫ t

0 dt ′a(t ′)e−iνk(t−t ′). (A9)

Here, the first term represents the free evolution of the reservoir
modes, whereas the second term arises from their interaction
with the harmonic oscillator. Using Eq. (A9) in Eq. (A7), we
find

ȧ = −iωaa −
∑

k

g2
k

∫ t

0 dt ′a(t ′)e−iνk(t−t ′) + fa(t), (A10)

with

fa(t) = −i
∑

k

gkmk(0)e−iνkt . (A11)

Here, fa(t) depends only on the reservoir operators mk(0),
and it can then be regarded as a noise operator. According
to the assumption that the modes of the reservoir are closely
spaced in frequency, the change from a discrete distribution of
modes to a continuous distribution can be made by replacing
the summation over k in Eq. (A10) by an integral term,

∑
k

→
(

L

2π

)3∫
d3k, (A12)

where L is the length of the sides of the assumed cubic
cavity with no specific boundaries, and k ≡ (kx,ky,kz) is the
wave vector. The density of modes between the frequen-
cies ν and ν + dν can be obtained by transferring from
the Cartesian coordinate (kx,ky,kz) to the polar coordinates
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(k sin θ cos φ,k sin θ sin φ,k cos θ ). The corresponding volume
element in k space is

d3k = k2dk sin θdθdφ = ν2

c3
dν sin θdθdφ. (A13)

The total number of modes Nm in the range between ν and
ν + dν is given by

dNm =
(

L

2π

)3
ν2

c3
dν

∫ π

0
sin θdθ

∫ 2π

0
dφ = L3ν2

2π2c3
dν.

(A14)

Thus a mode density parameter at frequency ν is defined by

D(ν) = L3ν2

2π2c3
. (A15)

Here, g(ωa) ≡ gωa/c is the coupling constant evaluated at
k = ν/c. In the transmission spectrum, the intensity of light
associated with the output field of the cavity field a is always
centered at the eigenfrequency ωa. The quantity ν varies
little around ν = ωa. We can therefore replace g2(ν)D(ν)
by g2(ωa)D(ωa) in Eq. (A10), which becomes

ȧ = −iωaa −
∑

k

g2
k

∫ t

0
dt ′a(t ′)e−iνk(t−t ′) + fa(t). (A16)

Using the integral,∫ ∞

0
e−iν(t−t ′)dν = πδ(t − t ′), (A17)

we obtain the Langevin equation,

ȧ = −iωaa − 1
2κia + fa(t), (A18)

where the intrinsic damping constant is

κi = 2πg2(ωa)D(ωa). (A19)

We are interested in the semiclassical dynamics of the
system which can be obtained by setting o = 〈ô〉 (where o

is any optical or reservoir operator); thus we have

ȧ = −iωaa − 1
2κia, (A20)

where the reservoir is supposed to be in thermal equilibrium,
and the following relation is used:

〈fa(t)〉 = −i
∑

k

gk〈mk(0)〉e−iνkt = 0. (A21)

APPENDIX B: METHODS TO OBTAIN
THE MECHANICAL GAIN

In this part, we will show three different ways to produce
mechanical gain [e.g., used in Eq. (6)], and estimate an upper
bound of the mechanical gain with experimentally accessible
parameter values. It should be also noted that our results
cannot always hold for all the methods discussed below when
considering the full system. The first method discussed in
Appendix B is good at producing a tiny mechanical gain for
the observations of OMIT-like spectra and group delay. The
second and third method can support tunable and large enough
mechanical gain, and all the results in our manuscript hold.
But, promoting these two methods to all different types of

optomechanical systems is still challenging. Below we give
detailed derivations for three methods to obtain mechanical
gain.

