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Heisenberg and Heisenberg-like representations via Hilbert-space-bundle geometry
in the non-Hermitian regime
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The equivalence between the Schrödinger and Heisenberg representations is a cornerstone of quantum
mechanics. However, this relationship remains unclear in the non-Hermitian regime, particularly when the
Hamiltonian is time dependent. In this paper, we address this gap by establishing the connection between the two
representations, incorporating the metric of the Hilbert space bundle. We not only demonstrate the consistency
between the Schrödinger and Heisenberg representations but also present a Heisenberg-like representation
grounded in the generalized vielbein formalism, which provides a clear and intuitive geometric interpretation.
Unlike the standard Heisenberg representation, where the metric of the Hilbert space is encoded solely in
the dual states, the Heisenberg-like representation distributes the metric information between both the states
and the dual states. Despite this distinction, it retains the same Heisenberg equation of motion for operators.
Within this formalism, the Hamiltonian is replaced by a Hermitian counterpart, while the “non-Hermiticity” is
transferred to the operators. Moreover, this approach extends to regimes with a dynamical metric (beyond the
pseudo-Hermitian framework) and to systems governed by time-dependent Hamiltonians.
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I. INTRODUCTION

Quantum theory is widely recognized as the most accurate
and comprehensive physical model for understanding how na-
ture operates. To carry out theoretical calculations, a specific
representation is needed to mathematically describe the states
and observables of a quantum system. Within the framework
of quantum theory, numerous equivalent yet seemingly dis-
tinct representations exist. Among these, the Schrödinger and
Heisenberg representations are arguably the most well known.

The advent of parity-time (PT ) symmetric non-Hermitian
quantum mechanics [1–3], along with various other frame-
works for non-Hermitian quantum mechanics [4–8], raises a
critical question: Do the Schrödinger and Heisenberg repre-
sentations remain equivalent in the non-Hermitian regime?

Specifically, the conventional transformation from the
Schrödinger representation to the Heisenberg representation
leads to several paradoxes. In Sec. II, we highlight discrepan-
cies such as conflicting predictions of measurement outcomes
and violations of canonical commutation relations. Given the
increasing prominence of non-Hermitian quantum systems
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[9–23], resolving these inconsistencies has become a critical
issue.

While numerous studies [24–27] have aimed to reconcile
the discrepancies between the two representations, most are
limited to the quasi-Hermitian regime, apply only to spe-
cific types of operators, or rely on switching between Hilbert
spaces to “Hermitize” the system [28,29]. Furthermore, few
(if any) have addressed cases where the Hamiltonian is time
dependent.

In this paper, we introduce a natural transformation be-
tween the Schrödinger and Heisenberg representations (see
Table I) by incorporating the metric of the Hilbert space
bundle [8]. Additionally, we propose a Heisenberg-like rep-
resentation that makes the geometric information implicit via
the generalized vielbein formalism [30]. These formalisms
inherently extend beyond the pseudo-Hermitian regime, ac-
commodates a time-dependent metric [including regimes with
exceptional points (EPs) [31,32]], applies to all operator
types, and effectively handles time-dependent Hamiltonians.
Consequently, taking the geometry of the Hilbert space into
account not only resolves the discrepancies between the
Schrödinger and Heisenberg representations but also pro-
vides an alternative representation in which both the time
dependence and the “non-Hermiticity” are carried by the
operators.
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TABLE I. Relationships between states, dual states, and observables, along with their governing equations of motion in the Schrödinger
and Heisenberg representations in the non-Hermitian regime. In the Hermitian regime, these representations simplify to the standard forms
under the trivial metric G(t ) = 1 and U −1(t, t0) = U †(t, t0 ).

