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Cluster states are versatile quantum resources and an essential building block for measurement-based quantum
computing. The possibility to generate cluster states in specific systems may thus serve as an indicator regarding
if and to what extent these systems can be harnessed for quantum technologies and quantum information
processing in particular. Here, we apply this analysis to networks of degenerate optical parametric oscillators
(DOPOs), also called coherent Ising machines (CIMs). CIMs are distinguished by their highly flexible coupling
capabilities, which makes it possible to use them, e.g., to emulate large spin systems. As CIMs typically
operate with coherent states (and superpositions thereof), it is natural to consider cluster states formed by
superpositions of coherent states, i.e., coherent cluster states. As we show, such coherent cluster states can,
under ideal conditions, be generated in DOPO networks with the help of beam splitters and classical pumps.
Our subsequent numerical analysis provides the minimum requirements for the generation of coherent cluster
states under realistic conditions. Moreover, we discuss how nonequilibrium pumps can improve the generation
of coherent cluster states. In order to assess the quality of the cluster-state generation, we map the generated
states to an effective spin space using modular variables, which allows us to apply entanglement criteria tailored
for spin-based cluster states.
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I. INTRODUCTION

Cluster states [1] constitute a generic class of highly entan-
gled quantum states, which can serve as the starting point for
subsequent entirely measurement-driven universal quantum
information processing [2–13]. In addition, cluster states are
useful for quantum sensing [14,15] and robust to specific
noise sources [16,17]. While cluster states were originally
proposed for spin systems [1,18,19], they are now experimen-
tally accessible [20–29] on a variety of different platforms. In
particular, optical cluster states [6,20,21,28,30–33] promise
high coupling flexibility and good scaling properties. As
bosonic modes are described by continuous variables, optical
cluster states are usually encoded in a subspace of the total
bosonic space. Typical choices are a few-photon Fock space
[20], a Gottesman-Kitaev-Preskill-code space [9,34], and a
coherent-state basis [35–37].

The coherent Ising machine (CIM) [38–48] is optical hard-
ware with the simulation of many-body spin systems being a
target application. Similar to platforms for the generation of
optical cluster states, the CIM describes a network composed
of degenerate optical parametric oscillators (DOPOs) [49–52].
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Such DOPO networks have, by virtue of their highly flexible
couplings among the modes, already been successfully ap-
plied in the semiclassical regime, e.g., to solve combinatorial
optimization problems [40–44].

In this article, we address the question of if and to what
extent the CIM can be operated and utilized in the quantum
regime. To this end, we investigate the possibility to generate
cluster states with the CIM. In contrast to and beyond the
production of entangled cat states [53], successful generation
of cluster states would provide clear evidence of the presence
of exploitable and processable quantum resources, with the
prospect of universal quantum computation looming. As these
machines generically operate with coherent states, we focus
here on coherent cluster states.

The Ising interaction, realizable by design in the CIM,
can serve as a natural basis for the generation of clus-
ter states [1,54]. Moreover, CIMs associate coherent states
with different phases to different spin orientations, which
suggests a straightforward translation of spin cluster states
to coherent cluster states. However, we must expect that
the cluster-state generation is impaired by the unavoidable
presence of single-photon loss and the related trade-off to im-
plement in-principle adiabatic evolutions in finite time. Here,
we analyze the minimum requirements such that the genera-
tion of cluster states remains successful under these realistic
conditions.
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FIG. 1. (a) Illustration of the structure of a CIM. Optical pulses,
which are pumped in the nonlinear crystal, travel in the optical
fiber loop. The coupling between pulses is realized by optical delay
lines or measurement feedback. (b) Illustration of the beam-splitter
interaction between neighboring DOPO modes, which implements
the Ising interaction (19).

