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We investigate how discrete internal degrees of freedom in a quasimacroscopic system affect the violation of
the Leggett-Garg inequality, a test of macroscopic realism based on temporal correlation functions. As a specific
example, we focus on an ensemble of qubits subject to collective and individual noise. This generic model can
describe a range of physical systems, including atoms in cavities, electron or nuclear spins in nitrogen-vacancy
(NV) centers in diamond, erbium in Y2SiO5, bismuth impurities in silicon, or arrays of superconducting circuits,
to indicate but a few. Such large ensembles are potentially more macroscopic than other systems that have been
used so far for testing the Leggett-Garg inequality and open a route toward probing the boundaries of quantum
mechanics at macroscopic scales. We find that, because of the nontrivial internal structure of such an ensemble,
the behavior of different measurement schemes, under the influence of noise, can be surprising. We discuss which
measurement schemes are optimal for flux qubits and NV centers, and some of the technological constraints and
difficulties for observing such violations with present-day experiments.
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I. INTRODUCTION

The crossover between classical and quantum worlds still
remains under debate, even 80 years after Schrödinger’s
famous “cat” thought experiment [1]. For example, the
precise details of how the classical macroscopic world arises
from the quantum one, and whether there is an unknown
fundamental boundary between the two, still remains a topic
of vigorous study. In 1964, Bell [2] made the assumptions
of realism and locality to derive an inequality for correlations
between spatially separated events whose violation can rule out
certain classes of alternative theories to quantum mechanics.
More recently, Leggett and Garg [3] asked a related but
different question: can a large, macroscopic system be in a
genuine quantum superposition, or is there some unknown
mass, particle number, or length-scale limit where substantial
corrections to quantum theory prevent such a state of affairs?
To give a quantitative tool to test for such breakdowns they
assumed the twin assumptions of macroscopic realism and
noninvasive measurability to construct what is now known
as the Leggett-Garg inequality (LGI) [3,4]. Violations of this
inequality by large systems rule out certain classes of non-
invasive realistic theories (henceforth termed macrorealism),
and provide evidence of quantum effects at the macroscopic
scale. With advancements in fabrication techniques [5–7] and
a number of LGI violations being reported in microscopic
systems [8–11], it has become important to test the inequality
on arguably “larger” macroscopic systems [12], and push back
further the demarcation between quantum and classical worlds.

Alongside this lingering fundamental question, advance-
ments in nanomechanical devices [13] such as suspended
resonators [14], optomechanical mirrors [15,16], and vibrating
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membranes [17], have generated interest in understanding the
crossover from the quantum to classical regimes. Similarly,
circuit QED [6,18] has helped in the exploration of phenomena
such as superradiance [19] and entanglement [7] in low-noise
environments [20] with quasimacroscopic systems. In addi-
tion, it is becoming apparent that the physics of systems with
internal structure, which cannot be assumed to be restricted to a
simple two-level Hilbert space, is both rich and useful; Budroni
and Emary [21] found that the magnitude of the violation can
increase as the number of internal levels increases, reaching
an upper bound, a temporal analog to the Tsirelson bound
[22] for the Bell inequality. Additionally, George et al. [23]
found that a multilevel system could exhibit a violation of
the LGI while not violating a related condition known both
as the quantum witness equality [24], or “no-signalling in
time” [25]—arguably allowing one to discount a stricter
class of macrorealist theories. Finally, Budroni et al. [26]
considered the continuum limit of a macroscopic ensemble
and characterized the requirements on measurements in this
case.

Here, we theoretically investigate the LGI in a discrete
ensemble of N two-level quantum systems, physical man-
ifestations of which include arrays of nearly identical flux
qubits, nitrogen-vacancy (NV) centers in diamond, erbium in
Y2SiO5, and bismuth impurities in silicon [27]. In particular,
we study the effects of various choices of measurement
schemes or protocols, from the point of view both of the
degree of macroscopicity and the feasibility of observing a
LGI violation.

We select and investigate six different measurement
schemes, which are all defined in the fully symmetric subspace
of the N qubits. This subspace forms a ladder of state
manifolds indexed by the number n of excited qubits in that
manifold n ∈ {0,1,2, . . . ,N}, and can thus be viewed as an
(N + 1)-dimensional system which we call the “large spin.”

2469-9926/2016/94(1)/012105(14) 012105-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.012105


LAMBERT, DEBNATH, KOCKUM, KNEE, MUNRO, AND NORI PHYSICAL REVIEW A 94, 012105 (2016)

Following convention, we use the simply related variable
m = n − N/2. Setting j = N/2, our ladder is indexed by
the label m ∈ {−j,−j + 1, . . . ,j − 1,j}. In the noise-free
case, we evaluate, where feasible, both analytic expressions
and numerical simulations of the Leggett-Garg parameter and
attempt to extrapolate to large-N limits. We then consider, nu-
merically, each protocol’s performance under both collective
and individual qubit noise. Finally, we consider whether each
scheme allows for a macroscopic interpretation of an observed
violation.

Based on the above analysis, our main results in this
work are twofold. First, among the options considered here,
a measurement which distinguishes substates of the collective
large-spin Hilbert space, and which bins around the center of
that space, gives a violation of the LGI which is the most
robust against noise. In addition, this violation does not vanish
as N → ∞. Second, in contrast, we find that, if one wishes
to fully explore the notion of macroscopic quantum effects in
such systems, a measurement which only returns information
on extreme states of the collective large-spin Hilbert space is
the most ideal. However, while robust against dephasing, such
a measurement is sensitive to both collective and individual
dissipation, and violations may be masked by such unwanted
noise.