Schrödinger representation Heisenberg representation

Dynamics [∂t + iHS(t )]|ψ (t )〉S = 0 d
dt OH(t ) = i[HH(t ), OH(t )] + [∂t O(t )]H

Time-evolution operators ∂tU (t, t0 ) = −iHS(t )U (t, t0 )
States |ψ (t )〉〉S = |ψ (t )〉S = U (t, t0)|ψ (t0)〉S

= U (t, t0 )|ψ (t0)〉H |ψ〉〉H = |ψ〉H = |ψ (t0)〉S

Dual states S〈〈ψ (t )| = S〈ψ (t )|G(t ) = S〈ψ (t0)|G(t0)U −1(t, t0 )
= H〈〈ψ |U −1(t, t0) H〈〈ψ | = S〈〈ψ (t0)| = S〈ψ (t0)|G(t0 )

Observables OS(t ) = U (t, t0)OH(t )U −1(t, t0) OH(t ) = U −1(t, t0 )OS(t )U (t, t0 )

II. THE CONVENTIONAL
HEISENBERG REPRESENTATION

We start by briefly reviewing the relationship between the
Schrödinger and Heisenberg representations in quantum me-
chanics.

In the Schrödinger representation, the states in a quantum
system described by the Hamiltonian HS(t ) (where the sub-
script “S” stands for the Schrödinger representation), evolve
according to

i∂t |ψ (t )〉S = HS(t )|ψ (t )〉S. (1)

Moreover, the expectation value of an observable O is

〈O〉(t ) = S〈ψ (t )|OS(t )|ψ (t )〉S, (2)

where OS(t ) is the corresponding operator in the Schrödinger
representation.

Rather than using Eq. (1), the time evolution of a state can
also be determined by the time-evolution operator U (t, t0),
which satisfies

∂tU (t, t0) = −iHS(t )U (t, t0), (3)

U (t0, t0) = 1. (4)

To be more specific,

|ψ (t )〉S = U (t, t0)|ψ (t0)〉S (5)

also evolves according to the Schrödinger equation in Eq. (1).
In contrast, in the Heisenberg representation, the quantum

states do not depend on time, instead, while the observables
carry all the time dependence. Therefore, the time-evolution
operator acts as the connection between the Heisenberg and
Schrödinger representations.

Explicitly, the relationship between operators in the
Schrödinger and Heisenberg representations is given by

OH(t ) = U †(t, t0)OS(t )U (t, t0), (6)

while leaving the state fixed, i.e.,

|ψ〉H = |ψ (t0)〉S, (7)

where t0 can be chosen arbitrarily for convenience, and the
subscript “H” stands for the Heisenberg representation.

Since U †(t, t0) = U −1(t, t0) for H†
S = HS, it is clear that

OH(t ) is a similarity transformation of OS(t ), and they share
the same set of eigenvalues. In other words, not only the

expectation values but also their possible measurement out-
comes are the same.

Moreover, if {(qSi, pSi )} is a set of canonical conjugate
quantity pairs, the commutation relations between them in the
Schrödinger representation are

[qSi, qS j] = 0, (8)

[pSi, pS j] = 0, (9)

[qSi, pS j] = iδi j, (10)

where δ denotes the Kronecker delta.
By applying the property U †(t, t0) = U −1(t, t0) once

again, we find that the commutation relations in the Heisen-
berg representation remain unchanged. Specifically,

[qHi(t ), qH j (t )] = U †(t, t0)[qSi, qS j]U (t, t0) = 0, (11)

[pHi(t ), pH j (t )] = U †(t, t0)[pSi, pS j]U (t, t0) = 0, (12)

[qHi(t ), pH j (t )] = U †(t, t0)[qSi, pS j]U (t, t0)

= U †(t, t0)iδi jU (t, t0) = iδi j . (13)

This outcome is, in fact, expected: The commutation rela-
tions must remain valid after transitioning to the Heisenberg
representation. Failure to preserve these relations would not
only violate the uncertainty principle, one of the most impor-
tant and fundamental properties of quantum mechanics, but
also undermine the canonical quantization framework.

