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Scattering states in one-dimensional non-Hermitian baths
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A single quantum emitter coupled to a structured non-Hermitian environment shows anomalous bound states
and real-time dynamics without Hermitian counterparts, as shown in Gong et al. [Phys. Rev. Lett. 129, 223601
(2022)]. In this work, we establish a general approach for studying the scattering states of a single quantum
emitter coupled to one-dimensional non-Hermitian single-band baths. We formally solve the exact eigenvalue
equation for all the scattering states defined on finite periodic lattices. In the thermodynamic limit, the formal
solution reduces to the celebrated Lippmann-Schwinger equation for generic baths. In this case, we find that
the scattering states are no longer linear superpositions of plane waves in general, unlike those in Hermitian
systems; instead, the wave functions exhibit a large, yet finite localization length proportional to the lattice
size. Furthermore, we show and discuss the cases where the Lippmann-Schwinger equation breaks down. We
find the analytical solutions for the Hatano-Nelson and unidirectional next-to-nearest-neighbor baths in the
thermodynamic limit.
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I. INTRODUCTION

Understanding light-matter interactions has been the cen-
tral problem in modern quantum platforms in order to realize
controllable quantum optical systems for fundamental studies
and practical applications [1–12]. A prototypical setup is to
consider quantum emitters, which are atoms consisting of a
few discrete energy levels coupled to structured baths. Such
structured baths are an effective description of a large number
of degrees of freedom and model a range of open quantum
systems. A paradigmatic example is the study of emitters
coupled to baths with waveguiding structures, also known as
waveguide QED [9,13–17]. In this context, there have been
many studies concerning phenomena like bound states, trans-
mission rate, and real-time photon dynamics, which are highly
relevant in realizing practical quantum optical usages such as
photon devices and quantum information storage. Many of
the properties are closely related to the dispersion relations
of the structured baths, and engineering more sophisticated
structured baths, such as topological photonic baths, can lead
to novel effects [18–20].

In recent years, variants of structured baths have been
enriched by the advent of non-Hermitian (NH) physics
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[21–23]. The NH systems alone show many properties
without Hermitian counterparts; for example, the disper-
sion is complex in general and supports nontrivial winding
numbers for one-dimensional systems [24,25]. Such pe-
culiar features have been reported for quantum emitters
coupled to NH baths, such as novel bound states [26,27],
topological reversal [28], fractional Zeno effect [29], and
anomalous collective spontaneous emission [30], to name a
few. Many of the exciting NH physics have been realized
experimentally [31–34].

Yet the manifestation of NH physics in single-photon scat-
tering off a quantum emitter has been overlooked. Scattering
processes are ubiquitous in optical platforms, where the inter-
action between the incident photons and the scatterer produces
nontrivial coherent transport of photons. For single-photon
dynamics in Hermitian baths, these scattering processes have
been explored on variants of circuit QED platforms [35,36]
and applied to quantum devices such as quantum switches
[37,38], atomic mirrors [39], and cavities [40]. This work
aims to generalize the single-photon scattering to NH baths.
From a theoretical perspective, the simplest model considers
the propagation of a photon in the structured baths scat-
tered off by a quantum emitter (see Fig. 1). The real-time
dynamics of the photon can be tracked by considering the
spectral decomposition of the underlying Hamiltonian, which
involves knowledge of the exact eigenvalues and eigenvectors.
The main focus of this work is to investigate the extensive
eigenvectors for a single quantum emitter coupled to one-
dimensional NH baths. These eigenvectors exhibit (almost)
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FIG. 1. Illustration for a single quantum emitter (two-level) cou-
pled to one-dimensional (1D) nearest-neighbor hopping NH baths
with |x′ − x| = 1. Other structured baths are also studied in this
work. The wave indicates that the propagation of the photon is
scattered by the emitter.

the same eigenvalues as the baths and are usually referred to
as scattering states.

Note that while the same NH setup is studied in
Refs. [26,41], the focus therein is on bound states and real-
time dynamics; the scattering wave function remains largely
unexplored. Our setup also differs fundamentally from the
previous studies on scattering off a local non-Hermitian poten-
tial [42], since here non-Hermiticity prevails over the whole
space.

The theoretical description of scattering states has been
established since the early days of quantum mechanics. It
is well known that the Lippmann-Schwinger (LS) formalism
[43] provides a systematic approach to describing general
scattering processes ranging from standard quantum me-
chanics to field theory, including those on quantum optical
platforms [44,45]. However, the validity of the LS formal-
ism for describing scattering states in NH baths remains
unclear.

Indeed, in a direct application of the standard LS equa-
tion to NH systems, one immediately sees technical difficul-
ties in choosing the correct analytically continued branch of
the Green function. In Hermitian systems, this issue is solved
by adding a tiny imaginary shift to the energy. However, this
solution relies heavily on the fact that the spectra of Hermitian
Hamiltonians are real. It is not clear whether, and if yes, how,
a generalization to non-Hermitian systems could be achieved.

In this work, we address the above question. We derive
the formal expression for the scattering wave function on
finite lattices from the exact eigenvalue equation. And we
show that the formal solution reduces to the LS formalism
in the thermodynamic limit for generic baths. Furthermore,
the LS formalism can also break down in fine-tuned situa-
tions. Two minimal models of 1D NH baths are considered
as concrete examples, which are NH nearest-neighbor (NN)
hopping [46] and unidirectional NH next-to-nearest-neighbor
(NNN) hopping models. We find the analytical expressions for
all the scattering states in the thermodynamic limit. And all
the bound states (including the anomalous ones) are obtained
by complexifying the real momentum in the appropriate scat-
tering states. In general, the scattering states are not a linear
superposition of plane waves, in contrast to the standard
scattering problem in (Hermitian) quantum mechanics. In ad-
dition, we also find plane wave scattering states in NH baths
with fine-tuned spectral properties, where the LS approach
breaks.

The rest of the paper is structured as follows. We first give
the definition of the model in Sec. II and subsequently present
our general approach to the scattering states in Sec. III. In
Secs. IV and V, we present the analytical results for the LS
wave functions for the HN (NNN) baths, and fine-tuned cases
are discussed in Sec. VI. Finally, our results are summarized
in Sec. VII.

II. MODEL

We consider a single quantum emitter at site x = 0, mod-
eled by a two-level atom with ground (excited) state |g〉 (|e〉),
coupled to a 1D dissipative bath consisting of L sites via a
Jaynes-Cummings interaction [47]. The dissipative baths are
engineered to have the desired NH dispersion by changing the
hopping parameters and range, see Ref. [26] for an explicit
realization of the NH baths by postselection of the corre-
sponding Lindbladian. Using the full Lindbladian treatment
in the approximation regimes where it is valid (i.e., Marko-
vian and rotating wave) [41], the effective NH Hamiltonian
reads

H = H0 + V, (1)

where

H0 = �|e〉〈e| +
∑
x,x′

hx,x′a†
xax′ (2)

with ax (a†
x) being the photon annihilation (creation) operator

on site x. Here, the first term in Eq. (2) is the Hamiltonian for
the quantum emitter, and � is the detuning, i.e., energy gap in
the rotating frame. The second term is the bath Hamiltonian
and the details of the bath are fixed by parameters hx,x′ . The
coupling term

V = J (|g〉〈e|a†
x=0 + ax=0|e〉〈g|) (3)

is known as the Jaynes-Cummings coupling and J is the
coupling strength. We emphasize again that here the baths are
intrinsically NH, and the coupling is Hermitian. This setup is
essentially different from Hermitian background scattering off
NH potentials, e.g., as studied in Ref. [42].