II. THE LEGGETT-GARG INEQUALITY

We consider the Leggett-Garg parameter in the form

K = C21 + C32 − C31, (1)

where Cβα is the correlation function of a dichotomic variable
Q = ±1 measured at two times tβ > tα such that Cβα ≡
〈Q(tβ)Q(tα)〉 [3,4]. Leggett and Garg derived [3], under
the assumptions of macroscopic realism and noninvasive
measurement, their inequality K � 1, and showed that a
quantum two-level system easily violates this bound. While,
as with the Bell inequality, many forms of the inequality exist
[4,28,29], we employ this form because it is typically violated
for short time intervals between measurements. In addition,
although the LGI is not a sufficient condition for macrorealism
(unlike the related condition derived in Refs. [24,25]), the LGI
remains nevertheless a necessary condition whose violation
implies the failure of at least one of Leggett and Garg’s
assumptions [3]. Furthermore, the LGI has various attractive
properties [4] not shared by other conditions—for example, it
is possible to find state-independent violations [30], allowing
the use of the highly mixed thermal states we expect to describe
some qubit ensembles.

The spirit of the LGI is to perform experiments on larger
and larger systems, checking for a violation of this, or an
equivalent, inequality (having removed all sources of deco-
herence and dissipation that one can control and understand
from within quantum mechanics itself). A violation would then
rule out macrorealism at that scale. A macrorealist might argue
either (i) that there are broader classes of alternative theories to
quantum mechanics, particularly ones which include invasive
measurements in a fundamental way or (ii) that the violation
is due simply to clumsy measurements. One way to go beyond
such doubts is to combine the LGI with a test of how invasive
the measurements themselves are [23,31,32]. Such an analysis

in the context of large ensembles would be a fruitful topic of
future research.

III. MODEL AND MEASUREMENT SCHEMES

We find it useful to define σ (k)
x and σ (k)

z as the Pauli x and
z matrices, respectively, for qubit k = 1,2, . . . ,N . We then
consider the dynamics governed by the Hamiltonian

H = �
ωq

2

N∑
k=1

σ (k)
z + �� cos (ωdt)

N∑
k=1

σ (k)
x , (2)

where ωq is the energy splitting of the qubits, which we assume
to be homogenous, and � is a transverse drive. This allows
us to use standard spin-resonance techniques to obtain the
effective Hamiltonian in the interaction picture, and under
the rotating-wave approximation, so that, when ωd = ωq and
� � ωq , the ensemble Hamiltonian becomes

H (I) = ��

N∑
k=1

σ (k)
x

2
≡ ��Jx. (3)

Here we have used the collective operator Jx = ∑N
k=1 σ (k)

x /2,
which represents the x component of the angular momentum
operator defining the ensemble behavior of the N qubits.
We also define the collective lowering operator as J− =∑N

k=1 σ
(k)
− , and the z component of the angular momentum

operator as Jz = ∑N
k=1 σ (k)

z /2. In all of the following we
operate in the interaction picture and drop the label (I) from
the Hamiltonian.

To find a violation of the LGI, we fix the initial state of our
N qubits to the fully polarized state ψ(t = 0) = |↑↑ · · · ↑〉 in
the z direction. Note that, in the pure-evolution case, the results
are largely independent of the initial condition. However, in
the presence of noise, particularly dissipation in the z basis,
this initial condition is favorable to give large violations for
large N for most schemes. In terms of the collective operators,
one has Jzψ(t = 0) = jψ(t = 0), i.e., the initial state is the
highest-weight m = j eigenstate of our large spin in the z

direction. In constructing the correlation functions used in the
LGI, we assume that we perform measurements in the z basis
at consecutive times t1 = 0, t2 = τ , and t3 = 2τ . The z basis
is chosen to be the one which couples to the measurement
device and thus corresponds to a physical observable of the
macroscopic ensemble.

In addition to the above unitary evolution, we also assume
that each qubit can experience individual dephasing with
rate γD and dissipation γL. In addition, we assume that the
ensemble as a whole can experience a collective dephasing 
D

and dissipation 
L. These act on the individual or collective
z basis, because this is the fundamental energy basis of our
ensemble in the laboratory frame. The total dynamics is then
described by the master equation,

ρ̇ = M[ρ] = − i

�
[H,ρ] +

N∑
k=1

{
γD

2
L

[
σ (k)

z

]
ρ + γLL[σ (k)

− ]ρ

}

+ 2
DL[Jz]ρ + 
LL[J−]ρ, (4)

where ρ is the density matrix of the system, L[a] is the
Lindblad operator L[a]ρ = aρa† − 1

2 {a†a,ρ}, and we assume
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FIG. 1. The six different measurement schemes at a glance. Note that the ordering of the protocols we use in this figure is replicated in
Figs. 2–5. The boxes enclose levels giving the same value for Q and the box coloring corresponds to the Q value. Solid lines for levels within
the boxes indicate that the measurement projects the system onto that specific state. Measurement results for levels not enclosed by boxes
are discarded. (a) VN centrally binned: qm>0 = +1 and qm�0 = −1. (b) VN single-state binned: q−j = −1, and qm>−j = +1. (c) VN parity
binned: qm = +1 for m = j,j − 2,j − 4, . . . and qm = −1 for m = j − 1,j − 3,j − 5, . . .. (d) VN extreme-state binned: qj = +1, q−j = −1,
and all other measurement results are discarded. (e) VN normalized Jz measurement: qm = m/j . (f) Lüders centrally binned: qm>0 = +1 and
qm�0 = −1, but, unlike the other schemes, the measurement does not project further within these two subspaces.

negligible temperature. Note that we have scaled 
D so
that the collective and individual dephasing contributions are
equivalent in the N = 1 limit. When all the dephasing and
dissipation terms are zero, we can often obtain analytical
results, as will be described below and in detail in Appendix A.
When the collective dephasing or dissipation are nonzero, 
i 
=
0, we numerically solve [33,34] the above master equation
within the large-spin (N + 1)-dimensional restricted Hilbert
space. When the individual qubit dephasing or dissipation is
nonzero, γi 
= 0, we perform numerical simulations which take
into account the full 2N Hilbert space of the ensemble. This
restricts us to investigating a smaller range of N (due to having
only finite computational resources).