More specifically, the equivalence comes from the fact
that the mapping between the Schrödinger and Heisenberg
representations is an invertible automorphism. To see this, let
τt,t0 be a linear map defined as

τt,t0 (O) = U †(t, t0)OU (t, t0), (14)

where U (t, t0) is the evolution operator. Since U †(t, t0) =
U −1(t, t0), the structure of the operator is preserved, namely,

τt,t0 (OAOB) = U †(t, t0)OAOBU (t, t0) (15)

= U †(t, t0)OAU (t, t0)U †(t, t0)OBU (t, t0) (16)

= τt,t0 (OA)τt,t0 (OB). (17)

Nevertheless, when the Hamiltonian is non-Hermitian, τt,t0
fails to be an algebra automorphism [27], thereby leading
to an apparent inequivalence between the Heisenberg and
Schrödinger representations. That is, quantum theory makes
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different predictions for the measurement with different rep-
resentations.

For instance, in general non-Hermitian systems, where
HS(t ) �= H†

S (t ), we have U †(t, t0) �= U −1(t, t0). Hence, the
commutation relations in Eqs. (11)–(13) become time depen-
dent, e.g.,

[qHi(t ), pH j (t )]

= [U †(t, t0)qSi(t )U (t, t0),U †(t, t0)pS j (t )U (t, t0)]

�= iδi j . (18)

Additionally, since the Heisenberg operators OH(t ), as
defined in Eq. (6), are no longer related to the corre-
sponding Schrödinger operators OS(t ) by a simple similarity
transformation, the measurement outcomes predicted by
the Schrödinger and Heisenberg representations can differ
significantly.

However, this apparent inequivalence between the two rep-
resentations arises from the use of an inadequate quantum
formalism. In the following, we demonstrate that these dis-
crepancies are resolved within the metricized formalism [8].

III. THE SCHRÖDINGER REPRESENTATION
IN THE METRICIZED FORMALISM

To demonstrate that the inconsistencies between the
Heisenberg and Schrödinger representations can be resolved
using the metricized formalism, we present the time-evolution
operators for both the states and the dual states in the
Schrödinger representation.

In the metricized formalism, the geometry of the Hilbert
space must be accounted for when calculating the inner prod-
uct between states, i.e.,

S〈〈ψ1(t )|ψ2(t )〉〉S = S〈ψ1(t )|G(t )|ψ2(t )〉S, (19)

where G(t ) is the metric of the Hilbert space, where the states
and the dual states are given by

|ψ2(t )〉〉S ≡ |ψ2(t )〉S and S〈〈ψ1(t )| ≡ S〈ψ1(t )|G(t ). (20)

The time evolution of states and the metric in the Schrödinger
representation are governed by

∂t |ψ (t )〉〉S = −iHS(t )|ψ (t )〉〉S, (21)

∂t G(t ) = i[G(t )HS(t ) − H†
S (t )G(t )]. (22)

It is worth mentioning that if G(t0) is Hermitian [G†(t0) =
G(t0)], invertible, and positive definite at a given time slice
t = t0, then G(t ) remains Hermitian, invertible, and positive
definite for all time [5].

In the non-Hermitian regime, the metricized dual states
are not simply the conventional “Hermitian conjugate” of
the states. Consequently, the time-evolution operators for the
states and their dual states require careful consideration.

