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Efficient implementation of quantum signal processing via the adiabatic-impulse model

D. O. Shendryk,1,2,* O. V. Ivakhnenko ,1,3,* S. N. Shevchenko ,1,† and Franco Nori 3,4

1B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine,
Kharkiv 61103, Ukraine

2Ruhr-Universität Bochum 44780, Germany
3RIKEN Center for Quantum Computing, RIKEN, Wakoshi, Saitama, 351-0198, Japan

4Quantum Research Institute and Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 26 June 2025; accepted 24 September 2025; published 27 October 2025)

We investigate an analogy between quantum signal processing (QSP) and the adiabatic-impulse model (AIM)
in order to implement the QSP algorithm with fast quantum logic gates. QSP is an algorithmic technique that
uses single-qubit dynamics to perform a polynomial function transformation. The adiabatic-impulse model
effectively describes the evolution of a two-level quantum system under a strong external driving field. We
can map parameters from QSP to the AIM to implement a QSP-like evolution with nonadiabatic, high-amplitude
external drives. By choosing the AIM driving parameters that control the nonadiabatic transition parameters
(such as driving amplitude A, frequency ω, and signal timing), one can achieve polynomial approximations and
increase robustness in quantum circuits. The analogy between QSP and AIM presented here can be useful as a
way to directly implement the QSP algorithmic technique on quantum systems and show the benefits from fast
Landau-Zener-Stückelberg-Majorana (LZSM) quantum logic gates in comparison with usual resonance driving
gates in IBM-Q quantum processors.
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I. INTRODUCTION

Quantum algorithms represent an innovative paradigm
in computational science, using the principles of superpo-
sition, entanglement, and quantum interference to confront
overwhelmingly time-consuming problems for classical ap-
proaches [1–8]. Quantum algorithms have been reinterpreted
within more general frameworks that emphasize common
structural principles. A notable example is the perspective
framework, developed in Ref. [9], named “grand unification
of quantum algorithms”, which shows that a wide range
of fundamental algorithms can be understood as instances
of singular value transformations. At the core of this view
lies quantum signal processing (QSP), a method exploiting
single-qubit dynamics with interference, enabling polynomial
function transformations with O(d ) elementary unitary op-
erations on the quantum subsystem, where d is the degree
of the polynomial function. The role of QSP as a unify-
ing primitive has motivated its integration into increasingly
sophisticated algorithmic designs [5,10,11], where it func-
tions both as a direct tool and as a foundation for broader
constructions such as quantum singular value transformation
(QSVT).
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QSP involves a combination of adjustable rotations of a
qubit state around the z axis, which produces phase differ-
ences between energy levels, and fixed x-axis rotations on
the Bloch sphere, which change the energy levels occupation.
These x- and z-axes rotations are applied one by one in a
sequence. Such QSP sequences of pulses can be used in a
composite-pulse approach that allows to increase robustness
to fluctuations in the driving signal [12].

We found that the combination of consecutive rotations
around the x and z axes is also directly used in the so-called
adiabatic-impulse model (AIM) [13], a model specifically de-
veloped for nonadiabatic quantum dynamics of qubits, with
particular emphasis on interferometry [14–17]. It is a useful
tool to investigate analytically the dynamics of quantum sys-
tems with a small energy gap [17–19]. It combines adiabatic
evolution, where the energy levels occupation is conserved
but a phase difference is gained, and diabatic (impulse-type)
transitions, during which the interference of the amplitudes of
different states occurs.

We find it beneficial to explore the analogy between the
two approaches—QSP and AIM—and demonstrate that the
AIM can be used to effectively implement QSP. This is possi-
ble by utilizing alternative fast nonadiabatic gates [20].

The rest of the paper is organized as follows. In Sec. II,
we review the key notions of this work: QSP and AIM.
In Sec. III, we describe the algorithms for converting pa-
rameters from QSP to AIM. In Sec. IV, we show the way
to use two consecutive Landau-Zener-Stückelberg-Majorana
(LZSM) transitions [14,17,21] to implement QSP faster. In ad-
dition, we show an analogy between double LZSM transition
and a Mach-Zehnder interferometer to implement a rotation
operator around the x axis by an arbitrary angle.
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II. REVIEW OF QUANTUM SIGNAL PROCESSING
AND ADIABATIC-IMPULSE MODEL

A. Quantum signal processing

Quantum signal processing is a quantum algorithmic
technique initially designed for implementing polynomial
transformations of matrix eigenvalues via phase modulation,
originally inspired by composite-pulse techniques from nu-
clear magnetic resonance [22]. The possibility to implement
such polynomial transformations is particularly important in
the context of applications like Hamiltonian simulation, as
we will demonstrate later. It can also be used to enhance
signal sensitivity to specific input parameters, making it a
powerful tool for error mitigation, quantum optimization, and
quantum machine learning tasks [23,24]. For instance, the
technique can be applied to amplify weak signals beyond the
limits of repetition statistics and suppress noise without direct
measurement [22].

