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Chiral-extended photon-emitter dressed states in non-Hermitian topological baths

Zhao-Fan Cai,1,* Xin Wang ,2,* Zi-Xuan Liang,1 Tao Liu ,1,† and Franco Nori 3,4

1School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2Institute of Theoretical Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China

3Center for Quantum Computing, RIKEN, Wakoshi, Saitama 351-0198, Japan
4Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 20 August 2024; accepted 29 May 2025; published 10 June 2025)

The interplay of quantum emitters and non-Hermitian structured baths has received increasing attention in
recent years. Here we predict unconventional quantum optical behaviors of quantum emitters coupled to a non-
Hermitian topological bath, which is realized in a 1D Su-Schrieffer-Heeger photonic chain subjected to nonlocal
dissipation. In addition to the Hermitian-like chiral bound states in the middle line gap and skin-mode-like
hidden bound states inside the point gap, we identify peculiar in-gap chiral and extended photon-emitter dressed
states. This is due to the competition of topological-edge localization and non-Hermitian skin-mode localization
in combination with the non-Bloch bulk-boundary correspondence. Strikingly, dissipation can shape the wave-
function profile of the dressed state. Furthermore, when two emitters are coupled to the same bath, such in-gap
dressed states can mediate the nonreciprocal long-range emitter-emitter interactions, with the interaction range
limited only by the dissipation of the bath. Our work opens the door to further study rich quantum optical
phenomena and exotic many-body physics utilizing quantum emitters coupled to non-Hermitian baths.
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Introduction. Recent years have witnessed considerable
interest in controlling photon-emitter interactions utilizing
structured nanophotonic environments due to their potential
applications in quantum networks and quantum simulation of
many-body physics [1–26]. Among them, one of the promis-
ing strategies is to couple quantum emitters with topological
wave guides [7–16], where the topological nature of the bath
can give rise to unconventional quantum optical phenomena
robustness against disorder, e.g., chiral photon-emitter bound
states, band topology-dependent super/subradiant states, and
exotic many-body phases resulting from the tunable emitter-
emitter interactions mediated by the bound states [12].

A photonic structure is unavoidably coupled to the ex-
ternal reservoir, which can be effectively described by
non-Hermitian Hamiltonians [27]. Non-Hermitian physics
is currently a burgeoning field due to the unique physical
phenomenon without Hermitian counterparts [27–72]. An
intriguing physical phenomenon is the non-Hermitian skin
effect (NHSE), with the emergence of localized bulk modes
at boundaries [37–42], which has the intrinsic topological
origin associated to the point gap [50,55]. In recent years, the
interplay of quantum emitters and non-Hermitian structured
baths has attracted much attention [73–78], leading to exotic
quantum optical behaviors, e.g., a skin-mode-like bound state
inside the point-gap loop and anomalous quantum emitter
dynamics without Hermitian counterparts [75].

In this work, we predict the unique photon-emitter dressed
states and long-range emitter-emitter interaction by studying
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a paradigm of photon-emitter interactions in a nonreciprocal
Su-Schrieffer-Heeger (SSH) photonic chain. In addition to
the existence of conventional chiral bound states and hidden
bound states inside the line and point gaps, respectively, we
unveil unusual chiral and extended photon-emitter dressed
states without Hermitian counterparts. Moreover, we demon-
strate the directional long-range emitter-emitter interaction
mediated by dressed states, where the interaction range is
limited only by the bath dissipation.

Model. We consider a set of N identical atoms, as quantum
emitters, coupled to a 1D SSH photonic chain with L unit
cells, as shown in Fig. 1. Each two-level atom, with ground
state |g〉 and excited state |e〉, is coupled to each cavity in the
lattice, and its decay rate is denoted by γ . The SSH photonic
chain consists of coupled cavities subject to an engineered
nonlocal photon dissipation between two sublattices a and
b in each unit cell with loss rate κ . In the single-excitation
subspace, the system dynamics is governed by the effective
non-Hermitian Hamiltonian [see details for the nonlocal dis-
sipation and effective non-Hermitian Hamiltonian in the Sec. I
of the Supplemental Material (SM) [79]]
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FIG. 1. Schematic showing a set of N identical two-level atoms
(acting as quantum emitters) coupled to a 1D SSH photonic bath. The
bath consists of coupled cavities, subject to correlated photon decay
(with loss rate κ) between two cavities in each unit cell. J1 and J2

denote the intracell and intercell hopping strength, γ is the atomic
decay rate, and g is the atom-photon coupling strength.

where σ̂−
n = (σ̂+

n )† = |gn〉〈en| is the pseudospin ladder opera-
tor of the nth atom, � = �0 − iγ /2 with frequency detuning
�0, â j and b̂ j annihilate photons at sublattices a and b of the
jth unit cell (see Fig. 1), g is the photon-emitter interacting
strength, and jn labels the unit cell at which the nth atom is
located. Unless otherwise specified, we assume γ = κ .