Here, we start with the states. For the remainder of the
text, we place two “mathematical nicety” constraints on our
Hamiltonian: first, that H (t ) is bounded for all times t ∈ R
and, second, that the map H : t → B(H) is continuous with
respect to the operator norm topology, where B(H) denotes
the space of bounded linear operators on the Hilbert space
H. These constraints, which are automatically satisfied when

H is finite dimensional, guarantees the existence of a unique
time-evolution operator, UR(t, t0), such that (see Theorem 5.1
in Ref. [33])

|ψ (t )〉〉S = UR(t, t0)|ψ (t0)〉〉S. (23)

Together with Eq. (21), the time-evolution operator satisfies

∂tUR(t, t0) = −iHS(t )UR(t, t0), (24)

with UR(t0, t0) = 1.
On the other hand, the time derivative of the dual state is

determined not only by the Schrödinger equation, but also by
the metric equation given in Eq. (22), as shown explicitly:

∂t S〈〈ψ (t )| = ∂t [S〈ψ (t )|G(t )]

= i[S〈ψ (t )|H†
S (t )]G(t )

+ iS〈ψ (t )|[G(t )HS(t ) − H†
S (t )G(t )]

= iS〈ψ (t )|G(t )HS(t )

= iS〈〈ψ (t )|HS(t ). (25)

Hence, the time-evolution operator UL(t, t0) for the dual
state, namely,

S〈〈ψ (t )| = S〈〈ψ (t0)|UL(t, t0), (26)

should satisfy

∂tUL(t, t0) = iUL(t, t0)HS(t ), (27)

with UL(t0, t0) = 1.
As a result, the time evolution of the expectation value

of an observable O in the Schrödinger representation can be
written as

〈O(t )〉 = S〈〈ψ (t )|OS(t )|ψ (t )〉〉S

= S〈〈ψ (t0)|UL(t, t0)OS(t )UR(t, t0)|ψ (t0)〉〉S, (28)

where OS is the corresponding operator for O in the
Schrödinger representation.

By applying Eqs. (24) and (27), we find

∂t [UL(t, t0)UR(t, t0)] = 0, (29)

∂t [UR(t, t0)UL(t, t0)] = i[UR(t, t0)UL(t, t0), H (t )]. (30)

Together with the initial conditions UR(t0, t0) = 1 =
UL(t0, t0), it follows that

UL(t, t0)UR(t, t0) = 1 = UR(t, t0)UL(t, t0) (31)

⇒ UL(t, t0) = U −1
R (t, t0). (32)

For simplicity, we omit the subscripts “R” and “L,” and
define

U (t, t0) ≡ UR(t, t0), (33)

such that

UL(t, t0) = U −1(t, t0). (34)

Not only is this property crucial for retaining the alge-
bra automorphism property of time evolution, but it is also
essential for maintaining consistency between the two repre-
sentations, deriving the Heisenberg equation of motion, and
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validating the canonical commutation relations in the Heisen-
berg representation.

IV. THE HEISENBERG REPRESENTATION
IN THE METRICIZED FORMALISM

In the Heisenberg representation, the states and the dual
state do not evolve with time, i.e.,

|ψ〉〉H = |ψ (t0)〉〉S, (35)

H〈〈ψ | = S〈〈ψ (t0)| = S〈ψ (t0)|G(t0), (36)

while all time dependence is carried by the operators. Hence,
the expectation value of the quantity O in the Heisenberg
representation is given by

〈O(t )〉 = H〈〈ψ |OH(t )|ψ〉〉H. (37)

Comparing Eq. (37) with Eq. (28), we find

OH(t ) = U −1(t, t0)OS(t )U (t, t0). (38)

It is worth mentioning that, since OH(t ) is a similarity
transformation of OS(t ), both OH(t ) and OS(t ) are isospectral,
i.e., they share the same set of eigenvalues. Therefore, their
possible measurement outcomes are identical.