In this work, we focus on translation-invariant baths. In
particular, periodic boundary condition (PBC) is imposed for
the 1D baths of length L ∈ Z+, i.e., a ring of length L. This
can be implemented by, e.g., superconducting circuits with
flexibly engineerable architecture [48]. We assume the NH
baths have a left and right hopping range p and q with the
corresponding hopping strength given by hx,x′ . Throughout the
paper, we consider a sufficiently large bath with L � p + q.
Under PBC, we use n = x − x′ to label the relative hopping
distance (i.e., hx,x′ = hx−x′ = hn) and the NH band dispersion
reads

hk =
q∑

n=−p

hne−ink, (4)

where k = 2πm/L with m = 1, 2, ..., L.
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Overall, the effective NH Hamiltonian Eq. (1) has the fol-
lowing form in the momentum space:

H = �|e〉〈e| +
∑

k

hka†
kak + J√

L

∑
k

(|g〉〈e|a†
k + ak|e〉〈g|),

(5)
where

ak = 1√
L

∑
x

e−ikxax. (6)

While we focus primarily on PBC, let us briefly comment
on the open boundary condition (OBC). For NH systems,
boundary conditions are widely recognized to have a non-
trivial effect on the physics [22,49,50]. For our setup under
the OBC, all the scattering states and anomalous bound
states are expected to be localized at one end, while the
conventional bound states remain localized around the emit-
ter. This observation has been mentioned in Ref. [41],
and has been numerically confirmed for all the models in
this work.

III. FORMAL SOLUTION

The simplest scattering setup is to consider the single exci-
tation sector of the NH Hamiltonian defined by Eq. (5), which
has the following exact eigenvalues and eigenvectors:

H |�i〉 = Ei|�i〉. (7)

We consider a nonvanishing coupling strength J since oth-
erwise the solutions are simply Bloch waves and the emitter
excitation.

Any state in the single excitation sector is given by an
expansion under the complete basis:

|φ〉 =
(

ce|e〉〈g| +
∑

k

ck√
L

a†
k

)
|g〉 ⊗ |vac〉, (8)

where ck,e are coefficients to be determined and |vac〉 denotes
the photon vacuum. While usually not mandatory in scattering
problems, the normalization condition reads

|ce|2 + L−1
∑

k

|ck|2 = 1. (9)

Substituting this complete basis expansion (8) into Eq. (7)
leads to the following more explicit eigenvalue problem:

�ce + J

L

∑
k

ck = Eice, hkck + Jce = Eick, ∀k = 2πm/L.

(10)

Here, the central object is the photon state, |ψ〉 =∑
k ck|k〉/√L, as it represents the scattering (bound) state

in the discrete waveguide model if its real-space profile is
extensive (localized). Our goal here is to find a formal solution
for the photon wave function in real space,

ψ (x) = 〈x|ψ〉 = 1√
L

∑
k

ckeikx, (11)

where x = −
L/2�, ...,−1, 0, 1, ..., 
(L − 1)/2� is defined
on ZL, i.e., x + L and x should be identified under PBC.

Under the assumption of ce �= 0, the exact eigenvalue equa-
tion (10) is equivalent to

E − � − �(L)(E ) = 0, ck = J

E − hk
ce, (12)

where �(L)(z) is the finite-size (L-site) self-energy given by

�(L)(z) = J2

L

∑
k

1

z − hk
, (13)

and z ∈ C\{hk}k . By introducing its generalization,

�(L)
x (z) = J2

L

∑
k

eikx

z − hk
, (14)

which reproduces the self-energy for x = 0, we can rewrite
the photon eigen-wave function as

ψ (x) = 1√
L

∑
k

Jeikx

E − hk
ce =

√
Lce

J
�(L)

x (E ), (15)

provided that E is a solution to E − � − �(L)(E ) = 0. We
are particularly interested in the solutions near hk , which cor-
respond to the scattering states.

Before proceeding, we first point out some useful mathe-
matical properties of the finite-size self-energy Eqs. (13) and
(14) and their thermodynamic-limit counterparts:

�(z) = J2
∫ π

−π

dk

2π

1

z − hk
, �x(z) = J2

∫ π

−π

dk

2π

eikx

z − hk
,

(16)

where L → ∞ is taken so that the sums in Eqs. (13) and (14)
are replaced by integrals. Given a finite L, �(L)(z) and �(L)

x (z)
are meromorphic functions of z that are well defined almost
everywhere except for a set of discrete energies (NH band
dispersion) {hk}k .

In contrast, �(z) and �x(z) in Eq. (16) are analytic within
each connected region bounded to the (continuous) band
dispersion hk (k ∈ (0, 2π ]), but generally undergo sudden
jumps across the boundaries. Moreover, unlike their finite-size
counterparts [Eqs. (13) and (14)], they are not well defined
right on the band dispersion. This fact can be examined
by checking the L-dependence of �(L)(E ) for some E = hk

(k ∈ (0, 2π ]): in general we would observe a strong oscil-
lation that never converges (see Fig. 2). On the other hand,
we do have a convergence for any E apart from hk (k ∈
(0, 2π ]). It is thus safe to use Eq. (16) to deal with a bound
state whose eigenenergy E is well separated from the band
dispersion.

Then how can we express a scattering state in terms of
Eq. (16)? A quick solution is to add a small perturbation such
that E slightly deviates from the band dispersion, and thus
the self-energies (16) in the thermodynamic limit become well
defined. Equivalently, we can specify a branch of analytically
continued self-energy followed by substituting an energy ex-
actly located on the band dispersion. In the following, we
will show that typically it does not really matter how we
perturb E , or which branch we choose. At first glance, the
choice of branch leads to different self-energies and scattering
wave functions. But we will show that this ambiguity can
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FIG. 2. The magnitudes of finite-size self-energy Eq. (13) eval-
uated for the HN and unidirectional NNN baths. For the same
randomly selected E = hk , the finite-size self-energies do not con-
verge with the system size.

be resolved as long as the calculations are done consistently.
We will also discuss atypical cases to which the consistency
relation no longer applies.

A. Residue formula

The key point is the residue formula for the finite-size self-
energy �(L)(E ) and its generalization �(L)

x (E ), making it clear
how the finite-size result is related to the thermodynamic-limit
counterparts �(E ) and �x(E ). Our approach is inspired by
the Appendix of Ref. [51]. We first focus on x � 0 (recall
that x � 
L/2�). Introducing h(β ) = ∑q

n=−p hnβ
−n [such that

hk = h(eik )], we have

∮
|β|=R

dβ

2π iβ

βx

(E − h(β ))(βL − 1)
= 0 (17)

for sufficiently large R such that the poles of the integrand
are all located inside |β| = R. This can be seen from tak-
ing the limit R → ∞ and the assumption that L is large
(i.e., L � p + q). According to the residue theorem, Eq. (17)
implies

1

L

∑
k

eikx

E − hk
+

∑
y:E=h(y)

yx

−yh′(y)(yL − 1)
= 0, (18)

provided that E is excluded from the finite-size spectrum
{hk}k , E = h(y) has no degenerate roots, and that 0 is not
a pole of the integrand (especially not a pole of 1/[β(E −
h(β ))]). Likewise, if x < 0 (recall that x � −
(L − 1)/2�),
we start from

∮
|β|=R

dβ

2π iβ

β−x

(E − h(β−1))(βL − 1)
= 0, (19)

leading to

1

L

∑
k

eikx

E − hk
+

∑
y:E=h(y−1 )

y−x

y−1h′(y−1)(yL − 1)
= 0. (20)

Here, we have again assumed that E is not a discrete eigen-
value, E = h(y) has no degenerate roots, and 0 is not a pole
of 1/[β(E − h(β−1))] (degeneracy of roots is actually not a
problem as the higher-order residue will naturally arise from
the L’Hôpital rule, and the case of 0 being a pole is con-
sidered in the end of this subsection). All together, we end
up with

�(L)
x (E ) = J2

∑
y:E=h(y)

f (L)
sx

(y)
yx−1

h′(y)
,

f (L)
± (y) = ± 1

y±L − 1
, (21)

where sx = + if x � 0 and otherwise sx = − if x < 0. As
shown in Appendix A, actually we can get the same result
at x = 0 (i.e., the self-energy) using the minus case involving
f (L)
− (y):

�(L)(E ) = J2
∑

y:E=h(y)

f (L)
+ (y)

1

yh′(y)

= J2
∑

y:E=h(y)

f (L)
− (y)

1

yh′(y)
. (22)

Also, the right-hand side in Eq. (21) is indeed periodic in x
with period L.