The QSP algorithm involves using a sequence of unitary
rotations of a qubit state on the Bloch sphere around the x
and z axes. The operator responsible for rotations around the
x axis is denoted as the signal operator W , and the operator
responsible for rotation around the z axis is called the signal
processing operator S:

W (a) = exp

(
i
θ (a)

2
X

)
=

(
a i

√
1 − a2

i
√

1 − a2 a

)
,

S(φ) = exp (iφZ ), (1)

where X and Z stand for the Pauli matrices σx and σz, respec-
tively. Here, the parameter a is defined as

a = cos(θ/2) ∈ [−1, 1]. (2)

For a set of phases

� = (φ0, φ1, . . . , φd ), (3)

the operator U , which represents the evolution in the QSP
technique, is defined as the sequential application of the signal
processing operator S and the signal operator W :

U�,a = exp (iφ0Z )
d∏

k=1

W (a) exp (iφkZ ) ∈ SU(2). (4)

The operators W and S can be written in the following way
using rotation operators

W [a(θ )] = Rx(−θ ), S(φ) = Rz(−2φ). (5)

The quantum rotation gates Rx and Rz describe rotations of
single-qubit states on the Bloch sphere by angles α and β

around the x and z axes, respectively. These gates are defined
in terms of both matrix exponentials and explicit matrix rep-
resentations

Rx(α) = exp
(
−i

α

2
X

)
=

(
cos

(
α
2

) − i sin
(

α
2

)
−i sin

(
α
2

)
cos

(
α
2

))
, (6a)

Rz(β ) = exp

(
−i

β

2
Z

)
=

(
exp (−i β

2 ) 0
0 exp (i β

2 )

)
. (6b)

Consequently, Eq. (4) can be written in terms of rotation
operators Rx and Rz,

U�,a = Rz(−2φ0)
d∏

k=1

Rx(−θ )Rz(−2φk ). (7)

One of the most remarkable properties of the QSP framework
is its ability to construct quantum circuits that implement a
desired polynomial transformation on the eigenvalues of an
operator.

The inverse of this principle is also true: given a target
polynomial M(a), there always exists a corresponding set of
QSP phase angles � such that the transformation M(a) can be
exactly represented as 〈0|U�,a|0〉. This principle is formalized
in Theorem 1 (quantum signal processing) of Ref. [9], which
states that the QSP sequence U�,a generates matrix elements,
expressible via a polynomial function of a:

U�,a =
(

M(a) iQ(a)
√

1 − a2

iQ∗(a)
√

1 − a2 M∗(a)

)
. (8)

For this construction to hold, the desired M(a) and comple-
mentary Q(a) polynomials must satisfy several conditions.
The degree of the polynomial M(a) must be at most d and
the degree of the polynomial Q(a) must be at most (d − 1).
These polynomials must also exhibit parity relationships with
the degree d , and a normalization condition must ensure the
unitarity of the resulting transformation.

As an example, we now consider the Chebyshev polyno-
mials Td (a) [25], which are defined as follows:

T0(a) = 1, T1(a) = a; (9a)

Td (a) = 2aTd−1(a) − Td−2(a) = cos(d arccos a), (9b)

and how they naturally arise within the framework of QSP
[9]. Such polynomials play a central role in Hamiltonian sim-
ulation, since time-evolution operators of the form exp (−iHt )
are often approximated through Chebyshev polynomial series.
For trivial phase sequences (i.e., all phases in � equal zero),
the resulting polynomials M(a) align exactly with Td (a):

(1) For � = (0, 0), the corresponding polynomial is

M(a) = a = T1(a); (10a)

(2) For � = (0, 0, 0), the polynomial becomes

M(a) = 2a2 − 1 = T2(a); (10b)

(3) For � = (0, 0, 0, 0), the result is

M(a) = 4a3 − 3a = T3(a). (10c)

Another important QSP sequence is BB1 (Broadband 1)
[22]. It is a robust composite pulse sequence used in NMR to
correct amplitude errors in rf pulses. This is particularly useful
for achieving high-fidelity spin manipulations, even when the
rf field strength is not perfectly calibrated. Following Ref. [9],
we consider BB1 with a phase sequence

� = (π/2,−η, 2η, 0,−2η, η), (11)

where η = 1

2
cos−1

(
−1

4

)
.
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FIG. 1. Occupation probability P− after the QSP sequence is
applied to the qubit with ground-state initial conditions. (a) Cheby-
shev polynomials with Eqs. (10b) and (10c). (b) The BB1 sequence,
corresponding to the polynomial in Eq. (12) (solid curve). The dots
in (a) and (b) correspond to the probability obtained by performing
the respective QSP sequences on an IBM-Q QPU. The scheme for
the BB1 sequence is shown (b) in terms of QSP operators, where the
green boxes correspond to the signal processing operator S(φ) and
blue boxes correspond to the signal operator W (a).