Following the same strategy as for entangled cat states
[53], we employ tailored entanglement criteria in order to as-
sess the successful generation of coherent cluster states. This
allows us to certify the presence of cluster states even if the
states generated under realistic conditions are imperfect and
mixed. While the entanglement criteria designed for cluster
states typically assume spinlike Hilbert spaces [55–62] and
thus cannot be directly applied to coherent cluster states, we
use modular variables [63] in order to map coherent states and
catlike states to effective spin states [64–68]. In these effective
spin spaces, we can apply the entanglement criteria for spin
cluster states in order to certify the presence of coherent
cluster states. Indeed, modular variables have already been
successfully deployed for the detection of entanglement in
non-Gaussian states [69–73].

This article is structured as follows: We first introduce
the theoretical model in the ideal case. Next, we derive the
conditions for the generation of coherent cluster states in
DOPOs in the presence of detrimental effects, in particular,
single-photon loss and nonadiabatic evolution. To this end, the
generated candidate cluster states are mapped onto effective
spin spaces using modular variables and evaluated with an en-
tanglement criterion for spin cluster states. After studying and
optimizing the influences of different parameters, we finally
discuss the potential benefits of nonequilibrium pumps.

II. THEORETICAL MODEL

A. Structure of DOPO networks in CIMs

To explore the extension of cluster states to DOPO sys-
tems, let us begin by reviewing the theoretical model of DOPO
networks in a CIM. A DOPO system consists of a nonlinear
component and a cavity [49–52]. In particular, DOPOs within
a CIM are implemented using a nonlinear waveguide and
a fiber cavity, as illustrated in Fig. 1(a). The optical modes
correspond to signal pulses traveling in the optical fiber loop.
When a signal pulse interacts with the nonlinear waveguide, it
couples to the pump pulse through the following Hamiltonian
(we set h̄ = 1):

Hnl = gnl
(
a2

s a†
p + a†

s
2
ap

)
, (1)

where as and ap correspond to the annihilation operator of
the signal mode and the annihilation operator of the pump
mode, respectively. If the length of the nonlinear wave guide is
short or the loss for the pump mode is strong, the pump mode
in Eq. (1) can be adiabatically eliminated. Such an adiabatic
model can be described by a two-photon pump,

H = −iS[(a†
s )2 − (as)2], (2)

and two-photon loss [74–80],

Ltp(ρ) = �d

2
[2asasρ(t )a†

s a†
s − {a†

s a†
s asas, ρ(t )}], (3)

where {·, ·} denotes the anticommutator and ρ is the density
matrix of the signal mode. Note that we omit the subscript
“s” in the following. Such a DOPO has a steady-state space
formed by the superposition of two coherent states with dif-
ferent phases (i.e., a cat state),

|�(t → ∞)〉 = C+|α〉 + C−| − α〉. (4)

The complex amplitude α of the coherent states is given by
α = i

√
2S�d. In the presence of single-photon loss,

Ls(ρ) = �d

2
[2aρ(t )a† − {a†a, ρ(t )}], (5)

the steady states are usually mixed states:

ρ(t → ∞) = P+|α〉〈α| + P−| − α〉〈−α|. (6)

This subspace can be used to emulate a spin,

|α〉 ←→ |↑〉, | − α〉 ←→ |↓〉, (7)

for large amplitudes, |α| 
 1 or |〈α| − α〉| ∼ 0. Note that, for
general values of α, two cat states with different parities can
alternatively be used to express spins.

The coupling between different effective spins in a CIM
is realized by an optical coupling module, as illustrated in
Fig. 1(a). Two common design principles for the optical cou-
pling module are the optical delay-line structure [40] and the
measurement-feedback structure [41]. The optical delay-line
coupling can be described by a collective loss, e.g.,

Lc(ρ) = �c(ai + a j )ρ(t )(a†
i + a†

j )

− �c

2
{(a†

i + a†
j )(ai + a j ), ρ(t )}, (8)

where i and j correspond to two different DOPO modes.
In contrast, the measurement-feedback coupling can be ex-
pressed as classical pumps on different modes:

HMF =
∑

i

�i(X1, . . .)(ai + a†
i ), (9)

where Xj is the result of a measurement (usually a position
measurement) on the jth DOPO mode and �i(X1, . . .) is the
measurement-based pump intensity on the ith mode.