Our measurement protocols fall into two classes, depending
on the physics of the measurement process itself. The first class
relates to a projective measurement of Jz, followed by one of
five different data-processing steps or “binning” strategies.
Immediately after the measurement, the ensemble is left in an
eigenstate of Jz: the appropriate state-update rule is that of von
Neumann (VN),

ρM →
∑
m

qm|m〉〈m|ρ|m〉〈m|, (5)

where ρ is the state immediately before the measurement, and
ρM is the state immediately after. The data-processing step,
however, “compresses” the eigenvalue and reduces it to ±1
according to one of a set of predetermined rules (introduced
below). The second class of measurement relates to a projective
measurement of a different observable, where each projector is
a sum of Jz eigenprojectors. Because the binning is performed
prior to the measurement itself, the measurement preserves
coherence within each binning subspace. We discuss this
further below, in Sec. III F.

The choice of binning strategy and state-update rule allow
for a large number of measurement strategies. This set of
strategies was analyzed for the largest possible violation, in the
pure-evolution case, in Ref. [21], by using convex optimization
techniques. There, they found that using the VN update rule
and binning the measurement results in terms of a single state
versus all others gave the largest possible violation. Here
we instead look in detail at six distinct, but experimentally
motivated, strategies (shown in Fig. 1), and how they behave
under the influence of noise.

We will begin with the first class of measurement scheme:
given the VN state-update rule we can write down an explicit
formula for the correlation functions with which we construct
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FIG. 2. Variation of the LG parameter K as a function of time between measurements for all six schemes (see Fig. 1 for a schematic
explanation of each scheme or protocol) with N = {1,3,10,100}. The turquoise line in each figure marks the classical bound K � 1. Note that
all schemes converge to the same result for a single qubit, N = 1. Here, the different schemes are (a) VN centrally binned, (b) VN single-state
binned, (c) VN parity binned, (d) VN extreme-state binned, (e) VN Normalized Jz measurement, and (f) Lüders centrally binned.

the LGI:

〈Q(t2)Q(t1)〉 = tr

[∑
k

qk|k〉〈k|U(t2 − t1)

×
∑
m

qm|m〉〈m|ρ(t1)|m〉〈m|
]
, (6)

where U(t2 − t1) = exp[M(t2 − t1)] is the propagator in su-
peroperator form, such that it acts on all operators to the right.

A. von Neumann centrally binned

We first consider a binning strategy where, in the above
formula, we choose qm�0 = +1 and qm<0 = −1. This choice
is depicted schematically in Fig. 1(a), while Fig. 2(a) shows
the corresponding LG parameter K as a function of time for
different ensemble sizes. One immediately sees that, for this
protocol, the maximum violation increases with the ensemble
size, seeming to tend to a maximum around �τ = π/4. This
dependence of the maxima on the ensemble size is shown
more explicitly in Fig. 3(a). In Appendix A, we show how the
pure-state results can be calculated analytically.

Within Fig. 3(a) we show the influence of strong collective
noise 
D = �

2π
(dashed line with 
L = 0) and 
L = 0.5�

2π

(dotted line with 
D = 0). The maximum is almost unaf-
fected by the strong collective dephasing 
D but is strongly
influenced by the collective dissipation 
L. In Fig. 4(a) we
show the effect of individual noise for a smaller range of N

(due to the drastically larger Hilbert space required, because
individual noise breaks the large-spin symmetry, necessitating
a full 2N simulation). Here we see that, for this scheme,
collective and individual dephasing have a similar minor
effect, while collective dissipation is much more damaging,
for large N , than individual noise. The latter can be attributed
to the collective superradiance [35,36] that occurs when a
large ensemble of identical emitters experiences collective
dissipation. (Note that with the equivalent binning scheme
qm�0 = +1 and qm<0 = −1, which we have not explicitly
shown, for odd values of N + 1 one sees slightly different
small-N behavior, but the same large-N limit.)

B. von Neumann single-state binning

In Ref. [21] they found that, at least in the closed-system
case, the largest violation occurred for the choice of q−j = −1
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FIG. 3. Kmax as a function of N , both for the noise-less evolution and in the presence of collective dephasing 
D = �

2π
and collective

relaxation 
L = 0.5�

2π
, for all measurement schemes. The cases with noise were evaluated numerically, but are still amenable to large-N

evaluation due to the reduced Hilbert space of a collective spin. In figures (d) and (f) we truncate the x-axis at smaller values of N as both
saturate for large N and have interesting features at small N values. Here, the different schemes are (a) VN centrally binned, (b) VN single-state
binned, (c) VN parity binned, (d) VN extreme-state binned, (e) VN normalized Jz measurement, and (f) Lüders centrally binned.

FIG. 4. Kmax as a function of N , both for the case of no noise and in the presence of individual dephasing γD = �

2π
noise and individual

relaxation γL = 0.5�

2π
noise. These values are large compared to the noise achieved with currently available flux qubits and NV centers, in order

to show an extreme limit. The results are evaluated numerically, but we are restricted to much smaller values of N because we must include the
full 2N Hilbert space for the calculations with such individual decoherence. Here, the different schemes are (a) VN centrally binned, (b) VN
single-state binned, (c) VN parity binned, (d) VN extreme-state binned, (e) VN normalized Jz measurement, and (f) Lüders centrally binned.
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and qm>−j = +1, i.e., where only one state (the lowest-lying
state in the large-spin bases, for example) contributes to one of
the binned results, and all the other states contribute to the other
binning outcome. This is shown schematically in Fig. 1(b), and
the time dependence of K is illustrated in Fig. 2(b). As shown
in Fig. 2(b), as N is increased one sees an asymptotic limit
(for the pure-evolution case) that can be evaluated analytically:
Kmax(N → ∞) → 3 (see Ref. [21] and Appendix A herein).

However, this protocol is sensitive to both collective and
individual noise. Figures 3(b) and 4(b) show that, as N

increases, the bound is substantially reduced when compared
to the pure-evolution case. Unlike the previous case (VN
centrally binned) it is quite sensitive to both collective and
individual dephasing and Fig. 4(b) indicates a crossing where
individual noise becomes more detrimental. One should note
that Fig. 2(b) suggests that the time-window for observing the
violation narrows as N increases. This can be attributed to
the fact that the dynamics of the system means the probability
of it being in the q−j = −1 binning subspace diminishes as
N increases. One may hypothesize that this influences the
sensitivity to noise that we observe in Figs. 3(b) and 4(b).