Chiral and hidden bound states. We couple a single emitter
to the sublattice α ∈ {a, b} within the unit cell j0 of the bath,
and study the bound states lying within the regimes of both
line and point gaps of the SSH bath. In the single-excitation
subspace, the bound state using periodic boundary condi-
tions (PBCs) can be written as |ψb〉 = [L−1/2 ∑

k (ck,aâ†
k +

ck,bb̂†
k ) + ceσ̂

+
j0

] |g〉 ⊗ |vac〉, with α̂k = L−1/2 ∑
j e−ik j α̂ j (α =

a, b), which satisfies Ĥeff(k) |ψb〉 = Eb |ψb〉. For the photon-
emitter bound states, we require ce �= 0. This yields [79]

det[Eb − � − �(Eb)] = 0, (2)

where �(z) is the atomic self-energy, given by

�(z) = 1

L

∑
k

g†
k (z − Hk )−1gk, (3)

with the bath’s Bloch Hamiltonian Hk = −i κ
2 τ0 + (J1 + J2

cos k)τx + (J2 sin k − iκ/2)τy, and gk = [gae−ik j0 , gbe−ik j0 ]T

(ga, gb ∈ {0, g}).
In the presence of line gap for |J2| < |J1 − κ/2|, we can

analytically solve the real-space wave function of the bound
state with Eb = − iκ/2 for � = − iκ/2 [79]. For the emit-
ter coupled to the sublattice a, we have c j,a = 0, c j,b =
−gce(−J2) j− j0 (J1 − κ/2)− j+ j0−1 if j � j0, and c j,b = 0
if j < j0. For the emitter coupled to the sublattice b, we
have c j,b = 0, c j,a = gceJ j0− j

2 (−J1 − κ/2) j− j0−1 if j � j0,
and c j,a = 0 if j > j0. These indicate that the bound state
lying within the line gap [see red filled square marker in
Fig. 2(a)] shows perfect chiral photon weight |c j |2 for � =
−iκ/2, as shown in Fig. 2(b1). Such a chiral bound state
can be interpreted as a boundary between two semi-infinite
chains with different topology [12], its chirality thus depends
on the sublattice a or b which the emitter is coupled to, and
is insensitive to the NHSE. Note that the chirality of the
bound state is sensitive to � (see details in the Sec. III of the
SM [79]).

As a comparison, we calculate the bound state lying inside
the point gap, which can be analytically solved out for J1 =
κ/2 [79]. The self-energy of the bound state is obtained as

�(Eb) =
{

− g2(Eb+ iκ
2 )

J2
2 −(Eb+ iκ

2 )2 , |κJ2| <
∣∣J2

2 − (Eb + iκ/2)2
∣∣

0, |κJ2| >
∣∣J2

2 − (Eb + iκ/2)2
∣∣ .
(4)

FIG. 2. Single-excitation spectrum (blue loops) under PBCs (a) with the coexistence of point and line gaps for J1/J2 = 2.5, and (c) with
only a point gap for J1/J2 = 0.6. The markers denote the eigenenergies of the bound states of a single emitter coupled to the bath for different
�/J2. The corresponding site-resolved photon weights |c j |2 are shown in (b1), (b2) and (d1), (d2), where the emitter is coupled to the sublattice
a (b), denoted by the red asterisk, for the top (bottom) plot. The other parameters used are κ/J2 = 1.2.
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FIG. 3. Single-excitation spectrum of the SSH bath at transition point J2 = J1 − κ/2 under (a) PBCs and (b) OBCs (top plot). The markers,
shown in bottom plot of (b), denote the eigenenergies of the dressed states of a single emitter coupled to the chain for different values of �/J2.
The corresponding site-resolved photon weights |c j |2 are shown in (c1)–(c3) under OBCs, where the emitter is coupled to the sublattice a (b),
denoted by the red asterisk, for the top (bottom) plot. The parameters used are g/J2 = 0.5, κ/J2 = 1.2, J1/J2 = 1.6, and L = 20.

The analytical results for the real-space wave functions are
provided in the SM [79]. The self-energy in Eq. (4) van-
ishes for Eb lying inside the loop of the point gap, dubbed
a hidden bound state [75]. In contrast to conventional bound
states, such a bound state exhibits skin-mode-like localization
independent of � [see Fig. 2(b2) and 2(c)–2(d2)], which is de-
termined by the NHSE associated with the point-gap topology
of the bath. Note that the emergence of hidden bound states
does not rely on the coupling strength g (see details in Sec. III
of the SM [79]).