Let us turn to compare Eq. (21) with the more familiar
thermodynamic-limit results. As emphasized previously, we
assume E is away from the continuous dispersion relation
hk (k ∈ (0, 2π ]) for well-definedness. Following the standard
contour integral calculations, we obtain

�x(E ) =
⎧⎨
⎩

−J2 ∑
y:E=h(y),|y|<1

yx−1

h′(y) x � 0

J2 ∑
y:E=h(y),|y|>1

yx−1

h′(y) x < 0.
(23)

In particular, the self-energy in the thermodynamic limit reads

�(E ) = −J2
∑

y:E=h(y),|y|<1

1

yh′(y)
= J2

∑
y:E=h(y),|y|>1

1

yh′(y)
.

(24)

This is fully consistent with Eq. (21), since for any |y| �= 1,
we have

lim
L→∞

f (L)
± (y) = ∓θ (∓|y| ± 1), (25)

where θ ( · ) is the Heaviside step function. Moreover, suppose
E is away from the continuous band dispersion, �x(E ) should
approximate �(L)

x (E ) exponentially well (in terms of L), since
f (L)
± approximate the Heaviside step functions Eq. (25) expo-

nentially well.
Lastly, we come back to the special case of 0 being a

pole of either 1/(β(E − h(β ))) or 1/(β(E − h(β−1))). This
situation only appears in the unidirectional hopping baths,
where the hopping range p = 0 or q = 0. For x �= 0, Eqs. (18)
and (20) remain valid as the pole can be absorbed into the
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numerator. Furthermore, we make the following consistent
choice: the self-energy at x = 0 takes either the positive or the
negative half expression depending on the unidirectionality
of the baths. Assuming 0 is not a higher-order pole, the self-
energy reads as the positive (or negative) half expression for
p = 0 (or q = 0), i.e., the first (or second) line of Eqs. (22)
and (24). The discrepancy between approaching x = 0 from
two sides is given by J2/(E − h0), with h0 being the constant
term in h(β ), as n = 0.

B. Scattering wave function

Having in mind the above discussions, let us write down
ψ (x) in Eq. (15) for a scattering state in a more explicit
form in terms of the (generalized) self-energy in the ther-
modynamic limit. As any eigenstate with eigenenergy apart
from the band dispersion is necessarily a bound state [41],
a scattering state always has an eigenenergy E (almost) on
the band dispersion for finite systems (though the converse
is not always true, as there could be bound states in the
continuum [52]). It is thus natural to write E = hk̃ = h(eik̃ )
with k̃ almost real, i.e., the real momentum is analytically
continued into the complex plane to capture the finite-size
discrepancy between E and the dispersion. For simplicity,
as is also typically the case, we assume other solutions y
(other than eik̃) to E = h(β ) exhibit norms well deviated
from 1.

We first recall that E = hk̃ satisfies E − � − �(L)(E ) = 0,
which is well approximated by

hk̃ − � − �<(hk̃ ) − J2

ih′
k̃
(1 − eik̃L )

� 0, (26)

where we have used h′
k = ih′(eik )eik (chain rule), �< refers

to the branch of � (thermodynamic-limit self-energy) whose
the first (second) line of residue formula in Eq. (24) excludes
(includes) eik̃ , and � means up to exponentially small er-
ror in terms of L. The other branch is related to the above
one via

�>(hk̃ ) − �<(hk̃ ) = J2

ih′
k̃

, (27)

(also see Appendix B), so we also have

hk̃ − � − �>(hk̃ ) − J2eik̃L

ih′
k̃
(1 − eik̃L )

� 0. (28)

Combining Eqs. (26) and (28), we obtain

eik̃L � hk̃ − � − �>(hk̃ )

hk̃ − � − �<(hk̃ )
= G<

e (hk̃ )

G>
e (hk̃ )

, (29)

where we have introduced the emitter Green’s function asso-
ciated with each branch:

G>,<
e (z) = 1

E − � − �>,<(z)
. (30)

Suppose k̃ is perturbed from a real k. Then the shift should
be a series of L−1, and in particular the leading order of the

imaginary part is determined by

Imk̃ = 1

L
ln

∣∣∣∣G>
e (hk )

G<
e (hk )

∣∣∣∣ + O(L−2). (31)

Here, we have assumed G>,<
e (z) is smooth near hk ,

so that the shift from k to k̃ only causes higher-order
corrections.

We move on to the corresponding eigenstate. Any exact
photon wave function follows from substituting Eq. (21) into
Eq. (15). As for a scattering state with energy E = hk̃ , the
wave function can be well approximated by

ψs(x) �
⎧⎨
⎩

J
ih′

k̃
(1−eik̃L )

eik̃x + J−1�<
x (hk̃ ) x � 0

J
ih′

k̃
(e−ik̃L−1)

eik̃x + J−1�>
x (hk̃ ) x < 0.

(32)

Here, we have omitted the unimportant normalization factor.
Just like �<(>), �<(>)

x refers to the first (second) line of
the residue formula in Eq. (23) with y = eik̃ excluded. As
a natural generalization of Eq. (27), the difference from the
other branch is given by

�>
x (hk̃ ) − �<

x (hk̃ ) = J2

ih′
k̃

eik̃x. (33)

Recalling Eqs. (26) and (28), we find

ψs(x) � J−1[G<
e (hk̃ )−1eik̃x + �<

x (hk̃ )]

= J−1[G>
e (hk̃ )−1eik̃x + �>

x (hk̃ )]. (34)

It turns out that the choice of branch does not really matter,
so we can safely drop the superscript <,> in the formal
discussion.

Also, by multiplying a proper coefficient, we indeed end
up with the LS wave function [43] [see Eq. (C7) and Ap-
pendix C]:

ψk (x) = eik̃x + Ge(hk̃ )�x(hk̃ ). (35)

At first glance, it may be rather surprising that the choice of
branch is irrelevant since it is well known that the choice does
matter in continuous Hermitian systems, and it corresponds to
either the forward or backward scattering process [47]. More
explicitly, the two branches of the self-energy are related by
complex conjugation, and likewise one branch of �x is related
to the other branch of �−x by complex conjugation.

However, there is no contradiction, as Hermitian systems
are atypical in the NH world. More precisely, a Hermitian
band can be considered as consisting of self-intersecting
points (almost) everywhere, while self-intersecting points are
rare in NH systems. As will become clear in the follow-
ing, the above analysis for typical cases (i.e., points lying
on a boundary separating two regions with different spectral
winding numbers; in contrast, a self-intersecting point should
be a “multicritical point” of at least three regions) does not
apply to self-intersecting points or occasional degeneracy.
It is thus natural to expect a total breakdown for Hermi-
tian systems. In addition, the explicit meanings of branches
are actually different. In the NH case, different branches
mean analytical continuations from different regions sepa-
rated by the band dispersions. In the Hermitian case, we
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are actually talking about the same branch (outside the col-
lapsed loops) in the NH sense, while different branches here
arise from intrinsic singularities (i.e., branch points). There-
fore, a fair comparison should be made for the specific NH
branch outside the loops if one tries to take the Hermitian
limit.

C. Other circumstances

In the previous section, we have developed a general ap-
proach to typical eigenvectors of Eq. (10) under physical
assumptions, which is expected to be valid for generic NH
systems. In this section, we discuss three atypical cases where
the exact eigenvectors are not in the form of Eq. (35), the last
of which is the well-known bound states.

1. Spectral degeneracy

The LS wave functions in Eq. (35) are obtained under the
assumption of ce �= 0. This is a highly physical assumption as
the emitter-photon interaction is finite. Here, we discuss the
cases where this assumption is violated.