Via the QSP technique, Eq. (4), one can obtain the polynomial
form from the phase sequence in Eq. (11) as

M(a) = 1
8 a2[3a8 − 15a6 + 35a4 − 45a2 + 30]. (12)

The BB1 sequence in Eq. (11) describes a qubit that remains
in the excited state in the broad region θ ≈ (−2/3π, 2/3π )
and quickly becomes flipped out of it.

In Fig. 1 we illustrate the resulting probability after ap-
plying the QSP sequence with the trivial phases for the
Chebyshev polynomials in panel (a) and BB1 phase sequence
in panel (b). A comparison is made between these results
(shown with solid curves) and those obtained from running the
corresponding QSP sequences on an IBM-Q cloud quantum
computing on the quantum processing unit (QPU) based on

the IBM Eagle r3 architecture [26], shown by color dots.
We obtained good agreement for this single-qubit technique
despite the dissipative and noisy environment of real qubits in
the IBM-Q processor.

The unitary operator U�,a can then be used in quantum
simulations [5,9] to address computational or physical prob-
lems. In general, by varying the number of phases and their
configurations using the QSP method [9], it is possible to
construct any symmetric signal profile sensitive to the desired
combinations of rotation angles.

Later, in Sec. III, we demonstrate how closely this tech-
nique resembles the adiabatic-impulse model.

B. Adiabatic-impulse model

The adiabatic-impulse model [13,27–31] describes the evo-
lution of a system driven by a periodic signal with a linear
transition through an anticrossing point (point of the minimal
energy gap). This model works well with systems with a small
energy gap and can be used as a basis for quantum logic gates
[18,20,32–34]. The evolution is divided into two regimes:
the adiabatic regime, where the system closely follows its
adiabatic states, and the diabatic impulse-type regime, where a
transition of occupation probability between two energy levels
occurs, accompanied by a phase gain between different energy
level occupations.

First, we consider a typical qubit Hamiltonian

H = 


2
X + ε(t )

2
Z, (13)

where 
 is the minimal energy gap between the two en-
ergy levels and ε(t ) = −A cos ωt is the driving signal with
frequency ω and large amplitude A > 
. The evolution is
separated into adiabatic evolution, described by the matrix
U , and transition (impulse-type) evolution, described by the
matrix N :

U (ti, t j ) =
(

exp (−iζ (ti, t j )) 0
0 exp (iζ (ti, t j ))

)
(14a)

= exp (−iζZ ) = Rz(2ζ ),

N =
(
R exp (−iφS) − T

T R exp (iφS)

)
(14b)

= Rz(φS)Rx(θ )Rz(φS), (14c)

T =
√
P, R = √

1 − P, (14d)

φS = π

4
+ δ(ln δ − 1) + arg [�(1 − iδ)], (14e)

P = exp [−2πδ], δ = 
2

4h̄v
, (14f)

v = dε(t )

dt

∣∣∣∣
ε=0

= Aω, (14g)

where φS is the Stokes phase, v is the speed of the anticrossing
passage, � is the gamma function, and T is the transmission
coefficient that is equivalent to a polynomial base a in the
QSP algorithmic technique. Moreover, R is the reflection
coefficient, P is the LZSM excitation probability of the qubit
with a single transition from the ground state [35–41], and δ

is the adiabaticity parameter. Note that the transition matrix
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N depends on the direction of the crossing of the anticrossing
region, and in the case of inverse crossing, the matrix N inv

includes an additional phase π along with the Stokes phase
[17,30]; or in other words, it equals the transposed transition
matrix N inv = N�. The phase, accumulated during the adia-
batic evolution of the system, is

ζ (ti, t j ) = 1

2h̄

∫ t j

ti


E (t )dt, (15a)


E (t ) =
√

ε(t )2 + 
2. (15b)

According to the AIM, the evolution of the system is adi-
abatic everywhere except at the LZSM transition point (or
anticrossing point), while the transition itself is considered
instantaneous in the AIM, and the evolution during this time is
described as diabatic. In this case, the complete evolution of
the system during a single LZSM transition, from the initial
state ψin to the final state ψfin, consists of adiabatic evolution
before the anticrossing point, transition evolution at the anti-
crossing point, and adiabatic evolution after the anticrossing
point:

ULZSM = U (ζ2)NU (ζ1) =
(

U11 U12

−U ∗
12 U ∗

11

)
,

U11 = R1 exp [−i(φS + ζ1 + ζ2)],

U12 = −T1 exp [i(ζ1 − ζ2)], (16)

where ζ1 and ζ2 are the phase gains before and after the
anticrossing point, respectively. The complete evolution ma-
trix for a single transition in terms of Bloch sphere rotation
operators is

ULZSM = Rz(2ζ2 + φS)Rx(θ )Rz(2ζ1 + φS). (17)

The principal structure of the AIM evolution in Eq. (17) is
identical to that of the QSP in Eq. (7), differing only in
parameter values that can be tuned as needed.