Chiral-extended dressed states. In addition to localized
chiral and hidden bound states, we identify an unique in-
gap photon-emitter dressed state, exhibiting the chiral and
extended mode distribution under OBCs. We consider the
system parameter satisfying J2 = J1 ± κ/2, where the line
band gap closes (with the appearance of an exceptional point)
under PBCs [see the PBC spectrum in Fig. 3(a)]. According to
the non-Bloch bulk-boundary correspondence in a generalized
Brillouin zone [79], the true topological-phase transition point
of band topology is determined by J1 = ±

√
J2

2 + (κ/2)2. It
is thus topologically trivial for J2 = J1 − κ/2 with J1 > κ/2
[see OBC spectrum in the top plot of Fig. 3(b)]. Unless
otherwise specified, we consider this condition for system
parameters below.

We first study a single emitter coupled to the sublattice
α ∈ {a, b} of the unit cell j0. In the single-excitation sub-
space under OBC, the photon-emitter dressed state is written
as |ψd〉 = (

∑
j,α∈{a,b} c j,αα̂

†
j + ceσ̂

+) |g〉 ⊗ |0〉, which satis-

fies Ĥeff |ψd〉 = Ed |ψd〉. Then we achieve

�ce + gc j0,α = Edce, (5)

gceδ j, j0δα,a + J2(c j,b + c j−1,b) = (Ed + iκ/2)c j,a, (6)

gceδ j, j0δα,b + (J2 + κ )c j,a + J2c j+1,a = (Ed + iκ/2)c j,b.

(7)

For � = −iκ/2, we can find the analytical solution for
the dressed state with its eigenenergy Ed = �. In this case,
when the emitter is coupled to the sublattice a (α = a) in
Eqs. (5)–(7), we obtain c j,a = 0, c j,b = 0 for j < j0, ce =
− J2c j,b/g for j = j0, and c j,b = −c j−1,b for j > j0. The an-
alytical results indicate that the in-gap photon-emitter dressed
state exhibits an unconventional feature different from the one
of the bound state when the emitter is coupled to the sublattice
a. In addition to the chiral property with its eigenstate only

distributed on the right side of the emitter, the dressed state is
uniformly distributed along the b sites under OBC, as shown
in the top plot of Fig. 3(c1). [Its eigenenergy is indicated
by the red square marker in the bottom plot of Fig. 3(b).]
Noticeably, the chiral and extended photon-emitter dressed
states are quite robust against the disordered-distributed cavity
frequencies and disordered photonic hopping between cavi-
ties, as explained in Sec. IV of the SM [79].

In contrast, when the emitter is coupled to the sublat-
tice b (α = b) in Eqs. (5)–(7), we obtain c j,b = 0, c j−1,a =
−J2c j,a/(J2 + κ ) for j < j0, ce = −(J2 + κ )c j,a/g for j = j0,
and c j,a = 0 for j > j0. It turns out that the in-gap photon-
emitter dressed state is bounded, and its photonic profile [see
the bottom plot of Fig. 3(c1)] is localized at the left side of the
emitter, i.e., showing the emergence of a chiral bound state.

The physical intuition of the appearance of the in-
gap chiral and extended photon-emitter dressed states for
� = −iκ/2 with J2 = J1 − κ/2 can be attributed to the com-
petition of topological-edge localization and non-Hermitian
skin-mode localization with the combination of the non-Bloch
bulk-boundary correspondence of a non-Hermitian topologi-
cal bath. Namely, when the emitter is coupled to the sublattice
a under OBC, we divide the photon-emitter system into two
subsystems S1 and S2, by breaking the intercell coupling
Jc = J2 that exists on the left side of the sublattice lattice a
at the unit cell j0, as shown in Fig. 4. The subsystem S1 is
topologically trivial, while the subsystem S2 hosts an in-gap
topological edge mode where the emitter acts as the effective
boundary of S2. Instead of topological-edge localization on
the left side of the subsystem S2, the competition from the
opposite mode localization towards the right side induced by
NHSE leads to the extended mode distribution along the S2 at
J2 = J1 − κ/2 [80,81]. The coupling of the trivial subsystem
S1 to S2 only has a minor effect on the dressed state due to

gJ J21
a b a b

jjj 1

a b a b
000j 10

/2+

J1 /2

S1 S2

Jc

FIG. 4. Schematic for understanding the chiral and extended
dressed state. When the emitter is coupled to the sublattice a under
OBC, the hybrid system is divided into S1 and S2 subsystems by
breaking the intercell coupling Jc = J2 that exists on the left side of
the sublattice lattice a at the unit cell j0.
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FIG. 5. Site-resolved photon weights |c j |2 at J2 = J1 − κ/2 for (a) γ /J2 = 0.4, (b) γ /J2 = 0.8, and (c) γ /J2 = 1.0 under OBCs. The
emitter is coupled to the sublattice a (b) for the top (bottom) plot. The other parameters used are g/J2 = 0.5, κ/J2 = 1.2, J1/J2 = 1.6, and
L = 40.