For ce = 0, the exact eigenvalue equation (10) reduces to∑
k

ck = 0, (E − hk )ck = 0, ∀k = 2πm/L. (36)

Accordingly, the scattering wave functions are given by a lin-
ear superposition of plane waves. This can happen in the cases
of spectral degeneracy. Then for each degenerate hk , which
means there are other l ∈ Z+ different k′ (from each other
and from k) such that hk′ = hk , we have l linearly independent
degenerate solutions with E = hk and

∑
k′:hk′ =hk

ck′ = 0.
We emphasize that this situation should be atypical. That

is, without further assumptions such as Hermiticity or sym-
metry, degeneracy only occurs occasionally. Moreover, even
if there is a degeneracy in the thermodynamic limit where
k takes on a continuous value over (0, 2π ], the degener-
acy may no longer be exact in the finite size case, as k =
2πm/L only takes on finite discrete values. A similar finite-
size effect also appears in ce, such that ce is (almost) never
strictly zero.

Clearly, the occurrence of such fine-tuned situations im-
plies NH dispersions with self-intersecting points. Despite
that hk should be nondegenerate for almost all k, the exis-
tence of self-intersecting points can be enforced by NH band
topology. Consider (single-band) NH baths with complex dis-
persion relations hk with nonzero winding numbers defined by
[24]

ind(hk − z) =
∫ π

−π

dk

2π i
∂k ln det(hk − z). (37)

For a hk with a maximum winding number |w|, there are at
least |w| − 1 points (including multiplicity) in the complex
plane where hk self-intersects. This follows from an old result
proved by Whitney [53]. One way of understanding this fact
is that the winding number can only change ± 1 when z
crosses any loop defined by hk on the complex plane, and
the sign depends on the orientation of the hk loop. Without
self-intersection, any two locally parallel parts of the loop
are oriented in the reversed direction. For the same hk , there
are also points z′ in regions that have a winding number of

zero. The straight line that connects z from the maximum
winding region to z′ always exists, and it must cut hk with the
correct orientation. Intuitively, this can only happen if there
must be at least |w| − 1 self-intersecting points, since hk is
a continuous map from a circle and different loop compo-
nents are necessarily connected somewhere. Note that since
we focus on single-band baths, the self-intersecting points
are normal spectral degeneracies and not exceptional points.
This feature is illustrated analytically in a minimal model in
Sec. V.

For such atypical situations, the scattering wave function
is no longer given by Eq. (35), because for generic situ-
ations, only one root E = h(y) has a unit magnitude. But
for fine-tuned situations, there can be multiple unit magni-
tude roots eik̃s with s = 1, 2, .... The corresponding finite-size
terms eik̃sL do not tend to zero or infinity in the thermodynamic
limit. Therefore, the exact eigenvalue equation E − � − �(L)

(E ) = 0 is no longer approximated by Eq. (26), but rather

hk̃ − � − �<(hk̃ ) −
∑

s

J2

ih′
k̃s

(1 − eik̃sL )
� 0. (38)

2. Root multiplicity

There is another situation for the LS wave functions to
break down. In the derivation of Eq. (35), we have assumed
all the roots of E = h(y) do not have a multiplicity. This
assumption is valid for generic situations. But this assumption
can be violated in fine-tuned situations. The roots of E = h(y)
can be fine-tuned to have a multiplicity and the evaluations
of the residue formula Eq. (17) require a higher-order pole
formula.

In general, the root multiplicity of E − h(y) = 0 has an
interesting connection with the derivatives of hk . The disper-
sion hk has vanishing derivatives at orders r − 1, r − 2, ..., 1
if and only if the root multiplicity is r. This can be seen by
rewriting the root condition as yq(h(y) − E )/h−p = ∏

n(y −
yn)rn and evaluating the rth order derivatives at y = yn,
which is equivalent to calculating the same derivatives at the
corresponding yn.

This occurs even in Hermitian systems, such as the band
edges. Therefore, one expects the LS wave function to have
an alternative expression. However, an explicit calculation of
such scattering states for the NNN baths using the higher-
order pole formula does not match the exact diagonalization
results for finite systems. This is because the root multiplicity
is never exact in finite systems and the poles are again simple.
Recall that the scattering wave functions are extremely sensi-
tive to the tiny shift in the wave numbers; it is not surprising
that a naïve application of the higher-order pole formula,
which essentially concerns the thermodynamic limit, does not
work.

Here, we focus on the cases of degenerate unit magnitude
roots, which appear in the case of the NNN baths. Without
loss of generality, the exact eigenvalue equation E − � −
�(L)(E ) = 0 is approximated by

hk̃ − � − �<(hk̃ ) −
∑

r

J2

ih′
k̃r

(1 − eik̃r L )
� 0, (39)
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with r being the root multiplicity, and the root multiplic-
ity is (almost) never exact for any finite systems. The first
three terms are O(1), so the remaining sum of degenerate
root terms must also be O(1) to make the approximated
equation hold.

Moreover, having a root multiplicity (r �= 1) is a fine-tuned
case for NH systems, and the cases r > 2 are even more atyp-
ical. Thus, we consider the case of r = 2, where the finite-size
expression Eq. (39) is well approximated by

hk̃ − � − �<(hk̃ ) − J2

ih′
k̃α

(1 − eik̃αL )
− J2

ih′
k̃γ

(1 − eik̃γ L )
� 0,

(40)

where k̃α,γ are the two corresponding finite-size momenta.
The analysis above indicates k̃α,γ and h′

k̃α,γ
must adopt

a simple form. To see this explicitly, consider the follow-
ing finite size corrections to kr , k̃α,γ = kr ± crL−1 + O(L−2),
where cr is an O(1) coefficient. Here, we have used the fact
that k̃α,γ are solutions to E = hk̃ with a fixed E that is close
to hkr . Recall that the sum of the first three terms remains
O(1). For Eq. (40) to be valid, we conclude that the remain-
ing two O(L) finite size terms, a point that will be justified
later, should cancel out at the leading order. This leads to
eik̃αL = eik̃γ L and thus e2icr = 1. Overall, we rewrite the finite
size corretions as k̃α,γ = kr ± mπL−1 + O(L−2), where m is
a positive integer. Finally, let us return to the fact that each of
h′

k̃α,γ
is O(L−1) and J2/(ih′

k̃α,γ
(1 − eik̃γ L )) is O(L). This fact

follows from examining the Taylor expansion of the first-order
derivative around kr , h′

k̃α,γ
= h′

kr
± mπh′′

kr
L−1 + O(L−2). Re-

call that h′
kr

= 0, so the nonvanishing leading term is the
second-order derivative.

3. Bound states

The exact eigenvalue equation (10) contains the spatially
delocalized scattering states as well as bound states. A bound
state has a spatially localized particle density profile around
the emitter and has a nonvanishing ce �= 0 in the thermody-
namic limit. Bound states in NH systems have been studied
in Refs. [26,41] and their impact on photon-mediated interac-
tions is addressed in Refs. [54,55]. Here, we revisit this topic
and provide some explicit results.

For a bound state with an exact energy Eb, eliminating
ce in Eq. (10) gives Eq. (12) evaluated at E = Eb, whose
thermodynamic limit reads

Eb − � − �(Eb) = 0. (41)

Let us recall that the bound state energy is well separated
from the band dispersion and one can take the thermody-
namics limit of its finite-size self-energy without technical
difficulties.

As shown in Ref. [26], there are also anomalous bound
states as a unique feature of NH systems exhibiting skin ef-
fects. The poles of the emitter Green’s functions Ge(z) contain
information about all the bound states and predict the corre-
sponding Eb exactly [41]. This will be shown explicitly for
the Hatano-Nelson and unidirectional NNN baths in Secs. IV
and V.

Let us comment a bit on the relation between bound states
and scattering. In standard scattering theories for continuous
Hermitian systems, bound states are poles of the S matrix,
which is closely related to the poles of the reflection and
transmission coefficients. However, this calculation is tricky
to perform for NH baths because the S matrix is generally
ill-defined as the quantum dynamics is intrinsically nonuni-
tary. It may be interesting to explore to what extent one
can extend the notion of S matrix and related concepts to
NH systems.