Next, we turn to the governing equation for the operators.
Taking the time derivative of 〈O(t )〉 and obtain

d

dt
〈O(t )〉 = H〈〈ψ | d

dt
OH(t )|ψ〉〉H (39)

since H〈〈ψ | and |ψ〉〉H are time independent. In contrast, in the
Schrödinger representation, it holds

d

dt
〈O(t )〉 = iS〈〈ψ (t )|HS(t )OS(t )|ψ (t )〉〉S

+ S〈〈ψ (t )|[∂t OS(t )]|ψ (t )〉〉S

− iS〈〈ψ (t )|OS(t )HS(t )|ψ (t )〉〉S. (40)

Since both Eqs. (39) and (40) hold for any arbitrary state,
we find that

|ψ (t )〉〉S = U (t, t0)|ψ〉〉H, (41)

S〈〈ψ (t )| = H〈〈ψ |U −1(t, t0), (42)

imply

d

dt
OH(t ) = iU −1(t, t0)HS(t )OS(t )U (t, t0)

− iU −1(t, t0)OS(t )HS(t )U (t, t0)

+ U −1(t, t0)[∂t OS(t )]U (t, t0). (43)

By inserting 1=U −1(t, t0)U (t, t0) [1=U (t, t0)U −1(t, t0)]
to the right (left) of OS(t ) in the first two terms of the above
equation and rewriting all the operators in the Heisenberg
representation, we arrive at

d

dt
OH(t ) = i[HH(t ), OH(t )] + [∂t O(t )]H, (44)

where

HH(t ) = U −1(t, t0)HS(t )U (t, t0), (45)

[∂t O(t )]H = U −1(t, t0)[∂t OS(t )]U (t, t0). (46)

Note that Eq. (44) is, in fact, formally the same as the
Heisenberg equation of motion. The only difference is that
the metric must be considered in the dual state [Eq. (36)] as it
is in the Schrödinger representation.

Moreover, Eq. (38), together with Eq. (32), implies that the
commutation relations in the Heisenberg representation are
preserved, i.e.,

OS[AB](t ) ≡ [OSA(t ), OSB(t )] (47)

⇒ [OHA(t ), OHB(t )]

= [U −1(t, t0)OSA(t )U (t, t0),

U −1(t, t0)OSB(t )U (t, t0)]

= U −1(t, t0)[OSA(t ), OSB(t )]U (t, t0)

= U −1(t, t0)OS[AB](t )U (t, t0)

= OH[AB](t ). (48)

In other words, the commutation relations in both representa-
tions are consistent.

Moreover, as in the Hermitian case, we examine the canon-
ical commutation relations in the non-Hermitian regime. Let
{(qSi, pSi )} be the set of canonical conjugate quantity pairs.
The canonical commutation relations in the Schrödinger rep-
resentation are

[qSi, qS j] = 0, (49)

[pSi, pS j] = 0, (50)

[qSi, pS j] = iδi j . (51)

Using Eq. (48), the commutation relations in the Heisenberg
representation become

[qHi(t ), qH j (t )] = 0, (52)

[pHi(t ), pH j (t )] = 0, (53)

[qHi(t ), pH j (t )] = U −1(t, t0)iδi jU (t, t0) = iδi j . (54)

In other words, the commutation relations remain the same
in the Heisenberg representation for closed quantum systems
if the metricized formalism is applied.

V. HEISENBERG-LIKE REPRESENTATION BASED
ON THE GENERALIZED VIELBEIN FORMALISM

Besides the Schrödinger and Heisenberg representations,
there are many other representations that also describe quan-
tum mechanics equivalently. One of these is the application
of the generalized vielbein formalism [30]. In this formalism,
the Hamiltonian is replaced by a Hermitian one, while the
“non-Hermiticity” is carried by the operators.

Specifically, the metric G(t ) can be decomposed into the
generalized vielbein (abbreviated as “vielbein”), namely,

G(t ) = E†(t )E (t ), (55)
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TABLE II. Comparing the representations described by the metric and the vielbein, it can be shown that H�(t ) is a Hermitian time generator,
i.e., H †

� (t ) = H�(t ). Therefore, the time evolution of states and the inner product between states in the vielbein formalism are identical to those
in conventional Hermitian quantum mechanics, but the “non-Hermiticity” is transferred to the operators.