C. von Neumann parity binning

Another binning strategy previously employed elsewhere
[21] is to assign the Q values according to the parity of the Jz

states. As an example here, we use qm = +1 for m = j,j −
2,j − 4, . . . and qm = −1 for m = j − 1,j − 3,j − 5, . . .

[see Fig. 1(c)]. One immediately notices in Fig. 2(c) that
the maximum violation diminishes as N increases, apparently
reaching a small constant value with an initial maxima at small
times. The behavior under collective dephasing appears robust,
but collective dissipation [Fig. 3(c)] has a strong influence even
at moderate N values, entirely removing the violation.

D. von Neumann extreme-state binning

Various precise definitions of what constitutes a truly
“macroscopic” superposition abound. A necessary but not
sufficient criterion proposed by Leggett himself was the
“extensive difference” of the possible measurement results,
i.e., difference in the expectation value, normalized to some
appropriate atomic scale, between the two dichotomic out-
comes. In the schemes we have discussed so far, even for
large N , it is difficult to a priori look at the LGI and
argue that the violation arises due to the coherence between
macroscopically distinct states (e.g., the evolution could, in
principle, be constrained to a subspace of states differing only
by 
m � N ). Given this motivation to make the definition
of “macroscopic” more vivid, we consider a measurement
with eigenprojectors onto only the extreme sublevels of any
N ensemble; namely, for measurement results where m 
= ±j

are discarded (assigned q = 0), while the extreme states are
binned according to qj = +1,q−j = −1, as these are the most
distinct [see Fig. 1(d)]. If a violation of the LGI is found with
this class of measurement, then this is evidence of coherence
between the two extreme states, since the contribution from
other, less distinct states, is completely suppressed by our
assigning them a zero eigenvalue. For a fuller discussion of
this notion of macroscopicity, see Sec. IV.

For this choice of measurement protocol, Fig. 2(d) shows
the variation of K with time for different ensemble sizes, and
Fig. 3(d) shows how the maximum changes with N . We see
that the maximum violation diminishes but saturates at large
N such that, even though we throw away many intermediate
states, a violation with a large ensemble is still possible [albeit
in a shorter and shorter time window, as per schemes (b) and
(c)]. In Appendix A, we show how to evaluate the noise-free
result analytically, which in this case reduces to a manageable
form, giving, for the full LGI,

K =
[

cos

(
�τ

2

)]4j

−
[

sin

(
�τ

2

)]4j

+
[

cos

(
�τ

2

)]8j

−
[

sin

(
�τ

2

)]8j

−[cos (�τ )]4j + [sin (�τ )]4j . (7)

We find that, resolving the LGI for very large values of N

suggests Kmax → 1.055.
This binning strategy is, like parity binning, robust to

collective and individual dephasing as N increases but is
sensitive to both collective and individual dissipation [see
Figs. 3(d) and 4(d)]. Thus, while physically appealing due to its
clearer “macroscopic” interpretation, this approach represents
an experimental challenge in truly large systems.

The possibility of finding a larger violation (with this
measurement protocol) by engineering a more complicated
dynamics (e.g., a coupling between just the extreme states) for
the ensemble would be an interesting line of future enquiry.

E. von Neumann normalized Jz measurement

The LGI allows not just for truly dichotomic outcomes,
but also for Q to take on a continuous value in the range
[−1,1]. As long as these values are bounded, one can derive the
LGI without any loss of generality. For completeness, here we
show how taking this approach influences the violation. Again,
we assume that our measurement device can distinguish the
(N + 1) eigenstates m, but that our measurement outcomes
are binned in such a way that they correspond to the
measurement of the large-spin Jz operator normalized by
N/2. In other words, qm = m/j [see Fig. 1(e)]. Figure 2(e)
shows the variation of K as a function of time for varying
ensemble size. The violation diminishes and saturates to a
constant value as a function of N , as seen in Fig. 3(e)
(again, see Appendix A for an analytical formula for the
noise-free case). The influence of collective noise in this
case is once again quite strong, with dephasing reducing
the maxima, and dissipation again removing the violation
completely for large N , although in this case the influence
of individual dissipation is more detrimental, as seen in
Fig. 4(e).

F. Lüders state-update rule with central binning

Finally, in contrast to all the previous examples, we consider
the case where our measurement device is not capable of
distinguishing which of the m sublevels the system is in.
Modelling such a measurement requires a slightly different
definition of the postmeasurement state. We assume that
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the measurement device distinguishes the m � 0 and m < 0
subspaces, and bins accordingly [illustrated schematically in
Fig. 1(f)]; thus, following the definition of Lüders [37,38], the
postmeasurement state is

ρm →
(

m=j∑
m=0

|m〉〈m|
)

ρ

(
m=j∑
m=0

|m〉〈m|
)

−
⎛
⎝m=−1∑

m=−j

|m〉〈m|
⎞
⎠

× ρ

⎛
⎝m=−1∑

m=−j

|m〉〈m|
⎞
⎠. (8)

In related works, Brukner et al. [39,40] argued that a similar
type of coarse-grained measurement makes the system appear
more classical and termed such a measurement “fuzzy.” Again,
in Fig. 2(f) we show the behavior of the LGI for different values
of N . For N > 20 the violation disappears, even in the noise-
free case, as a direct consequence of the reduced quantum
invasiveness of the measurement: this is a clear illustration
that the nature of the LGI’s sensitivity is directly related to
how invasive the quantum-mechanical measurements are on
the dynamics of the system. Note that Budroni et al. [21] and
Fritz [30] characterize the Lüders example as being equivalent
to a two-level system. However, here we prepare the ensemble
in a state which is not an eigenstate of the subspace binning
and evolve under a Hamiltonian which does not respect the
subspace binning of the measurement, leading to a weaker
violation as N increases.