IV. HATANO-NELSON BATHS

In this section, we consider the NH baths to be the
Hatano-Nelson (HN) model as a concrete example [46]. The
full derivation of the result is given in Appendix D. The
HN model is the simplest NH generalization of the tight-
binding model, where only the nearest neighbor is included
and the left and right hopping amplitudes are not the same.
The NH bath Hamiltonian Eq. (2) reads hx−1,x = −(u − κ

2 ),
hx+1,x = −(u + κ

2 ), and zero otherwise. Such an effective
NH bath can be realized by choosing nonlocal Lindblad
operators [56].

According to Eq. (4), the band dispersion is

hHN
k = −

(
u − κ

2

)
eik −

(
u + κ

2

)
e−ik . (42)

It has a maximum winding number |w| = 1 defined by
Eq. (37) and does not contain any self-intersecting points. The
spectrum of the full Hamiltonian Eq. (5) is shown in Fig. 3 and
it is similar to the structure of hHN

k except for three discrete
points. These points correspond to the bound states, to which
we refer later.

For finite systems, the LS scattering wave functions
Eq. (35) for the HN baths are the following:

ψ>

k̃ (x) =

⎧⎪⎪⎨
⎪⎪⎩

eik̃x + G>
e

(
hHN

k̃

)(
J2

δ

)
eik̃x x � 0

eik̃x + G>
e

(
hHN

k̃

)(
J2

δ

(
u− κ

2
u+ κ

2

)−x
)

e−ik̃x x < 0,

(43)

where δ = (u − κ/2)eik̃ − (u + κ/2)e−ik̃ and

G>
e

(
hHN

k̃

) = 1

hHN
k̃

− � − J2

δ

(44)

is the emitter Green’s function. The analytical form is ob-
tained by calculating all the relevant Green’s functions in
Eq. (16).

The finite-size expression ψ>

k̃
(x) approaches to the >

branch with scattering wave function ψ>
k (x) in the thermoyd-

namics limit. The predicted finite-size scaling of Imk̃ at the
leading order is numerically verified in Fig. 4.

Equivalently, one can also consider the other thermody-
namic branch ψ<

k (x), with its finite-size expression ψ<

k̃
(x)

given by Eq. (D8). At first glance, ψ>

k̃
(x) and ψ<

k̃
(x) are not

identical. But in fact, the two branches are related via Eq. (34)
exactly. In Fig. 3(b), we show a good agreement between the
LS scattering wave function evaluated at k̃ that solves the
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FIG. 3. HN baths for u = 6, κ = 2, J = 20, � = 2.14, and
L = 801. (a) The single-excitation spectrum of the H obtained from
exact diagonalization is shown in blue. The black dotted line indi-
cates the dispersion hNH

k . The pink dashed vertical lines indicate all
the bounds states, and the positions are analytically predicted by the
relevant emitter Green’s functions (see main text for the numerical
values). An eigenvector is selected at random (red marker) and shown
in (b) (blue), which shows a good agreement with the analytical LS
wave function under PBC (see main text for the discussion). We have
normalized the LS wave function Eq. (43) by dividing

√
L, such that

Eq. (9) holds.

exact eigenvalue equation (12) and the exact diagonalization
result.

The real-space behavior of the NH scattering states is
qualitatively different from the usual Hermitian story. In gen-
eral, all the NH scattering states exhibit a large localization
length that is proportional to the system size. Figure 3 shows
the exact diagonalization results for PBC, and Fig. 3(b) il-
lustrates the spatial amplitude of one eigenvector chosen
randomly (all the other eigenvectors have a similar spatial
property). The exact scattering eigenvectors have an inhomo-
geneous amplitude in real space. This is in contrast to the
usual plane wave solutions, where the spatial amplitudes are
uniform.

In the single-excitation sector, not all the exact eigen-
vectors are scattering states. As shown in Fig. 3, there are
three eigenvalues far away from hk and their spatial density
is localized around the emitter x = 0, known as the bound

ln

ln
ln

FIG. 4. For each system size, the value of Imk̃ changes for a fixed
scattering state with an exact eigenvalue E . The difference between
Imk̃ and its leading order in L−1 shows a O(L−2) scaling for both NN
and NNN baths, as predicted by Eq. (31).

states. Structured NH baths can induce hidden bound states
in addition to the usual bound states in Hermitian systems.
The hidden bound state is located in the winding number
|w| = 1 domain, and the usual bound states are in the trivial
winding number domain. As mentioned in Sec. III C 3, the
poles of emitter Green’s function (D7) predict the energies
E of all the bound states. In turn, the profile and local-
ization length can be obtained from Eq. (15), so formally
a bound state can be considered as a scattering state with
complex wave numbers k̃ [whose imaginary parts are O(1)]
such that E = hk̃ . The hidden bound states correspond to
imaginary momentum that solves 1/G<

e (hHN
k̃

) = 0, and we

find the numerical value to be k̃ ≈ 1.175 − 0.168i in this
case. In addition, the two usual bound states can be obtained
by solving 1/G>

e (hHN
k̃

) = 0, which gives k̃ ≈ 1.006i and

k̃ ≈ π + 1.102i.
To avoid potential confusion, we stress that the results of

this section are calculated under the assumption that hHN
k does

not exhibit spectral degeneracy, which is true for κ �= 0. In the
Hermitian limit (κ = 0), the HN baths reduce to the nearest-
neighbor tight-binding model, and the dispersion is given by
−2u cos(k). Due to the degeneracy for each pair of k and −k,
the scattering states for finite systems are not to be understood
as the κ → 0 limit of Eq. (43). Instead, one has to take the
degeneracy for each k into account when approximating the
exact eigenvalue equation E − � − �(L)(E ) = 0. We hope
to report some concrete connections to Hermitian systems in
future studies.

V. UNIDIRECTIONAL NEXT-TO-NEAREST-NEIGHBOR
BATHS

Having studied the HN baths, we next consider a more
complicated model, unidirectional next-to-nearest-neighbor
baths. The asymmetric hopping range is extended to 2 but
restricted to a single direction. The NH bath Hamiltonian
Eq. (2) reads hx+1,x = −κ , hx+2,x = −κ ′, and zero otherwise.
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FIG. 5. NNN baths for κ = 5, κ ′ = 12, L = 801, J = 20, � =
2.14. The single-excitation spectrum of the H obtained from exact
diagonalization is shown in blue. The black dotted line indicates
the dispersion hNNN

k . The pink dashed vertical lines indicate all the
bound states. Two ED eigenvectors in k1 and k2 are chosen at random,
indicated by the red and green markers. The pink marker indicates the
self-intersecting state. The real space distributions of states indicated
by the red, green, and pink markers are shown in Fig. 6.

The complex dispersion reads

hNNN
k = −κe−ik − κ ′e−2ik . (45)

The NNN dispersion hNNN
k has a maximum winding number

2 defined by Eq. (37). This makes finding the explicit form
of all the Green’s functions [cf. Eq. (C6)] difficult, as will be
explained in this section. There is a single point in the complex
plane where hNNN

k with two different momenta self-intersect.
This happens for states with momenta

kSI = arccos
(
− κ

2κ ′
)

(46)

with an energy hNNN
kSI

= κ ′. Furthermore, hNNN
k separates three

domains of different winding numbers. The outer boundary of
the winding number 1 domain (the “outer loop” in Fig. 5) is
given by hNNN

k1
, where |k1| > |kSI|. In addition, hNNN

k2
for |k2| <

|kSI| defines the boundary of the winding number 2 domain
(the “inner loop”).