III. AN ALGORITHM FOR CONVERTING QSP
PARAMETERS TO AIM

Here, we present a method for aligning the phases of the
QSP sequence with those in AIM. We develop an algorithm to
adapt QSP phases for AIM, which provides the experimental
inputs—amplitude, frequency, and timings—needed for the
direct realization of the QSP sequence on an experimental
device with LZSM-type evolution [20], using the method of
determining driving parameters for AIM [18].

The harmonic signal ε(t ) = −A cos ωt is linear in the
vicinity of the anticrossing region, meaning it corresponds to
analytical solutions for the probability of an LZSM transition
and results in the LZSM transition probability. From Eq. (14f)
we have

dε

dt

∣∣∣∣
ε=0

= Aω = −π
2

2h̄ lnP . (18)

The total phase gain during the LZSM transition is called the
Stückelberg phase and it is expressed as the sum of the Stokes
phase φS given by Eq. (14e), gained during diabatic evolution,
and the phase accumulated during the adiabatic evolution of

the system ζ (ti, t j ) given by Eq. (15a),

φSt = φS + ζ (ti, t j ). (19)

The steps for determining the amplitude A, frequency ω,
and time 
t = t j − ti for a driven signal with an LZSM tran-
sition can be described as follows:

(1) Given that the system undergoes a rotation by an angle
θ about the x axis, the probability of finding the system in the
upper state after a single LZSM transition can be found from
the following expression:

P = sin2(θ/2). (20)

Next, since we start and finish the transition far from the
anticrossing point, we fix the amplitude to ensure that the
next transition starts from the same detuning ε as when we
finish the previous one. Using the previously defined LZSM
probability in Eq. (14f), we obtain the driving frequency:

ω = −π
2

2h̄A lnP . (21)

(2) The phase correspondence condition can be found by
comparing the evolution matrices for a two-level system de-
scribed by AIM in Eqs. (14a), (14c), and (16) and the one for
QSP with corresponding phases in Eq. (4):

U�,a = exp (iφ0Z )
d∏

k=1

W (a) exp (iφkZ )

= Rz(−2φ0)
d∏

k=1

Rx(−θ )Rz(−2φk ). (22)

(3) We use a signal, shown in Fig. 2 and defined as

ε(t ) =
⎧⎨⎩A, if t < Ts,

−A cos(ω(t − Ts)), if Ts � t < Ts + π
ω
,

−A, if t � Ts + π
ω
,

(23)

where Ts is the time needed to accumulate the correct phase
gain before the transition, because we use a symmetrical driv-
ing signal.

According to Step 2, for d LZSM transitions, the mapping
of AIM phases to QSP is determined by the following phase
relations:

φS + 2ζconst,0(t ) + 2ζcos(t ) + 2π j = −2φ0,

2φS + 2ζconst,1(t ) + 2ζcos(t ) + π + 2π j = −2φ1,

... (24)

2φS + 2ζconst,k (t ) + 2ζcos(t ) + π + 2π j = −2φk,

φS + 2ζconst,d (t ) + 2ζcos(t ) + π + 2π j = −2φd , d is even,

φS + 2ζconst,d (t ) + 2ζcos(t ) + 2π j = −2φd , d is odd.

Here, j is an integer and k = 0, 1, ..., d ,

ζconst,k = �LTconst,k/2, (25a)

�L =
√

A2 + 
2/h̄, (25b)

ζcos = 1

2h̄

∫ Tcos/2

0

√
A2 cos2(ω(t − Ts)) + 
2dt,

(25c)
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FIG. 2. Signal shape for the BB1 sequence realized with AIM
and a large amplitude A > 
. The blue line corresponds to the
harmonic-driven evolution described by the cosine in Eq. (23), the
orange line corresponds to the adjustable phase gain while the driv-
ing is constant, which is used to match the QSP phases with the
AIM phases, and the red crosses are the transition points. Time is
normalized to the qubit resonant excitation period Tq = 2π/
.

where Tconst,k is the duration of the free evolution stage and
Tcos = 2π/ω is the period of the resonance driving.

Note that free evolution precession around the z axis hap-
pens with the Larmor frequency �L and period TL = 2π/�L.
In these conditions, the phases ζconst and ζcos are gained during
the free-evolution stage, where ε = ±A, and during the LZSM
transition, where ε = ±Acos(ωt ), respectively. After deter-
mining the target phases � = (φ0, φ1, . . . , φd ), the evolution
time is obtained to satisfy the conditions in Eq. (24) and
achieve the target QSP parameters mentioned above.