In addition, intriguingly, there are two examples of non-
monotonic violations with this scheme. In Fig. 3(f) we see that
the violation has a minimum around N = 8 and an increase
at N = 9, until decreasing again for larger N . Similarly, in
Fig. 4(f) we see that, between N = 5 and N = 8, the maximum
of the violation is slightly enhanced over that seen with the
noise-free result by individual dissipation and dephasing. Both
of these unique features, not seen in other schemes, may
be attributable to the fuzzy nature of this measurement; we
can only observe violations of the LGI when the state of
the system has significant coherence between the m � 0
subspace and the m < 0 subspace. In the presence of noise,
while coherence is reduced overall, it is possible for both
dephasing and dissipation to induce a faster evolution towards
states near m = 0, giving rise to the noise-enhanced features
we see here. In future work it may be useful to explore
this feature further and see if similar features arise in the
quantum-witness form of the LGI.

IV. MACROSCOPICITY

Finally, to understand whether the differing protocols really
reflect the macroscopic nature of the ensemble, we adopt
Leggett’s “extensive difference” measure [3,41]:


 ≡ E+ − E−, (9)

where E± = 〈ψ±|Jz|ψ±〉 is the expectation value of our
chosen extensive variable Jz in either of the two classical states
|ψ±〉 that are revealed by a particular measurement scheme.
Here, Q = |ψ+〉〈ψ+| − |ψ−〉〈ψ−|, and so 
 = Tr[QJz]. In
addition, Fig. 1 provides a visual depiction of |ψ±〉: 
av

(see below), for example, can be thought of as the difference

of the center of mass (in the vertical direction) of the two
colored regions. Violation of the LGI is evidence of quantum
coherence between |ψ+〉 and |ψ−〉. However, for our chosen
binning schemes, each of these states is a manifold with an
internal structure, and hence an indefinite value for Jz; thus,
it is not immediately obvious how we should calculate the
correct 
 that applies in each case. One possibility that we
consider here is to look at the possible distributions over
said internal structure. As such, we define 
best, 
worst, 
av

as the largest, smallest, and average measures, respectively.
The average measure corresponds to a uniform weighting
over the internal energy levels. We will not treat protocol
(e) because it does not define only two classical states for
the measurement outcomes. Furthermore, scheme (f) will not
be explicitly discussed because it is equivalent to scheme
(a) vis-à-vis macroscopicity. The results we define below are
plotted in Fig. 5.

A. Best case for macroscopicity

By inspecting Fig. 1, one can see that for schemes (a),
(b), (d), one has 
best = N . Protocol (c) can also reach this
behavior when N is odd; otherwise, there is a small correction
to 
even

best = N − 1.

B. Average case for macroscopicity

We use


av ≡
⎧⎨
⎩ 1

M+

∑
m∈|ψ+〉

− 1

M−

∑
m∈|ψ−〉

⎫⎬
⎭〈m|Jz|m〉, (10)

where the sums run over the M± eigenstates of Jz in the |ψ±〉
manifold. The relation 〈m|Jz|m〉 = m − N

2 reveals


(a)
av =

{
1
2 (N + 1) N odd

1
2N N even,

(11)


(b)
av = 1

2
(N + 1), (12)


(c)
av =

{
1 N odd

0 N even,
(13)


(d)
av = N. (14)

It is interesting to note that (c) has the worst average
performance, with an extensive difference which is either null
or unity. So increasing the size of the ensemble would not show
higher degrees of macroscopicity (on average) in this case.

C. Worst case for macroscopicity

As is often true, the most important quantities are in the
worst-case scenarios. Schemes (a) and (b) have a worst-
case extensive difference of 


(a)
worst = 


(b)
worst = 1: we cannot

exclude the possibility that coherence existed only between
neighboring states on the Jz ladder. Protocol (c) is even worse:



(c)
worst = 0 for N > 1, since we may have coherence only

between degenerate manifolds. For scheme (d), however, we
cannot deny coherence with extensive difference 


(d)
worst = N ,

which is potentially macroscopically distinct as N → ∞.
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FIG. 5. The best case (green solid line), worst case (red dashed), and linear average (blue dashed) disconnectivites of each measurement
scheme. The expectation values of the different manifolds contributing to the the average case are shown as well, with filled squares for the +
manifold, and circles for the − manifold. Here, the different schemes are (a) VN centrally binned, (b) VN single-state binned, (c) VN parity
binned, (d) VN extreme-state binned, (e) VN normalized Jz measurement (omitted), and (f) Lüders centrally binned.

Moreover, superpositions in this two-dimensional subspace
are clearly highly entangled when viewed as superpositions
in the 2N -dimensional Hilbert space of the individual qubits:
e.g., |ψ〉 = α|00 · · · 0〉 + β|11 · · · 1〉.

V. EXPERIMENTAL REALIZATIONS

As mentioned in the introduction, there is a great range of
experimental systems with which it would be feasible to test
the results we have discussed in this work. As we have shown,
the requirements in terms of noise are modest, as the maxima
of the LGI violation tend to occur at very short times. We
discuss some approaches to how to perform the measurements
in Appendix B.

For typical ensembles of flux qubits, with frequencies in
the range of GHz, coherence times of between 1 and 40 μs for
single qubits [32,42–44] have been observed. For an ensemble
of 6 qubits coupled to a three-dimensional (3D) resonator, a
coherence time of 2–8 μs was observed [5]. So far ensembles
of 20 qubits have been fabricated [45], but ensembles of up
to 5000 qubits, coupled to a common cavity for readout,
seem feasible [46]. In addition, because each flux qubit itself
can arguably be considered macroscopic in nature, a large
ensemble of similar devices would be more macroscopic than
many other possible realizations.