1. Mechanical gain by directly driving the mechanical modes

Experimentally, the mechanical resonator can be coherently
driven using either a piezoelectric pump [43,44], Josephson
phase qubits [45], or a microwave electrical driving [46].
A cascaded optical transparency was recently observed by
applying a mechanical driving to an optomechanical sys-
tem with both the optomechanical coupling and parametric
phonon-phonon coupling [47]. Note that the phonon laser is
also achieved in an electromechanical resonator by coherently
driving the separated mechanical modes [48,49]. Such me-
chanical resonator now works as a phonon cavity [48] which
supports high-quality factor mechanical modes with different
frequencies. We assume that the pumped mechanical mode bl

is a low-Q one which acts as a phonon cavity with frequency
ωm′ and decay rate γm′ . Another mechanical mode b is a high-Q
one with frequency ωm and decay rate γm. The motion of the
first mode induces tension that can modify the frequency of
the phonon cavity, which introduces a parametric intermodal
coupling with strength Gph. The phonon cavity is coherently
driven by a blue-detuned mechanical pump εm exp−iωmt with
amplitude εm and frequency ωm. With the help of the phonon
cavity and intermodal coupling, a mechanical gain γ is
achieved for the high-Q mechanical mode which is given by

γ = 4|Gph|2/γm′ . (B1)

2. Mechanical gain by the phonon lasing method

In a single cavity, we can find two cavity modes with
different frequencies ω1 and ω2, respectively. Here, the
frequency difference of these modes is equal to the frequency
of the mechanical resonator (i.e., ω1 − ω2 = ωm). When the
high-frequency optical mode is pumped, such that two optical
modes exchange energy with the mechanical mode through
photoelastic scattering [59–61]. The interaction Hamiltonian
is given by

Hm = ω1a
†
1a1 + ω2a

†
2a2 + ωdmb†b + β(a†

1a2b + b†a†
2a1),

(B2)

where ω1,2 and ωm are the frequency of the optical modes
and the mechanical mode, respectively. Also, a1,2(a†

1,2) are
the annihilation (creation) operators of the optical modes;
b(b†) is the annihilation (creation) operator of the mechanical
mode; and β is the coupling coefficient accounting for the
modal overlap and scattering gain in the cavity material.
Here, the two optical modes can be seen as a two-level atom
which exchanges energy with the mechanical phonons. To
clearly see this, we define the ladder and population inversion
operators as

J+ = a
†
1a2, (B3)

J− = a
†
2a1, (B4)

N = a
†
1a1 − a

†
2a2. (B5)
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The Heisenberg equations of motion for the mechanical mode
b and the operator J− (with damping added) are

ḃ = −(γm + iωm)b − iβJ−, (B6)

J̇− = −(γa + i�ω)J− + iβNb, (B7)

where �ω = ω1 − ω2. γm is the decay rate of the mechanical
mode. Here, γa = (γ1 + γ2)/2, where γ1 and γ2 are the decay
rate of the optical modes a1 and a2, respectively. Next,
we introduce the rotating frame by setting B = exp(iωmt)b
and J = exp(iωmt)J−, in which Eqs. (B6) and (B7) can be
rewritten as

Ḃ = −γmB − iβJ, (B8)

J̇ = −[γa + i(�ω − ωm)]J + iβNB. (B9)

Because the coupling between the optical mode and the
mechanical mode is weak, and the cavity decay rate is much
larger than the mechanical dissipation rate [i.e., γa � (β,γm)],
we can adiabatically eliminate the optical mode J by setting
J̇ = 0, which leads to

J = iβN
γa + i(�ω − ωm)

B. (B10)

Substituting Eq. (B10) into Eq. (B8), we find

Ḃ =
[

β2N
γa + i(�ω − ωm)

− γm

]
B, (B11)

which indicates an effective mechanical gain,

γ = β2Nγa

γ 2
a + (�ω − ωm)2 . (B12)

Select the two optical modes so that �ω = ω1 − ω2 = ωm, and
then Eq. (B12) can be simplified to

γ = G2

γa
, (B13)

where G = √
Nβ is the control-field enhanced optome-

chanical coupling rate. Under the strong-pump condition, a
remarkable mechanical gain can be achieved. For example,
choosing G/γa = 5 leads to a mechanical gain of γ /γa = 25.

3. Mechanical gain by blue-detuning optical pump

For an optomechanical system with a strong blue-detuned
control field, e.g., � = ωm, the anti-Stokes parameter process
is greatly enhanced in contrast to the greatly suppressed Stokes
parameter process [68,69]. An effective gain coefficient for the
mechanical mode is given by C = 4|G|2/κγm. Indeed phonon
amplification has been experimentally observed in various
optomechanical systems [70–75].
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amplification with nanomechanical resonators, Nature (London)
480, 351 (2011).
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