For a finite number of lattice sites, the explicit forms of LS
wave function [cf. Eq. (35)] are

ψ>

k̃1
(x) =

⎧⎪⎨
⎪⎩

eik̃1x + G>,x�0
e

(
hNNN

k̃1

)
J2

δ

((
− κ ′

κ+κ ′e−ik̃1

)x+1

− eik̃1(x+1)

)
x � 0

eik̃1x x < 0,

(47)

ψ>

k̃2
(x) =

⎧⎪⎪⎨
⎪⎪⎩

eik̃2x − G>,x�0
e

(
hNNN

k̃2

)
J2

δ
eik̃2(x+1) x � 0

eik̃2x − G>,x<0
e

(
hNNN

k̃2

)
J2

δ

(
− κ ′

κ+κ ′e−ik̃2

)x+1

x < 0,

(48)

where δ = κ + 2κ ′e−ik̃1/2 depending on the value of k̃, and

G>,x�0
e

(
hNNN

k̃1

) = 1

hNNN
k1

− � + J2

(
eik1

κ+κ ′e−ik̃1

) ,

G>,x�0
e

(
hNNN

k̃2

) = 1

hNNN
k̃2

− � + J2

δ
eik̃2

,

G>,x<0
e

(
hNNN

k̃2

) = 1

hNNN
k̃2

− � − J2

δ

(
κ ′

κ+κ ′e−ik̃2

) (49)

are the emitter Green’s function evaluated for the correspond-
ing arguments, and the full derivation is given in Appendix E.
The two sets of states are defined on k1 and k2, separated by
the self-intersecting point kSI. And the excellent agreement
with the ED results is displayed in Figs. 6(a) and 6(b). The
self-intersecting point in Fig. 6(c) is discussed later. In the
thermoydnamic limit, ψ>

k̃1/2
(x) approaches the corresponding

branch ψ>
k1/2

(x). The predicted finite-size scaling of Imk̃ at the
leading order is numerically verified in Fig. 4.

Equivalently, one could consider ψ<

k̃1/2
(x), which cor-

responds to another thermodynamic branch ψ<
k1/2

(x). The
explicit form is given by Eq. (E10). Again, the two branches
are related via carefully using the corresponding Green’s func-
tion Eq. (E9).

Lastly, the four bound states are identified with their
corresponding emitter Green’s functions, see Fig. 5. We
numerically find that the complex momenta that solves
1/G>,x�0

e (hNNN
k̃1

) = 0 produce the usual bound states, k̃ ≈
0.064i and k̃ ≈ 1.729 + 0.282i. Similarly, the hidden bound
states in winding number 1 and 2 domains are given by poles
G<,x�0

e (hNNN
k̃1

) (with k ≈ −0.229i) and G>,x�0
e (hNNN

k̃2
) (with

k̃ ≈ 2.087 − 0.862i).

VI. FINE-TUNED CASES

So far, we have only considered the scattering states that
are described by the LS wave function given by Eq. (35).
The validation is confirmed by benchmarking our analytical
results with the exact diagonalization for finite lattices, which
shows an excellent agreement. This LS wave function cap-
tures scattering states for generic hopping parameters under
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the mild assumption of a nondegenerate spectrum and simple
poles. However, as mentioned in Sec. III C, there are special
fine-tuned scenarios when the assumption breaks.

In this section, we provide minimal examples that appeared
in the NNN models, where we have a total hopping range of
2, and spectral degeneracy occurs when the two simple poles
eik̃α and eik̃γ of (E − h(y))−1 have an almost unit magnitude
for finite systems. In this case, the finite-size expression E −
� − �(L)(E ) = 0 is well approximated by Eq. (40) and the
scattering wave functions are given by

ψs(x) �

⎧⎪⎨
⎪⎩

J
ih′

k̃α
(1−eik̃αL )

eik̃αx + J
ih′

k̃γ
(1−eik̃γ L )

eik̃γ x x � 0

J
ih′

k̃α
(e−ik̃αL−1)

eik̃αx + J
ih′

k̃γ
(e−ik̃γ L−1)

eik̃γ x x < 0.

(50)

A. Self-intersecting point

A special case occurs when the hNNN
k dispersion has a

maximum winding number of 2, which means there is a
self-intersecting point for generic parameters. In the thermo-
dynamic limit, at the self-intersecting point, there are two
simple poles, eikSI and e−ikSI (see Appendix E). For any finite
systems, ce is almost never strictly zero and k̃SI turns out
to have an almost vanishing [at least smaller than O(L−1)]
imaginary part. Evaluating the scattering wave function for
k̃SI shows a perfect matching in Fig. 6(c).

B. Second-order pole

Another case is when the hNNN
k dispersion has a vanishing

derivative with respect to k. This is realized by a fine-tuned
hopping parameter κ = 2κ ′ and k = π . Figure 7 shows the
spectrum, and unlike the generic parameters, the maximum
winding number is one. In the thermodynamic limit, the pole
is second order and given by eiπ . As discussed in Sec. III C 2,
evaluating the finite-size results Eqs. (40) and (50) for the
second-order pole kr = π , the scattering wave function reads

ψm(x) � cos(πx) sin

(
mπx

L

)
. (51)

Therefore, the closest scattering state to the second-order pole
that one can get on a finite lattice is when m = 1. And the
second-closest one is given by m = 2. Figure 8 shows the
exact diagonalization results, which confirm the argument
above.

VII. CONCLUSION

In summary, we have developed a general method for
studying single-photon transport in (single-band) NH baths
on finite lattices and addressed the validity of the Lippmann-
Schwinger equation. For generic baths and most of the
eigenvectors, our method reduces to the Lippmann-Schwinger
equation in the thermodynamic limit, but it can reduce to other
expressions for fine-tuned setups. The analytical solutions
for the 1D Hatano-Nelson and unidirectional next-to-nearest-
neighbor hopping models are computed, and we show that the
scattering states are not linear superpositions of plane waves
in general.

FIG. 6. NNN baths for κ = 5, κ ′ = 12, L = 801, J = 20, � =
2.14. The states indicated by the red, green, and pink markers in
Fig. 5 are shown in (a)–(c), respectively, and compared with the
analytical LS expressions under PBC. The LS wave functions are
normalized according to Eq. (9).

Our work provides a solid example for studying scattering
states with a complex “kinetic term,” which is a step toward
a general theory of NH scattering. In addition, our work
shows some unique features of the scattering states in highly
experimentally relevant optical platforms. There are several
immediate directions for future work. One important theoret-
ical question is to understand the connection with finite-size
Hermitian scattering theory. Another direction is generalizing
our single-band approach to multiple bands [9,49] and to
higher dimensions [57], as well as extending to the impurity
problems [58,59]. Another natural theoretical question is to
study the strongly correlated states in the higher-excitation
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FIG. 7. NNN baths for κ = 10, κ ′ = 5, L = 801, J = 20, � =
2.14. The single-excitation spectrum of the H obtained from exact
diagonalization is shown in blue. The black dotted line indicates the
dispersion hNNN

k . The pink dashed vertical lines indicate all the bound
states. Under the fine-tuned parameter κ = 2κ ′, the winding numbers
are only 0 and 1. The cross indicates the fine-tuned state.

sectors [45] for the current setup, or even in the presence of
multiple emitters [60,61]. From an application perspective, it
would be interesting to investigate coherent photon transport
in other experimentally accessible structured waveguides [23].
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APPENDIX A: REMARKS ON THE RESIDUE
FORMULA EQ. (21)

Noting that f (L)
− (y) = f (L)

+ (y) + 1, we know that the con-
sistency of ± cases at x = 0 is equivalent to

∑
y:E=h(y)

1

yh′(y)
= 0, (A1)

FIG. 8. NNN baths for κ = 10, κ ′ = 5, L = 801, J = 20, � =
2.14. (a) shows the scattering state at the second-order pole point;
(b) and (c) show the next two adjacent states. Due to the finite-size
effect, they are well described by Eq. (51).

which simply follows from (again, R is assumed to be large
enough) ∮

|β|=R

dβ

2π iβ

1

E − h(β )
= 0. (A2)

Note that 0 has been assumed to be not a zero of β(E − h(β ))
or β(E − h(β−1)), as can be easily ensured by min{p, q} � 1.
The periodicity of �(L)

x (E ) in x can be seen from f (L)
+ (y) =

y−L f (L)
− (y), and that if x � 0 so that �(L)

x (E ) involves f (L)
+ (y),
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then x − L � 0 and thus �(L)
x (E ) should be evaluated using

f (L)
− (y).