Other possible systems with which to observe macroscopic
LGI violations include atomic-spin ensembles. Such ensem-
bles can be coupled to superconducting resonator cavities,
superconducting quantum interference devices (SQUIDs),
or even ancilla flux qubits, for manipulation and readout
purposes. For example, very recently, Bushev et al. [47]
revealed the electron spin resonance spectroscopy of a spin-
cavity system by coupling Er3+ doped Y2SiO5 crystal with a

high-Q superconducting resonator. They were able to couple
approximately 1015 spins to the resonator. With varying
combinations of doping and temperature, a coherence time
of 20 ms has reportedly been achieved [48].

Similarly, for Al2O3 crystal doped with Cr3+, Schuster et al.
[49] coupled approximately 1013 spins to a cavity. Similar
setups can also be engineered by using NV centers in diamond,
with a nitrogen density of 1015 cm−3 and an NV center density
1012 cm−3. The coherence time was observed to be up to 0.6 s
at 77 K and 3.3 ms at room temperature [50]. Very recently,
Tyryshkin et al. [51] reported a maximum coherence of up
to 2 s by using silicon doped with a 50 ppm concentration
of its isotope 29Si. With rapid developments in fabrication,
coherent control, and measurement [52] of these spin-based
systems, it seems possible that the Leggett-Garg violations
and the concepts of macroscopicity can be tested in the near
future with such large ensembles.

VI. DISCUSSION

Our results suggest that, in designing experiments for
observing LGI violations with large ensembles of qubits, one
must choose between observing a robust large violation, like
with protocol (a), or a harder but more macroscopic measure-
ment, with an extreme-state measurement, as in scheme (d).
In this way our results begin to show how an experimentalist,
tasked with demonstrating a superposition of macroscopically
distinct states in the laboratory, might go about exploiting
the trade-offs between the degree of macroscopicity and
constraints on time and the nature of the measurement process
in qubit ensembles (both naturally occurring and engineered).
Due to the ubiquitous and unavoidable nature of noise in such
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ensembles, the conclusions we draw concerning the optimal
measurement protocol become all the more relevant.

Lastly, given the realistic parameters we used in our model,
we predict that a violation of the Leggett-Garg inequality in
an ensemble of between N = 108 and 1013 NV centers, or
several thousand flux qubits, should be possible in the near
future. Readout times of flux qubits have been performed on
the timescale of 140 ns with 99.8% fidelity [53], which can be
improved with alternative measurement techniques [54] (see
Appendix B). Because of the robustness to noise, scheme (a) is
our recommendation. However, a more ambitious experiment
using protocol (d) should also be possible in some systems,
as long as the collective and individual qubit dissipation
rates could be reduced. Then, coherence between states of
unprecedented macroscopic distinctness could be possible.
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APPENDIX A: ANALYTICAL RESULTS

In this Appendix, we derive expressions for the LG
parameter K for our measurement schemes. We begin by
rewriting the correlation functions in K as sums of matrix
elements for the time-evolution operator, then calculate these
matrix elements for the Hamiltonian of our system, and
finally perform further simplifications, where possible, for the
different measurement schemes. Note that, in the following,
we set � = 1 for notational simplicity.

1. Correlation functions

We consider the LG parameter from Eq. (1), repeated here
for convenience,

K = C21 + C32 − C31. (A1)

Here, the correlation functions are

Cba = 〈Q(tb)Q(ta)〉, (A2)

where tb > ta and Q is a measurement result that can take the
values ±1, apart from the normalized Jz measurement, where
Q takes values in the range {−1,1}.

We treat our ensemble of N qubits as a large spin of
magnitude j = N

2 . Starting in the state ρ(0) = |j 〉〈j | (we
are only writing the quantum number m in the kets here),
performing measurements with results qm and projection
operators �m = |m〉〈m|, and writing the time evolution
between measurements in Eq. (6) as a unitary evolution,

ρ(t) = U(t − t0)ρ(t0) ≡ U (t,t0)ρ(t0)U †(t,t0), we obtain

〈Q(tb)Q(ta)〉 =
∑
n,m

qnqmtr[�mU (tb,ta)�nU (ta,0)ρ(0)

×U †(ta,0)�nU
†(tb,ta)�m]

=
∑
n,m

qnqm〈m|U (tb,ta)|n〉〈n|U (ta,0)|j 〉〈j |

×U †(ta,0)|n〉〈n|U †(tb,ta)|m〉
=

∑
n,m

qnqm|〈m|U (tb,ta)|n〉|2|〈n|U (ta,0)|j 〉|2,

(A3)

where we used 〈a|O|b〉 = 〈b|O†|a〉† in the last step.
We consider the case t1 = 0, t2 = τ , and t3 = 2τ . Then,

with the abbreviated notation U (t,t0) = U (t − t0), we obtain
from Eq. (A3) the three correlation functions

C21 = qj

∑
m

qm|〈m|U (τ )|j 〉|2, (A4)

C31 = qj

∑
m

qm|〈m|U (2τ )|j 〉|2, (A5)

C32 =
∑
n,m

qnqm|〈m|U (τ )|n〉|2|〈n|U (τ )|j 〉|2. (A6)

Depending on the choice of qm and τ , these expressions may
be simplified further.

2. Matrix elements

From Eq. (2), we have that our giant spin evolves under the
Hamiltonian

H = �Jx, (A7)

and the time evolution operator is thus

U (τ ) = exp (−iJx�τ ), (A8)

which represents a rotation of the spin. The matrix elements
for general spin rotations, parametrized by the Euler angles
α, β, γ , is given by the Wigner D matrix [55],

D
(j )
m,m′ (α,β,γ ) = 〈j,m′|e−iJzαe−iJyβe−iJzγ |j,m〉

= e−i(m′α+mγ )〈j,m′|e−iJyβ |j,m〉
= e−i(m′α+mγ )d

(j )
m,m′ (β), (A9)

where the small d matrix is

d
(j )
m,m′ (β) =

∑
k

(−1)k−m+m′

×
√

(j + m)!(j − m)!(j + m′)!(j − m′)!
(j + m − k)!k!(j − k − m′)!(k − m + m′)!

×
[

cos

(
β

2

)]2j−2k+m−m′[
sin

(
β

2

)]2k−m+m′

.