To summarize, in this section, we demonstrated the direct
analogy of the QSP technique evolution using AIM. The ex-
ecution time of the operations is determined by the LZSM
probability in Eq. (14f), which corresponds to the rotation
angle around the x axis on the Bloch sphere and the chosen
amplitude of the driving signal A. Notably, for specific values
of the LZSM probability P = 0, the operation time Tcos =
2π/ω, see Eq. (21) diverges to infinity. The next section is
devoted to a way to resolve this problem.

IV. QUANTUM SIGNAL PROCESSING BASED ON DOUBLE
LANDAU-ZENER-STÜCKELBERG-MAJORANA

TRANSITIONS

Here, we describe how to use double LZSM transitions for
realizing QSP. This allows eliminating the huge time variabil-
ity of each QSP rotation around the x axis. A double LZSM
transition is fully equivalent to a Mach-Zehnder interferometer
with two beam splitters (LZSM transitions) with a phase gain
between beam splitters or LZSM transitions and interferome-
try between states (adiabatic evolution) [17,42,43]. Here, we

use P = 0.5, which is equivalent to a (commonly used in
photonics) 50/50 beam splitter.

In particular, the Mach-Zehnder interferometer in photonic
quantum computers is used as a controllable quantum gate,
controlled by adjusting the phase gain between beam splitters
[44–46]. To adjust the rotation angle of the signal operator W ,
we use an adjustable additional free evolution between two
LZSM transitions. For a double LZSM transition [17] with
adjustable phase gain between two transitions, we have

� = U2N2U2U1N inv
1 U1

= ULZSM(2)U
inv
LZSM(1) =

(
�11 �12

−�∗
12 �∗

11

)
, (26)

where for the adiabatic evolution between transitions we use
U2 with an adjustable phase, U2 = U (ζ2 + φad), where φad is
an additional phase gain between two LZSM transitions. For
the Stückelberg phase φSt = φS + ζ2, we choose conditions
for the X gate from Ref. [18], φSt = π

2 , R = T = 1√
2
. Then

we obtain

�11 = {R2 exp [−i(2φS + 2ζ2 + 2φad)] + T 2} (27a)

× exp [i(φad + ζ2 − φin − ζ1 − φfin − ζ3)],

�12 = RT {1 − exp [−i(2φS + 2ζ2 + 2φad)]}
× exp [i(φS + φad + ζ2 + φin + ζ1 − φfin − ζ3)],

(27b)

where

ζ1 = ζ (0, tS1),

ζ2 + φad = ζ (tS1, tS2),

ζ3 = ζ (tS2, tfinal ). (28)

We use a symmetric harmonic signal to perform LZSM tran-
sitions, such that ζ2 = ζ1 + ζ3 and ζ1 = ζ3. Additionally, we
have a phase gain before the transition φin and after the tran-
sition φfin, where tS1,2 represent the times at which the first
and second LZSM transition signals start within the double
LZSM transition (each transition signal is half the period of
the harmonic signal) and tfinal is the final time of the second
LZSM transition.

Next, to obtain the parameters for rotation around the x
axis on a Bloch sphere, we compare the double LZSM tran-
sition matrix elements with the respective ones for a rotation
operator Rx(θ ) on a Bloch sphere

Rx(θ )11 = cos θ/2, (29a)

Rx(θ )12 = −i sin θ/2. (29b)

Then, to obtain the phases needed to perform the Rx(θ )
gate, we use the same driving parameters as in the X gate
in Ref. [18] and obtain the corresponding system of equa-
tions � = Rx(θ ):

cos
θ

2
= 1

2
(1 + e−i(π+2φad ) )ei(φad−φin−φfin ),

ei3π/2 sin
θ

2
= 1

2
(1 − e−i(π+2φad ) )ei(φad+φin−φfin+π/2). (30)

As a result, by using Euler’s formula, we obtain a system of
equations for the phases. By solving this system of equations,
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we obtain additional phases to perform the Rx(θ ) operation

φin = π/4 + 2πn,

φfin = 5π/4 + 2πn,

φad = θ/2 + π/2 + πn. (31)

The minimum time of free evolution is equal to the fractional
part of the phase divided by 2π and multiplied by the period of
the free evolution. Thus, for all additional phases, the waiting
time becomes

tad =
{

θ + π

2π

}
TL,

tin =
{

π/2

2π

}
TL = TL

4
,

tfin =
{

5π/2

2π

}
TL = TL

4
. (32)

With the driving signal ε(t ) = −A cos ωt , the first transition
will be reversed, and leads to an additional π phase to the
initial phase gain [17]. This gives the free evolution time that
should be added at the beginning of the sequence, denoted as
tin, and between the signal operators, denoted as tmid for the
rotation around the x axis

tmid =
{

5π/2 + π/2

2π

}
TL = TL

2
. (33)

So, we described how to get all the necessary phases, such
as the phase-gain time intervals before the sequence, between
double LZSM transitions, and after the sequence. To obtain
the amplitude and the frequency, we use the algorithm de-
scribed in Ref. [18] for the X gate. With these, we have all
the parameters required to implement QSP sequences using
double LZSM transitions.