On the other hand, if min{p, q} = 0, as is the case of the
NNN bath, 0 will be a pole of 1/(β(E − h(β ))) or 1/(β(E −
h(β−1))) depending on the unidirectionality. In this case, ap-
plying the residue theorem to Eq. (A2) [or with h(β ) replaced
by h(β−1)] yields the following modification of Eq. (A1):

1

E − h0
+

∑
y:E=h(y)

1

yh′(y)
= 0, (A3)

provided that E �= h0. The additional term 1/(E − h0) corre-
sponds to the discrepancy between x > 0 and x < 0 cases of
�(L)

x (E ) at x = 0.

APPENDIX B: DISCONTINUITY OF THE SELF-ENERGY

The self-energy �(z) defined in Eq. (C6) has been ana-
lytically calculated for both HN and NNN models. For both
examples, the self-energy shows a discontinuity in the direc-
tions of approaching hk . In this section, we show that our
analytical results agree with the general statement about the
discontinuity in self-energies in Ref. [62].

For a finite-hopping range, the complex dispersion hk is
always continuous and differentiable. The discontinuity in
self-energies is given by

�>(hk ) − �<(hk ) = − iJ2

(dhk/dk)
. (B1)

For the HN case, dhk/dk = −i(J − κ/2)eik + i(J +
κ/2)e−ik = −iδ and is related to the discontinuity
�>(hk ) − �<(hk ) = J2/δ via Eq. (B1). The same result holds
for the NNN case, where dhk/dk = iκe−ik + 2iκ ′e−2ik =
iδe−ik and �>(hNNN

k1
) − �<(hNNN

k1
) = −J2eik/δ.

APPENDIX C: LIPPMANN-SCHWINGER
EQUATION ON LATTICES

In the main text, we have shown that the exact formal
solution for the finite lattice reduces to the LS equation in the
thermodynamic limit. Yet the LS equation itself on discrete
spaces is less well known. In this section, we show how to
obtain the LS equation on lattices following the idea for the
continuous space [43].

In the zero-coupling limit (J = 0), on top of the emitter
excitation with eigenenergy �, eigenvalues of the NH Hamil-
tonian in Eq. (7) are simply solved by plane waves

H0(|g〉 ⊗ |k〉) = hk (|g〉 ⊗ |k〉), (C1)

where |k〉 = a†
k |vac〉. For those scattering eigenstates, the for-

mal solution to Eq. (7) at finite coupling is given by the LS
equation [43]

|�>,<
k 〉 = |g〉 ⊗ |k〉 + (hk±i0 − H0)−1V |�>,<

k 〉, (C2)

where < (>) indicates the branches when substituting hk+i0

(hk−i0), like the main text. The formal solution Eq. (C2) coin-
cides with the exact eigenvector |�i〉 in Eq. (7).

In the following, we consider the Born approximation

|�>,<
k 〉 ≈ |g〉 ⊗ |k〉 + (hk±i0 − H0)−1V |g〉 ⊗ |k〉, (C3)

which truncates the self-consistent LS equation at the first or-
der. Noting the fact that the scattering process here conserves
the particle number, we know the LS scattering wave function
has to preserve the single excitation form

|�>,<
k 〉 = |g〉 ⊗ |ψ>,<

k 〉 + ce|e〉 ⊗ |vac〉. (C4)

Substituting Eq. (C4) into the Born equation in Eq. (C3) and
recalling the definition of V = J√

L

∑
k (|g〉〈e|a†

k + ak|e〉〈g|)
leads to

|ψ>,<
k 〉 = |k〉 + J

L

∑
k′

G>,<
k′ (hk )|k′〉,

ce = J√
L

G>,<
e (hk ),

(C5)

where Gk (z) is the photon Green’s function

Gk (z) = J

z − hk
Ge(z). (C6)

Thus, the wave function ψ>,<
k (x) = √

L〈x|ψ>,<
k 〉 reads

ψ>,<
k (x) = eikx + G>,<

e (hk )�>,<
x (hk ). (C7)

APPENDIX D: FULL DERIVATIONS FOR
HATANO-NELSON BATHS

In this section, we consider the full derivations of scattering
wave function Eq. (43) for HN baths in detail. We start by
evaluating the self-energy Eq. (16),

�x(z) = J2

2π

∫ π

−π

dk
eikx

z − hk
= J2

2π i

∮
|y|=1

dy

y

y|x|

(z − hk )
,

(D1)

where the variable k is changed to y and y = eisgn(x)k . For x <

0, dy = −iydk, and the substitution y = e−ik runs clockwise,
which introduces another minus sign. The integral becomes a
contour integral along the unit circle, and evaluation is done
by the residue theorem. Firstly, we find the two roots y± of the
polynomial y(z − hk ) ≡ ay2 + by + c. Let δ2 = b2 − 4ac, by
the residue theorem, the relative self-energy reads

�x(z) = J2

δ
(y|x|

+ �(1 − |y+|) − y|x|
− �(1 − |y−|)), (D2)

where �(1 − |y±|) is the Heaviside’s step function.
Now we compute this integral explicitly. For x � 0, the

root of the polynomial

y(z − hk ) =
(

u + κ

2

)
y2 + yz +

(
u − κ

2

)
= 0

is given by

y± = −z ±
√

δ2

2

(
u − κ

2

) ,

where δ = (u − κ/2)eik − (u + κ/2)e−ik . So far we expressed
Eq. (D1) for an arbitrary z, and we consider taking the limit of
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z → hHN
k ± i0, which reads

y± =
(
u − κ

2

)
eik + (

u + κ
2

)
e−ik ± ((

u − κ
2

)
eik − (

u + κ
2

)
e−ik

)
2u − κ

.

The roots are further simplified to

y+ = eik, y− = u + κ
2

u − κ
2

e−ik, (D3)

and the root y− always has a magnitude greater than one,
unless κ = 0, which is the Hermitian limit of the HN model.
Thus, by the residue theorem, y− does not contribute to
Eq. (D1) as it falls outside the unit circle. However, the root
y+ has a magnitude of one and is located on the integra-
tion contour, which makes the relative self-energy ill-defined.
We consider an infinitesimal deformation of the integrand by
considering k → limε→0 k + iε, where ε is real and positive,
which changes the magnitude of the root y+ to |ei(k+iε)| =
|eike−ε | < 1 and results in pushing eik into the unit circle.

The above process is repeated for x < 0, and the roots of
the polynomial y(z − hk ) = 0 are given by

y± = −z ±
√

δ2

2

(
u + κ

2

) .

Taking the limit of z → hHN
k , we find

y+ = u − κ
2

u + κ
2

eik, y− = e−ik . (D4)

The root y+ contributes to the relative self-energy as its mag-
nitude is less than one. Similarly, the contour integral for
y− is not well defined, and we consider the above substitu-
tion k → limε→0 k + iε, which changes the magnitude of y−
to |e−i(k+iε)| = |e−ikeε | > 1 and does not affect the integral.
Thus, we have found the nonvanishing residues, Eqs. (D3) and
(D4), and substituting them into Eq. (D2) gives

�>
x (hHN

k ) =
⎧⎨
⎩

J2

δ
eikx x � 0

J2

δ

(
u− κ

2
u+ κ

2

)−x
e−ikx x < 0.

(D5)

So far we have only considered the case z = limε→0 hHN
k +

iε in Eqs. (D3) and (D4). It remains to study the case z =
limε→0 hHN

k − iε by taking k → limε→0 k − iε. For x � 0,
both roots Eq. (D3) now fall outside the unit circle. And for
x < 0, both roots Eq. (D4) are included. The behavior of the
roots leads to the following self-energy expressions:

�<
x (hHN

k ) =

⎧⎪⎨
⎪⎩

0 x � 0

J2

δ

((
u− κ

2
u+ κ

2

)−x
e−ikx − eikx

)
x < 0.

(D6)

The emitter Green’s functions Eq. (C6) are given by

G>
e

(
hHN

k

) = 1

hHN
k − � − J2

δ

, G<
e

(
hHN

k

) = 1

hHN
k − �

. (D7)

The scattering wave function ψ>
k (x) is presented in the main

text. And the scattering wave function ψ<
k (x) is given by

ψ<
k (x)

=

⎧⎪⎨
⎪⎩

eikx x � 0

eikx + G<
e

(
hHN

k

)
J2

δ

((
u− κ

2
u+ κ

2

)−x
e−ikx − eikx

)
x < 0.