its in-gap topological protection and zero occupations on a
sublattices. Here the broken bulk-boundary correspondence
of the topological bath due to NHSE excludes the coupling
of the photon-emitter dressed state with the edge states of
the SSH bath. However, when the emitter is coupled to the
sublattice b, two subsystems S1 and S2 are constructed by
breaking the intercell coupling Jc = J2 that exists on the right
side of the sublattice b at the unit cell ( j0 − 1). In this case,
both topological edge-mode localization and NHSE lead to
the formation of the chiral localized in-gap bound state.

For arbitrary �, we can still achieve the analytical solution
of the eigenenergy Ed = E − iκ/2 for the dressed state [79],
with E satisfying

E − �0 − g2
2L∑

m=1

|ϕm,α ( j0)|2
(E − εm)Nm

= 0, (8)

where εm = (−1)m
√

2J̄1 J2 cos θm + J̄2
1 + J2

2 , with J̄1 =√
(J1 − κ/2)(J1 + κ/2), and real number θm, is the analytical

eigenvalue of the non-Hermitian bath, and ϕm,α ( j) (α = a, b)
is the element of the analytical eigenvectors of the Her-
mitian SSH lattice in the similarity-transformed basis with
H̄α = S−1

α HαSα (Hα is the Hamiltonian matrix of Ĥeff for the
emitter coupled to the sublattice α, and Sα is the diagonal
matrix diag[1, r−( j0−δα,a ), r1−( j0−δα,a ), . . . , rL−( j0−δα,a )] with
r = √

(J1 + κ/2)/(J1 − κ/2) see details in Sec. V of the
SM [79]), and Nm is a normalization. This analytical result
provides additional understanding of the chiral and extended
dressed states for α = a: in the similarity-transformed basis,
the photon-emitter dressed state is bound with the photon
weight power-law decaying towards the right side of the
emitter [12]. After employing the inverse of the similarity
transformation, the bound state becomes extended due to the
power-law increase for each element of Sa starting at the
site j0.

Figure 3(c2) shows the photon weight |c j |2 with
� �= −iκ/2 for the emitter coupled to the sublattice α = a
(α = b) in the top (bottom) plot. The extended dressed states
remain chiral with the uniform site-resolved photon weight for
α = a, while the bound state becomes extended distribution
for α = b. Note that there exist only bound states when the �

is set to be outside the middle gap of the OBC spectrum [see
Fig. 3(c3)].

Dissipation-controlled state profiles. We have discussed the
chiral-extended photon-emitter dressed states for γ = κ . We
now study the effects of the emitter decay rate γ on the mode

distribution of the dressed state with �0 = 0 and J2 = J1 −
κ/2. As shown in Fig. 5, we show the site-resolved photon
weights |c j |2 for the emitter coupled to the sublattice a (b) in
the top (bottom) plot.

As discussed above, when the emitter is coupled to the
sublattice a with γ = κ , an extended uniform distribution of
chiral dressed states is achieved. This chiral-extended state
distribution remains quite robust even when γ deviates from
κ . As shown in top plots of Figs. 5(a)–5(c), the photon-emitter
dressed states maintain chiral and extended distributions de-
spite a significant deviation in emitter decay compared to
cavity loss. Furthermore, as γ deviates from κ , the state
distribution becomes nonuniform, with the photon weight
gradually diminishing across the lattice sites. These indicate
that the emitter dissipation can be utilized to control the wave
function profiles of dressed states, and can also be employed
to modulate interaction dynamics between two quantum emit-
ters. In addition, when the emitter is coupled to the sublattice
b, the wave-function profiles of bound states are great changed
as γ deviates from κ [see bottom plots of Figs. 5(a)–5(c)].

Two emitters. We now consider the consequences of such
dressed states when two quantum emitters are coupled to the
bath with J2 = J1 − κ/2. The bound states can mediate the
emitter-emitter interactions, giving rise to the exotic many-
body phases [12]. The distance of two interacting emitters
is determined by the localization length of the bound state,
leading to short-range interactions. In contrast, the extended
in-gap dressed state can mediate long-range interactions, and
its chiral character causes the directional interactions between
emitters.