Metric Vielbein

Metric and vielbein G(t ) = E†(t )E (t ) E (t )

States |ψ (t )〉〉S = |ψ (t )〉S |ψ (t )〉V = E (t )|ψ (t )〉S

Dual states S〈〈ψ (t )| = S〈ψ (t )|G(t ) V〈ψ (t )| = S〈ψ (t )|E†(t )

Operators OS(t ) OV(t ) = E (t )OS(t )E−1(t )

Inner product S〈〈φ(t )|ψ (t )〉〉S = S〈φ(t )|G(t )|ψ (t )〉S V〈φ(t )|ψ (t )〉V = S〈φ(t )|E†(t )E (t )|ψ (t )〉S

Governing equations ∂t |ψ (t )〉〉S = −iH (t )|ψ (t )〉〉S,
∂t S〈〈ψ (t )| = iS〈〈ψ (t )|H (t ),
∂t G(t ) = i[G(t )H (t ) − H†(t )G(t )]

∂t |ψ (t )〉V = −iH�(t )|ψ (t )〉V,
∂t V〈ψ (t )| = iV〈ψ (t )|H�(t ),
H�(t ) = E (t )H (t )E−1(t ) + i[∂tE (t )]E−1(t )

where the vielbein satisfies the relation

H�(t ) = E (t )HS(t )E−1(t ) + i[∂tE (t )]E−1(t ), (56)

and H�(t ) is an arbitrary Hermitized Hamiltonian that satis-
fies H†

� (t ) = H�(t ). The states, dual states, and operators are
transformed by the vielbein as

|ψ (t )〉V ≡ E (t )|ψ (t )〉S, (57)

V〈ψ (t )| ≡ [|ψ (t )〉V]† = S〈ψ (t )|E†(t ), (58)

OV(t ) ≡ E (t )OS(t )E−1(t ), (59)

so that

S〈〈ψ1(t )|OS(t )|ψ2(t )〉〉S = S〈ψ1(t )|G(t )OS(t )|ψ2(t )〉S

= V〈ψ1(t )|OV(t )|ψ2(t )〉V,
(60)

where the subscript “V” stands for “vielbein.” A comparison
between the representations described by the metric and the
vielbein can be found in Table II.

It is worth noting that the time evolution of the vielbein-
transformed state is governed by

∂t |ψ (t )〉V = −iH�(t )|ψ (t )〉V. (61)

Since H�(t ) is arbitrary, we can choose H�(t ) = 0 so that
Eq. (56) reduces to

∂tE (t ) = iE (t )HS(t ), (62)

and Eq. (61) renders states time independent, i.e., |ψ (t )〉V =
|ψ (t0)〉V. Therefore, we can define

|ψ〉HL ≡ |ψ (t0)〉V = E (t0)|ψ (t0)〉S, (63)

HL〈ψ | ≡ V〈ψ (t0)| = S〈ψ (t0)|E†(t0), (64)

OHL(t ) ≡ E (t )OS(t )E−1(t ), (65)

where the subscript “HL” stands for “Heisenberg-like.” Addi-
tionally, the time evolution of operators becomes

d

dt
OHL(t ) = d

dt
[E (t )OS(t )E−1(t )] (66)

= iE (t )HS(t )OS(t )E−1(t )

− iE (t )OS(t )HS(t )E−1(t )

+ E (t )[∂t OS(t )]E−1(t ) (67)

= iHHL(t )OHL(t ) − iOHL(t )HHL(t ) (68)

+ [∂t O(t )]HL

= i[HHL(t ), OHL(t )] + [∂t O(t )]HL, (69)

where

HHL = E (t )HS(t )E−1(t ), (70)

[∂t O(t )]HL = E (t )[∂t OS(t )]E−1(t ). (71)