Double LZSM transitions allow us to eliminate the main
weakness of the direct implementation of the QSP technique
with AIM: the transition time diverges as the signal rotation
angle approaches zero, making the result highly susceptible
to decoherence and dissipation. Double transitions allow to
perform the QSP sequence fast and with high fidelity by
leveraging the LZSM gates technique, using the same driv-
ing signal defined for the X gate with the additional free
evolution time between transitions tad for the signal operator
W = Rx(θ ). Then we apply the signal processing operator S =
Rz(φi ) after each transition. By choosing a working point with
a higher amplitude, we can significantly improve the fidelity
of LZSM gates by slightly decreasing the gate execution time.

Figure 3(a) shows the driving signal used to implement the
Rx(θ ) gate, where the time between transitions tad is defined
by the rotation angle around the x axis, and the time intervals
tin and tfin are used to gain additional phases before and after
transitions to perfectly match our double LZSM transition
matrix to an Rx(θ ) gate. Figure 3(b) shows the equivalent
Mach-Zehnder interferometer scheme, which is used as a con-
trollable quantum logic gate for photons, where the rotation
angle around the x axis is defined by additional phase gain in

FIG. 3. (a) Adjustable rotation gate Rx (θ ) with double LZSM
transition. (b) Analogy for realizing an Rx (θ ) rotation gate with a
Mach-Zehnder interferometer.

one of the optical ways of the Mach-Zehnder interferometer,
which can be tunable.

V. EXECUTION TIME OF THE QSP ALGORITHM

Figure 4(a) shows a comparison of the excitation proba-
bility after applying the BB1 sequence. The IBM-Q result
is shown by orange dots. Qubit dynamics simulations were
performed with QuTiP [47–49], including relaxation and de-
phasing with similar rates to IBM-Q, for signals defined by
AIM using both direct QSP analogy and double LZSM tran-
sitions are shown by the red curve. All results show good
agreement with the expected polynomial distribution shown
by the blue curve.

In Fig. 4(b), we compare the time needed to perform the
BB1 sequence by different methods. Note that for the angle
θ = 0 in the QSP technique, with direct QSP to AIM analogy,
time diverges, as discussed before. This divergence arises due
to the definition of the driving frequency in Eq. (21) and the
probability of the LZSM transition Eq. (14f), which yields
ω = 0, so the period of the driving tends to infinity in this
case. Note also that the BB1 execution time by the double
LZSM transitions results in a stable operation time for all
angles θ .

We found that the IBM-Q cloud-based quantum com-
puter needed significantly more time to execute the BB1
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FIG. 4. (a) The resulting occupation probability P− for the BB1
sequence in Eq. (12) compared to the qubit dynamics simulation
result with the driving signal defined by AIM. (b) A comparison
of the hardware execution time t/Tq for the BB1 sequence using
different approaches: (1) IBM-Q time (blue line), computed as the
difference between the execution time with zero gates and the time
with the BB1 sequence. This isolates the time required solely for
the QSP technique, enabling direct comparison with other methods.
(2) IBM-Q with the optimization (orange line), where the execution
time does not depend on the number of single-qubit gates—i.e., the
entire BB1 sequence is replaced with a single compiled gate. (3)
Direct realization of QSP via AIM (green curve). (4) Double LZSM
transitions (purple line). To compare execution times we divide all
of them by the corresponding period of the qubit resonance driving
Tq = 2π/
.

sequence, especially for the nonoptimized version, where
the dependence on the number of gates appears. This is
mainly due to the Rabi-like resonance pulse type of the
driving used in current quantum processors, which loses
fidelity significantly with faster gates. Despite the much faster
gate execution time of the optimized algorithm with tran-
spilation on an IBM-Q (the sequence of all single-qubit
gates is replaced by one gate), the double LZSM transi-
tions are still several times faster. But the LZSM transitions
require a small energy gap in the anticrossing point, and
the distance between levels should grow fast with detun-
ing ε. Therefore, the speed advantage of the LZSM-based

gates may be constrained by hardware limitations in practical
implementations.

VI. SCALABILITY TO HIGH-DIMENSIONAL
HILBERT SPACES

To perform real-world quantum calculation dynamics of
multilevel systems is crucial. While single-qubit dynamics is
relatively simple, adding more levels increases the difficulty
of the problem as 2N for N levels. In this section, we present
two ways to expand our theory to multilevel systems. The first
one consists in using the qubitization technique to decompose
a multilevel system into many two-level systems with QSP-
like evolution in each one. The second one is to directly apply
the generalized AIM to a multilevel system. Both procedures
are schematically presented in Fig. 5.