In order to demonstrate such long-range interactions, we
calculate the nonunitary real-time dynamics governed by
|ψt 〉 = e−iĤefft |ψ0〉 for two emitters (labeled as 1 and 2)
coupled to sites j1,α1 and j2,α2 (α1, α2 = a or b) of the bath
with j2,α2 > j1,α1 , respectively. The initial state is chosen
as one excited emitter |e1〉 or |e2〉 with |ψ0〉 = |en〉 |vac〉
(n = 1 or 2), and the time-evolved state can be expanded as
|ψt 〉 = (

∑2N
m=1 cm(t ) |ϕR

m〉 〈vac| + ∑2
n=1 cen (t ) |en〉 〈g|) |gg〉 ⊗

|vac〉 (|ϕR
m〉 is the right eigenvector of the non-Hermitian

bath). Using the resolvent method [82,83], we can express
ce(t ) = [ce1 (t ), ce2 (t )]T as [79]

ce(t ) = i

2π

∫ +∞

−∞
dE Gp(E + i0+)e−iEt ce(0), (9)
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FIG. 6. Excited-state probability Ce,i = |cei (t )|2 (i = 1, 2) for two emitters coupled to sites j1,α1 and j2,α2 (α1, α2 = a or b, and j2,α2 > j1,α1 )
of the bath, where the emitter, coupled to the site j1,a, j2,a, j1,a, and j2,b, is initially excited for (a)–(d), respectively. The parameters used are
g/J2 = 0.4, κ/J2 = 0.4, J1/J2 = 1.2, �/J2 = −0.2i, and L = 100.

where the Green’s function Gp(z) is given by

Gp(E ) =
( 1

E−�−T (α1,α1 )
1

E−F (α1,α2 )T (α1,α2 )
1

E−F (α2,α1 )T (α1,α2 )
1

E−�−T (α2,α2 )

)
, (10)

with

T (α1, α2) = g2
2L∑

m=1

ϕm,α1

(
j1,α1

)
ϕm,α2

(
j2,α2

)
(E − εm + iκ/2)Nm

, (11)

F (α1, α2) = (J1 + κ/2)
j1,α1

− j2,α2
+δα1 ,b−δα2 ,b
2

(J1 − κ/2)
j1,α1

− j2,α2
+δα1 ,b−δα2 ,b
2

. (12)

According to Eqs. (9)–(12), the main contribution from the
diagonal elements of the Green’s function Gp(z) to the time
evolution is the dressed state for small g and � = −iκ/2.
The off-diagonal elements contribute to the state exchanges
between two emitters. Remarkably, such state exchange is
asymmetrical [see Eq. (12)]. To be specific, when the emit-
ter at the site j2,α2 is initially excited, there is no excitation
transferred to the emitter at the site j1,α1 for the large dis-
tance | j1,α1 − j2,α2 | between them due to the power-law decay
of F (α1, α2). Figure 6 shows the excited-state probability
Ce,i = |cei (t )|2 (i = 1, 2) for two emitters coupled to sites j1,α1

and j2,α2 of the bath, where the emitter, coupled to the site
j1,a, j2,a, j1,a, and j2,b, is initially excited for Figs. 6(a)–6(d),
respectively. When the first emitter coupled to the site j1,a

is initially in the excited state, this will excite the second
emitter at the j2,α , even in a very large separation away from
the first emitter [see Figs. 6(a) and 6(c)], which is limited
by the intrinsic dissipation of the bath. In contrast, when
the second emitter coupled to the site j2,α is initially in the
excited state, no excitation is transferred to the first emitter
at the site j1,a for a slight separation between them. The
nonreciprocal long-range emitter-emitter interaction can in-
duce exotic many-body phenomena, which is worth further
investigation.

Conclusion and outlook. In summary, we have studied the
conventional chiral and hidden bound states lying inside the
line and point gaps of the 1D non-Hermitian topological bath,
to which a single emitter is coupled. Most remarkably, we
found a unique photon-emitter dressed state without Hermi-
tian counterparts, showing the chiral and extended distribution
on just one side of the emitter along the bath. Moreover,
dissipation can shape the wave-function profile of the dressed
state. The unconventional dressed states mediate the non-
reciprocal long-range emitter-emitter interactions with the
range limited by the bath dissipation. Our study opens many
possible directions for future studies, e.g., exploring novel
many-body phases of emergent spin models with long-range
interactions of many emitters, peculiar extended dressed states
in higher-dimensional non-Hermitian topological baths, and
non-Markovian dynamics.
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