In other words, choosing the vielbein with H�(t ) = 0 ren-
ders the states time independent and the operators subject to
the standard Heisenberg equation. However, unlike the stan-
dard Heisenberg representation, where only the dual states
carry the information about the metric of the Hilbert space,
the generalized-vielbein-formalism-induced Heisenberg-like
representation distributes the metric information across both
the states and the dual states (see Table III). As a consequence,
the relation between the states and the dual states in the
Heisenberg-like representation is analogous to the standard
Hermitian conjugate, namely,

HL〈ψ | = S〈ψ (t0)|E†(t0) = [E (t0)|ψ (t0)〉S]†

= (|ψ〉HL)†. (72)

Therefore, although the states and dual states are time inde-
pendent and the operators are formally governed by the same
equation of motion in both Heisenberg and Heisenberg-like
representations, the metric dependence is much less apparent
in the Heisenberg-like representation.

VI. CONCLUSIONS

The equivalence between the Schrödinger and Heisenberg
representations in quantum mechanics is fundamental, both
conceptually and for potential applications. Any inconsistency
between the two would lead to various issues, such as dis-
crepancies in predicting measurement outcomes, violations of
the uncertainty principle, and the breakdown of quantization
schemes. However, in the non-Hermitian regime, the conven-
tional transformation between these representations leads to a
discrepancy.

To establish the equivalence between the two representa-
tions, we turn to the metricized formalism, which incorporates
the geometry of the Hilbert space bundle. This formalism
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TABLE III. Comparing the Heisenberg and Heisenberg-like representations. Note that E−1(t ) plays a similar role to U (t, t0 ); however,
unlike U (t, t0 ), E (t = t0) �= 1 in general. As a consequence, the states undergo a linear transformation such that their Hermitian conjugates are
identical to their dual states.

Heisenberg representation Heisenberg-like representation

Time evolution ∂tU (t, t0) = −iHS(t )U (t, t0) U (t0, t0) = 1 ∂tE (t ) = iE (t )HS(t ) G(t0 ) = E†(t0 )E (t0)

Observables OH(t ) = U (t, t0)OS(t )U −1(t, t0 ) OHL(t ) = E (t )OS(t )E−1(t )

Operators d
dt OH(t ) = i[HH(t ), OH(t )] + [∂t O(t )]H

d
dt OHL(t ) = i[HHL(t ), OHL(t )] + [∂t O(t )]HL

States |ψ〉〉H = |ψ〉H = |ψ (t0)〉S |ψ〉HL = E (t0 )|ψ (t0)〉S

Dual states H〈〈ψ | = S〈〈ψ (t0)| = S〈ψ (t0)|G(t0) HL〈ψ | = S〈ψ (t0)|E†(t0) = (|ψ〉HL)†

naturally generalizes conventional quantum mechanics—
extending its applicability to the non-Hermitian regime while
offering deeper insights and serving as a powerful analytical
framework.

By applying the metricized formalism, we derive the re-
lationship between the two representation, which reduces to
the conventional one in the Hermitian regime. Moreover, we
demonstrate their equivalence by showing that the predicted
measurement outcomes are identical, the commutation rela-
tions are consistent, and the canonical commutation relations
remain unaltered. Additionally, we provide the Heisenberg
equation of motion for operators in the non-Hermitian regime.

It is worth mentioning that not only have the discussions
been extended beyond the quasi-Hermitian regime (i.e., the
regime with a dynamical metric), but they can also be ap-
plied to cases where the Hamiltonian of the system is time
dependent.

In addition to these two representations, we also intro-
duce a Heisenberg-like representation via the generalized
vielbein formalism, which renders the metric information im-
plicit. In the Heisenberg representation, the metric is encoded
exclusively in the dual states, whereas in the Heisenberg-
like representation, the metric information is distributed
across both the states and the dual states. Nevertheless, in
both representations, all states and dual states remain time
independent, and the operators satisfy the Heisenberg equa-
tion of motion.

Consequently, this work establishes a physically consis-
tent transformation between the Schrödinger, Heisenberg,
and Heisenberg-like representations of quantum mechanics
through the metricized formalism.
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