A. From quantum signal processing to quantum singular
value transformation

The algorithm we discussed in Sec. III can also be used for
large qubit registers or multilevel systems via decomposing
the multilevel problem to a certain number of single-qubit
problems with the procedure known as the “qubitization”
technique [9,11,50]. While QSP is often introduced in the
setting of a single-qubit subspace, the same idea extends
naturally to higher-dimensional systems. For a block-encoded
operator acting on many qubits, the qubitization decomposes
the global Hilbert space into a direct sum of two-dimensional
invariant subspaces, each labeled by a singular value. For
details see Appendix. To describe such a system, one has to

(1) construct a block-encoding of the operator;
(2) apply the qubitization to identify the collection of

effective qubit subspaces; and
(3) implement the QSP phase sequence simultaneously

across all of them.
In this way, QSP and its generalization QSVT perform

polynomial transformations on the full operator spectrum,
with complexity determined by the polynomial degree rather
than the physical dimension of the system. This makes the
framework equally applicable to large qubit registers or mul-
tilevel (qudit) systems, and can also be used to simulate an
arbitrary quantum Hamiltonian with QSP sequences on quan-
tum processors, since these usually have a lot of constraints
in the parameters of the driving signal that do not allow an
arbitrary Hamiltonian to be applied directly.

B. Generalized AIM

Quantum logic gates based on LZSM transitions, as de-
scribed in Sec. II B for single-qubit operations, can also be
applied to multiqubit operations [51] with several approxima-
tions and constraints. For this, one has to

(1) locally consider each anticrossing on the energy levels
time evolution as a two-level system;

(2) apply the transition matrix that corresponds to the two
respective levels for each anticrossing; and

(3) describe other levels’ dynamics as the adiabatic evolu-
tion.

This is schematically described in Fig. 5(b). The main lim-
itation of this approach consists in that the distance between
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FIG. 5. Schematic diagrams for two ways to apply the adiabatic-
impulse model for multilevel systems. (a) shows the qubitization
technique, which allows decomposing a multi-level system by K =
N (N − 1)/2 single-qubit evolution algorithms. The decomposed
evolution operator can be realized with the QSP sequences, and then
fast LZSM gates can be applied to perform QSP. (b) demonstrates a
way to directly realize multilevel evolution with generalized AIM,
which consists of consecutive LZSM transitions with respective
energy levels. Dashed lines represent diabatic energy levels in the
two-qubit system; the orange line represents one of the possible
trajectories for the occupation probability with transitions between
levels on each anticrossing point.

levels should increase enough to finalize the transition process
before the next transition starts. If several anticrossings hap-
pen simultaneously between different pairs of levels, they are
treated as two transitions between respective levels. The main
challenge of this approach is to ensure that the relative phase
between all the levels corresponds to a desired multilevel
quantum gate.

VII. CONCLUSIONS

Quantum signal processing is a powerful tool for im-
plementing polynomial transformations and other quantum
algorithms with high precision. Due to its structural similarity
to the adiabatic-impulse model, it is possible to establish a di-
rect mapping between the parameters of these two approaches,
enabling efficient translation of one algorithmic technique into

the other. This analogy provides an alternative perspective for
the direct implementation of QSP in quantum systems.

Furthermore, the use of the adiabatic-impulse model,
with double Landau-Zener-Stückelberg-Majorana transitions,
demonstrates significantly reduced time for implementing the
quantum signal processing technique. The double LZSM tran-
sitions allow us to solve the infinite transition time problem for
P = 0 in the direct implementation of QSP with AIM.

The double LZSM transitions approach is a full analog
of the Mach-Zehnder interferometer, which allows to use the
double transition approach from AIM in a controllable quan-
tum gate for quantum photonic computations, so the same
approaches can be used for both of them. With the double
LZSM transition, we show how to perform rotations around
the x axis on the Bloch sphere for any desired angle θ . By
combining this with idling times to perform signal process-
ing operators, we can use fast nonadiabatic LZSM gates to
perform any QSP sequence and achieve faster execution time
even for the most optimized case for the IBM-Q, where all
single-qubit gates are combined into one. In principle, the
same single-qubit gate sequence combination technique can
be applied for LZSM gates to reduce the execution time ac-
cordingly.

The adiabatic-impulse model describes well the dynamics
of systems with small energy gaps and can be used as an
alternative approach to implement fast quantum logic gates
and algorithmic techniques such as QSP.
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APPENDIX: INTERPRETATION OF THE QUANTUM
SINGULAR VALUE TRANSFORMATION

IN TERMS OF ROTATIONS

The framework of QSP admits a natural generalization to
the QSVT [9]. In this setting, arbitrary matrices can be embed-
ded into larger unitaries via block encoding, which then allows
one to implement polynomial transformations of their singular
values. This embedding procedure is called qubitization, since
it reduces the dynamics of a potentially large Hilbert space to
effective two-level systems.