(A10)

Here, the sum is over all k such that none of the factorials in
the denominator are evaluated for negative numbers.
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In our case, we have a rotation around the x axis by an
angle �τ . This can be decomposed into rotations around the
z axis and a rotation around the y axis by the same angle �τ .
Since we only need the absolute-value squared of the matrix
element D

(j )
m,m′ (α,β,γ ) to calculate the correlation functions, it

suffices to evaluate

|〈m|exp (−iJx�τ )|n〉|2

= ∣∣d (j )
n,m(�τ )

∣∣2

=
∣∣∣∣∣∣
∑

k (−1)k
√

(j+n)!(j−n)!(j+m)!(j−m)!
(j+n−k)!k!(j−k−m)!(k−n+m)!

×[
cos

(
�τ
2

)]2j−2k+n−m[
sin

(
�τ
2

)]2k−n+m

∣∣∣∣∣∣
2

. (A11)

The sum over k simplifies to fewer terms in a few special
cases, where n and/or m equals ±j . Some of these cases are
relevant for the different measurement schemes we consider,
so we calculate them below. However, first of all, we note
the restrictions on k in the general expression above: from the
terms in the denominator we derive the conditions k � j + n,
k � 0, k � j − m, and k � n − m, which means that the sum
goes over all k in the interval max(0,n − m) � k � min(j −
m,j + n).

For the case n = j , the restrictions on k mean that only
k = j − m contributes to the sum. We obtain

|〈m|exp (−iJx�τ )|j 〉|2 =
(

2j

j + m

)[
cos

(
�τ

2

)]2(j+m)

×
[

sin

(
�τ

2

)]2(j−m)

, (A12)

where we used (a
b
) = a!/[b!(a − b)!].

From the above, we can immediately compute the even-
more-special cases n = j,m = ±j :

|〈j |exp (−iJx�τ )|j 〉|2 =
[

cos

(
�τ

2

)]4j

, (A13)

|〈−j |exp (−iJx�τ )|j 〉|2 =
[

sin

(
�τ

2

)]4j

. (A14)

Finally, we also consider the case n = −j , for which we see
that only k = 0 contributes to the sum. We thus get

|〈m|exp (−iJx�τ )| − j 〉|2 =
(

2j

j + m

)[
cos

(
�τ

2

)]2(j−m)

×
[

sin

(
�τ

2

)]2(j+m)

, (A15)

and in the more-specialized cases with m = ±j , the result is

|〈j |exp (−iJx�τ )|−j 〉|2 =
[

sin

(
�τ

2

)]4j

, (A16)

|〈−j |exp (−iJx�τ )|−j 〉|2 =
[

cos

(
�τ

2

)]4j

. (A17)

3. Evaluating K for the different measurement schemes

a. von Neumann centrally binned

For this scheme, we use qm�0 = +1 and qm<0 = −1. In
this case, inserting the matrix elements calculated in Sec. A 2
into Eqs. (A4)–(A6) gives

C21 =
∑
m

qm

(
2j

j+m

)[
cos

(
�τ

2

)]2(j+m)[
sin

(
�τ

2

)]2(j−m)

,

(A18)

C31 =
∑
m

qm

(
2j

j+m

)
[cos (�τ )]2(j+m)[sin (�τ )]2(j−m),

(A19)

C32 =
∑
n,m

qnqm

(
2j

j+n

)[
cos

(
�τ

2

)]2(j+n)[
sin

(
�τ

2

)]2(j−n)

×
∣∣∣∣∣∣
∑min (j−m,j+n)

k=max (0,n−m) (−1)k
√

(j+n)!(j−n)!(j+m)!(j−m)!
(j+n−k)!k!(j−k−m)!(k−n+m)!

×[
cos

(
�τ
2

)]2j−2k+n−m[
sin

(
�τ
2

)]2k−n+m

∣∣∣∣∣∣
2

.

(A20)

and the Leggett-Garg parameter K is thus

K =
∑
m

qm

(
2j

j + m

)⎧⎨
⎩

[
cos

(
�τ

2

)]2(j+m)[
sin

(
�τ

2

)]2(j−m)

×
⎛
⎝1 +

∑
n

qn

∣∣∣∣∣∣
min (j−n,j+m)∑
k=max (0,m−n)

(−1)k
√

(j + m)!(j − m)!(j + n)!(j − n)!

(j + m − k)!k!(j − k − n)!(k − m + n)!

×
[

cos

(
�τ

2

)]2j−2k+m−n[
sin

(
�τ

2

)]2k−m+n∣∣∣∣
2
⎞
⎠ − [cos (�τ )]2(j+m)[sin (�τ )]2(j−m)

⎫⎬
⎭. (A21)

The value of K is plotted as a function of �τ in Fig. 2(a).
The maximum for K seems to be reached around �τ = π/4.
Plugging this value into Eq. (A22) unfortunately does not give
any significant simplifications.

b. von Neumann single-state binning

This measurement scheme, where qm = 1 − 2δm,−j , was
used by Budroni and Emary [21]. The formula we have for
K in Eq. (A22) applies here too and is used to plot K as
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a function of �τ for this scheme in Fig. 2(b). In this case,
the maximum is reached around �τ = π/2, which allows for
some simplifications. Furthermore, this form of qm allows one
to simplify all the sums using the resolution of identity, and
in the end one only needs the matrix elements where n and m

are ±j . As shown in the Appendix of Ref. [21], this leads to
a simple analytical formula for the maximum value of K for
large spins:

Kmax = 3 −
√

2

πj
, (A22)

which approaches three when j → ∞.

c. von Neumann parity binning

For parity binning, we use qm = +1 for m = j,j − 2,j −
4, . . . and qm = −1 for m = j − 1,j − 3,j − 5, . . .. The
result from Eq. (A22) applies for this scheme as well and
is used to plot K as a function of �τ in Fig. 2(c). The
maximum for K seems to be reached close to �τ = 0 for
large N . Even if we can expand the trigonometric parts of
K around this point, the large sums still remain and further
analytical simplifications remain out of reach.