(D8)

APPENDIX E: FULL DERIVATIONS FOR
UNIDIRECTIONAL NEXT-TO-NEAREST-NEIGHBOR

BATHS

We start by considering the relative self-energy given by
Eq. (D1). For x � 0, let y = eik be the substitution and we
have

�x�0(z) = J2

2π i

∮
|y|=1

dy

y

yx+2

zy2 + κy + κ ′

= J2

δ
(yx+1

+ �(1 − |y+|) − yx+1
− �(1 − |y−|)), (E1)

where δ = κ + 2κ ′e−ik and the integral is calculated by the
residue again. The roots of polynomial zy2 + κy + κ ′ = 0 are
given by

y+ = − κ ′

κ + κ ′e−ik
,

y− = eik .

(E2)

For the case of x < 0, the substitution becomes y = e−ik

�x<0(z) = J2

2π i

∮
|y|=1

y−x

y(κ ′y2 + κy + z)

= J2

δ
(y−x−1

+ �(1 − |y+|) − y−x−1
− �(1 − |y−|)),

(E3)

and we find the roots for the polynomial κ ′y2 + ky + z = 0 to
be

y+ = e−ik, y− = −κ + κ ′e−ik

κ ′ . (E4)

Recall that the hNNN
k has a self-intersecting point at

kSI = arccos

(
− κ

2κ ′

)
,

which is a special feature of the model. The self-intersecting
point makes the relative self-energy discontinuous in k. More
precisely, the magnitude of roots in Eqs. (E2) and (E4) varies
across the self-intersecting point; the |y+| in Eq. (E2) is greater
than one for k1 = |k| > |kSI| and less than one for k2 = |k| <

|kSI|. And the opposite holds for |y−| in Eq. (E4). At the
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self-intersecting point, both roots y± = e±ikSI have a unit mag-
nitude. As discussed in the main text, the exact scattering state
for this point needs special treatment.

The dispersion of NNN has two domains with nontrivial
winding 1 and 2, unlike the case of the HN model where
the maximum winding number is 1. Therefore, one has to
specify the domain of z when taking the limit z → hNNN

k ± i0
in the explicit evaluation of all the Green’s functions and
self-energies Eq. (16). The winding number of hNNN

k is 1
or 2 for k1/2, and it is useful to label the dispersion hNNN

k1/2

as well.
Now we consider the contributions of the residues to the

relative self-energy in Eqs. (E1) and (E3). In the winding
number 1 domain, where the momentum is strictly defined
by k = k1, we first consider the case k → limε→0 k + iε,
where ε is real and positive. Again, this affects the mag-
nitude of the root eik and changes it to |eike−ε | < 1. The
self-energies are

�>
x

(
hNNN

k1

) =

⎧⎪⎨
⎪⎩

J2

δ

((
− κ ′

κ+κ ′e−ik1

)x+1

− eik1(x+1)

)
x � 0

0 x < 0.

(E5)

Similarly, we also consider the solutions by taking the limit
k → limε→0 k − iε from the negative side. We find the self-
energies to be

�<
x

(
hNNN

k1

) =

⎧⎪⎨
⎪⎩

J2

δ

(
− κ ′

κ+κ ′e−ik1

)x+1

x � 0

J2

δ
eik1(x+1) x < 0.

(E6)

We repeat the above evaluations for the relative self-energy in
the winding number 2 domain, where the momentum is k =
k2. The following two sets of solutions correspond to the limits

k → limε→0 k ± iε. In the case of +, the self-energies are

�>
x

(
hNNN

k2

) =

⎧⎪⎪⎨
⎪⎪⎩

− J2

δ
eik2(x+1) x � 0

− J2

δ

(
− κ ′

κ+κ ′e−ik2

)x+1

x < 0.
(E7)

Lastly, we have the self-energies for

�<
x

(
hNNN

k1

) =

⎧⎪⎨
⎪⎩

0 x � 0

J2

δ

(
eik2(x+1) −

(
− κ ′

κ+κ ′e−ik2

)x+1
)

x < 0.

(E8)

In the NNN case, the emitter Green’s functions Eq. (C6) are
discontinuous at x = 0, and they are

G>,x�0
e

(
hNNN

k1

) = 1

hNNN
k1

− � + J2
(

eik1

κ+κ ′e−ik1

) ,

G>,x<0
e

(
hNNN

k1

) = 1

hNNN
k1

− �
,

G<,x�0
e

(
hNNN

k1

) = 1

hNNN
k1

− � + J2

δ

(
κ ′

κ+κ ′e−ik1

) ,

G<,x<0
e

(
hNNN

k1

) = 1

hNNN
k1

− � − J2

δ
eik1

,

G>,x�0
e

(
hNNN

k2

) = 1

hNNN
k2

− � + J2

δ
eik2

,

G>,x<0
e

(
hNNN

k2

) = 1

hNNN
k2

− � − J2

δ

(
κ ′

κ+κ ′e−ik2

) ,

G<,x�0
e

(
hNNN

k2

) = 1

hNNN
k2

− �
,

G<,x<0
e

(
hNNN

k2

) = 1

hNNN
k2

− � − J2
(

eik2

κ+κ ′e−ik2

) . (E9)

In additional to the two sets of scattering wave functions
ψ>

k1/2(x) present in the main text, the explicit form of ψ<
k1/2

(x)
reads as

ψ<
k1

(x) =
⎧⎨
⎩eik1x + Gx�0

e

(
h<,NNN

k1

)
J2

δ

( − κ ′
κ+κ ′e−ik1

)x+1
x � 0

eik1x + Gx<0
e

(
h<,NNN

k1

)
J2

δ
eik1(x+1) x < 0,

ψ<
k2

(x) =

⎧⎪⎪⎨
⎪⎪⎩

eik2x x � 0

eik2x + Gx<0
e

(
h<,NNN

k2

)
J2

δ

(
eik2(x+1) −

(
− κ ′

κ+κ ′e−ik2

)x+1
)

x < 0.
(E10)
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[3] D. E. Chang, V. Vuletić, and M. D. Lukin, Quantum nonlinear
optics–photon by photon, Nat. Photon. 8, 685 (2014).

053707-14

https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1038/nphoton.2014.192


SCATTERING STATES IN ONE-DIMENSIONAL … PHYSICAL REVIEW A 112, 053707 (2025)

[4] G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Atom-field
dressed states in slow-light waveguide QED, Phys. Rev. A 93,
033833 (2016).

[5] B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum,
J. Braumüller, D. K. Kim, M. Kjaergaard, P. Krantz, A.
Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L.
Yoder, F. Nori, T. P. Orlando, S. Gustavsson, and W. D. Oliver,
Waveguide quantum electrodynamics with superconducting ar-
tificial giant atoms, Nature (London) 583, 775 (2020).

[6] H. Zheng, D. J. Gauthier, and H. U. Baranger, Waveguide-
QED-based photonic quantum computation, Phys. Rev. Lett.
111, 090502 (2013).

[7] Y.-X. Zhang, C. R. i Carceller, M. Kjaergaard, and A. S.
Sørensen, Charge-noise insensitive chiral photonic interface
for waveguide circuit QED, Phys. Rev. Lett. 127, 233601
(2021).

[8] A. F. Kockum, G. Johansson, and F. Nori, Decoherence-free
interaction between giant atoms in waveguide quantum electro-
dynamics, Phys. Rev. Lett. 120, 140404 (2018).

[9] X.-L. Dong, P.-B. Li, Z. Gong, and F. Nori, Waveguide QED
with dissipative light-matter couplings, Phys. Rev. Res. 7,
L012036 (2025).

[10] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori,
Dynamical Casimir effect in a superconducting coplanar
waveguide, Phys. Rev. Lett. 103, 147003 (2009).

[11] M. A. Selim, M. Ehrhardt, Y. Ding, H. M. Dinani, Q. Zhong,
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