042437-8



EFFICIENT IMPLEMENTATION OF QUANTUM SIGNAL … PHYSICAL REVIEW A 112, 042437 (2025)

Every complex matrix C admits a singular value
decomposition:

C =
r∑

i=1

σi |wi〉 〈vi| , (A1)

where r = rank(C); σi � 0 are the singular values of C; {|vi〉}
are the right singular vectors, which span the input space of
C; and {|wi〉} are the left singular vectors, which span the
output space of C. QSVT is designed to act directly on these
singular values by implementing polynomial transformations
σi 	→ P(σi ).

The appearance of singular values is natural in block en-
coding because the input and output subspaces of the encoded
operator may differ in dimension. Unlike unitary operators
(where eigenvalues suffice), a general matrix must be de-
scribed in terms of its singular value decomposition.

Suppose we wish to encode C into a larger unitary U . Then
there exist projectors � and �̃ such that

C = �̃U�. (A2)

The meaning of these projectors is that � selects the right
singular vector space (the input block of U ) and �̃ selects the
left singular vector space (the output block of U ). Thus, �

identifies where inputs are injected, and �̃ identifies where
outputs appear. In QSVT, we also introduce phase-modified
projectors:

�φ = exp [iφ(2� − I )], (A3)

�̃φ = exp [iφ(2�̃ − I )]. (A4)

These are unitary transformations that apply z-axis rotations
on the subspaces marked by � and �̃. We adopt the conven-
tion that � projects onto the index state |1〉 and �̃ projects
onto |0〉. With this choice, �φ|Si = e−iφZ and �̃φ|Si = e+iφZ .
This fixes the sign conventions once and for all.

The qubitization ensures that the Hilbert space decomposes
into invariant two-dimensional subspaces

Si = span{|0〉 ⊗ |wi〉 , |1〉 ⊗ |vi〉}, (A5)

with one such subspace for each singular value σi. On each Si,
the block-encoded U acts as an SU(2) matrix,

U |Si = R(σi ). (A6)

To make unitarity explicit, we parametrize the singular value
as

σi = cos
(

θi
2

)
, θi = 2 arccos σi.

Then,

R(σi ) = Ry(θi ) = e−i(θi/2)Y .

Equivalently, in X–Z language one may write

R(σi ) = eiπZ/4 Rx(θi) e−iπZ/4.

Restricted to Si, the projector phases act diagonally:

�φ|Si = exp (−iφZ ), �̃φ|Si = exp (iφZ ). (A7)

These represent opposite z-axis rotations of the effective
qubit.

The central building block of QSVT is the iterate [9]

Ũ� =
d/2∏
k=1

(�φ2k−1 U † �̃φ2k U ), (A8)

where d is the degree of the implemented polynomial and
{φ j} are tunable phase parameters. This form is valid when
d is even, in which case the input and output spaces are both
the right singular vector space spanned by {|vi〉}. For odd d ,
the iterate has an additional prefactor and connects the right
singular space to the left singular space.

Restricted to Si, one factor of the even-d product reduces
to

�φ2k−1U
†�̃φ2kU

∣∣
Si

= exp (−iφ2k−1Z )R(σi ) exp (iφ2kZ )R(σi ).
(A9)

Here, U and U † swap between right and left singular vec-
tor bases, while the exponential factors encode QSP phases.
Then,

σi = cos(θi/2)

R(σi ) = Ry(θi). (A10)

With ZRy(θ ) = Ry(−θ )Z , the full QSVT sequence becomes

Ũ�|Si =
d/2∏
k=1

(Rz(2φ2k−1)Ry(θi )Rz(2φ2k )Ry(−θi )), (A11)

where exp (iφZ ) = Rz(−2φ). Finally, recalling that Ry(θ ) can
be rewritten using x-axis rotations,

Ry(θ ) = exp
(

i
π

4
Z
)

Rx(θ ) exp
(
−i

π

4
Z
)
, (A12)

we obtain

Ũ�|Si = exp
(

i
π

4
Z
)[

d/2∏
k=1

(Rz(2φ2k−1)Rx(θi ) (A13)

× Rz(2φ2k )Rx(−θi ))

]
exp

(
−i

π

4
Z
)
.

Similarly, one can get the result for the odd d , for which the
pattern of repeatedly applied RxRz gates is preserved.

Thus, after qubitization, each singular subspace Si

is reduced to a qubit undergoing controlled rotations
about the z and x axes. The sequence of phases
{φ j} fully determines the polynomial transformation im-
plemented, while the angle θi encodes the singular
value σi = cos θi.

In the special case where the block-encoded operator is
itself unitary, all singular values have magnitude one, and
QSVT reduces to the original QSP framework acting on
eigenvalues lying on the unit circle. QSVT thus generalizes
QSP by allowing polynomial transformations of singular val-
ues of arbitrary operators, not just phases of unitaries.
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