d. von Neumann extreme-state binning

In this scheme, all runs of the experiment resulting in
m 
= ±j are discarded. The remaining cases are assigned the
measurement results qj = +1, q−j = −1. This considerably
simplifies the sums in Eqs. (A4)–(A6). By using the matrix
elements calculated in the previous section, we obtain

C21 = qj

∑
m

qm|〈m|U (τ )|j 〉|2

= |〈j |U (τ )|j 〉|2 − |〈−j |U (τ )|j 〉|2

=
[

cos

(
�τ

2

)]4j

−
[

sin

(
�τ

2

)]4j

. (A23)

C31 is simply C21 with τ replaced by 2τ :

C31 = [cos (�τ )]4j − [sin (�τ )]4j . (A24)

The calculation for C32 is similar to that for C21 and gives

C32 =
[

cos

(
�τ

2

)]8j

−
[

sin

(
�τ

2

)]8j

. (A25)

Thus, the Leggett-Garg parameter K becomes

K =
[

cos

(
�τ

2

)]4j

−
[

sin

(
�τ

2

)]4j

+
[

cos

(
�τ

2

)]8j

−
[

sin

(
�τ

2

)]8j

− [cos (�τ )]4j + [sin (�τ )]4j . (A26)

The value of K is plotted as a function of �τ for this scheme
in Fig. 2(d). We note that, as N increases, the maximum of K

decreases and occurs close to �τ = 0. To find the asymptotic
behavior of Kmax, we can try to expand K for small values of
�τ . However, the terms of order 2n in �τ in that expansion
have coefficients proportional to jn, which prevents us from

finding an approximate asymptote when j → ∞. Fortunately,
the simple formula for K allows for numerical investigations
for very large j , which indicate that Kmax → 1.055 in the limit
of many qubits.

e. von Neumann normalized Jz measurement

For the normalized Jz measurement, we use qm = m/j .
Just like for the VN single-state-binning scheme and the
parity-binning scheme, we can use Eq. (A22) with the new
definition of qm. The value of K is plotted as a function of �τ in
Fig. 2(e). The maximum for K seems to be reached somewhere
between �τ = π/8 and �τ = π/4 for large N . Further
analytical simplifications to find the asymptotic behavior of
Kmax are not possible here.

f. Dichotomic measurement with the Lüders state-update rule

This scheme is different from the rest in that the system is
not projected onto a single-spin eigenstate after a measurement
but onto a large superposition of spin eigenstates [see Eq. (8)].
Thus, if we calculate the correlation functions as in Eq. (A3),
we are left with a large number of sums, which are not
amenable to analytical simplifications.

APPENDIX B: CAVITY-BASED MEASUREMENTS

One of the advantages of the large ensembles of flux
qubits or spin ensembles we outlined in Sec. V is that
the collective large-spin degree of freedom can be read out
with a range of well-developed techniques typically used for
the purposes of quantum information protocols or quantum
simulation. For example, one may couple the ensemble to a
common microwave transmission-line cavity mode [53,54],
leading to a dispersive interaction between the ensemble and
measurement-cavity system, similar to that derived for a large
spin in Ref. [56].

However, this is not ideal for our purposes, because
the dispersive interaction term is only the lowest order in
perturbation theory, and higher-order terms would constitute
an invasive or clumsy measurement of the cavity onto the
ensemble, which we wish to avoid. One should also note
that, in making the dispersive transformation discussed in
Ref. [56], the ensemble’s collective interaction with the cavity
creates an additional spin-spin coupling term, mediated by
virtual-excitation exchange with the cavity, which gives rise
to a spin squeezing J+J− term in the large-spin basis. This,
along with a cavity-induced superradiant decay of the large
spin, similar to the collective dissipation term 
L we used
in the examples earlier, constitutes an additional unwanted
backaction during the measurement process.

If one wished to proceed with this approach in any case,
one could probe the cavity with a weak field at a single
frequency and thus check whether the ensemble is in just one
state, or not that state, directly realizing a hybrid of scheme
(b) with the Lüders postmeasurement rule, as in scheme (f).
Alternatively, one can observe the quadrature phase shift of
the cavity field, whose phase and magnitude depend on the
Jz value of the ensemble. Both approaches may become more
difficult as N is increased, however, as the signal to noise
(SNR) ratio diminishes (the quadrature displacements of each
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possible outcome become difficult to distinguish). This would
require a decrease in the cavity broadening as N increases
to maintain the same SNR. However, this is further restricted
because both approaches require a readout of the cavity faster
than the ensemble decay time, and without overly populating
the cavity itself, the combination of which limits how small
the cavity broadening can be.

As an alternative to this dispersive-readout approach one
could engineer a time-dependent longitudinal coupling to the
cavity and realize fast measurement of the ensemble without
either undue disturbance, unwanted spin-spin couplings, or
collective superradiance [54]. In addition, the speed of the
normal dispersive readout scheme is limited by the perturbative
nature of the dispersive interaction; as mentioned above, if the
coupling is made stronger, or the number of photons in the
cavity is too high, for example, higher-order contributions
can lead to unwanted excitation exchange between cavity
and ensemble, lessening the impact of the observation of
any violation of the LGI. In this longitudinal scheme (see

Ref. [54] for details of the single-spin case), when applied
to a multilevel system one must look at both the direction
of the cavity quadrature displacement and the amplitude of
that displacement to distinguish the different sublevels of
the large spin. In addition, one must decrease the cavity
dissipation as N is increased. However, in this case, one
can a priori perform faster readout, and thus this is less of
a concern. Thus, we conclude that, despite the engineering
difficulties associated with generating a longitudinal time-
dependant coupling, this approach to measuring the ensemble
seems superior for our purposes than the normal dispersive
approach.

While the above approaches may work well for an ensemble
of flux qubits, for NV centers an alternative measurement
scheme involves coupling the ensemble to a large SQUID
or flux qubit [57,58], where large dispersive coupling arises
naturally [59,60], not as an approximation to a full transverse
coupling, thus circumventing the issue of unwanted backaction
and large collective decay.
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