Note that the current CIM design does not contain direct
coupling, i.e., (aia

†
j + a†

j ai ), but such coupling can be realized
by a small loop structure, as illustrated in Fig. 1(b).

B. Coherent cluster states in DOPOs

Cluster states [1] are a class of highly entangled states
that can be used for measurement-based quantum information
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processing. A typical one-dimensional (1D) spin cluster state
with N sites assumes the following form:

|Cluster〉N
s = 1

2N/2

N⊗
i=1

(
σ (i+1)

z |↑i〉 + |↓i〉
)
. (10)

By design, these states satisfy a recursive decomposition prop-
erty under local measurements,

〈↓k|Cluster〉N
s = 1

2N/2

(k−1)⊗
i=1

(
σ (i+1)

z |↑〉i + |↓〉i
)

×
N⊗

i=k+1

(
σ (i+1)

z |↑〉i + |↓〉i
)

= 1√
2
|Cluster〉k−1

s ⊗ |Cluster〉N−k
s . (11)

In particular, this implies that cluster states can, in general,
remain entangled after local measurements.

Based on these optical spins in Eq. (7), it is now straightfor-
ward to formulate the corresponding coherent cluster states,

|Cluster〉N
co = 1

2N/2 + ε

N⊗
i=1

(
ai+1

α
|αi〉 + | − αi〉

)
, (12)

where ε accounts for the nonvanishing overlap between |α〉
and | − α〉 and the subscript “co” stands for coherent cluster
state. Specifically, the coherent cluster state for the two-mode
case, which we will consider in more detail below, takes the
following form:

|Cluster〉2
co = 1

2 + ε′ (|α〉 ⊗ |α〉 + |α〉 ⊗ | − α〉
+ | − α〉 ⊗ |α〉 − | − α〉 ⊗ | − α〉). (13)

C. Generation of coherent cluster states

Spin cluster states can be generated by utilizing the Ising
interaction between different spins [1,54]. According to this
method, N spins or qubits are first prepared in the ground state
|01〉 ⊗ |02〉 · · · ⊗ |0N 〉. A rotation Ux = exp(i

∑N
n=1 σ (n)

x π/2)
is then applied to all the qubits to transform the state into

|+〉 ≡ 1

2N/2
(|↑〉 + |↓〉) ⊗ (|↑〉 + | ↓〉) · · · . (14)

Finally, the Ising interaction is applied, described by the
Hamiltonian

Hs−int = g
∑
〈i, j〉

1 + σ (i)
z

2

1 − σ
( j)
z

2
. (15)

Note that the subscript “s-int” denotes the spin interaction. A
typical choice of i and j is nearest neighbors, i.e., j = i + 1,
in which case the following cluster state can be generated:

|Cluster〉s = exp

(
−i

π

g
Hs−int

)
|+〉

= 1

2N/2

N⊗
i=1

(
σ (i+1)

z |↑〉 + |↓〉). (16)

A similar state-generation protocol can be realized with
DOPOs. Recall that a single DOPO initialized in the vacuum
state assumes a cat state as the steady state. Correspondingly,
N independent DOPOs assume a steady state similar to |+〉 in
Eq. (14):

|+cat〉 ≡ 1

(2 + εmc)N/2

N⊗
i=1

(|α〉 + | − α〉). (17)

Moreover, the nearest-neighbor Ising interaction Hamiltonian
(15) can be realized by beam splitters and classical pumps in
the adiabatic limit [79],

σzdt ∼ 1

2α
a†dt + H.c.,

σ (i)
z σ ( j)

z dt ∼ 1

2αα∗ (aia
†
j + a†

i a j )dt, (18)

with the complex amplitude α of the optical spin (7). The
classical pump term,

1/(2α)(a† + a),

can be realized by the feedback (9) in the current CIM design
framework, while the beam-splitter coupling,

1/(2αα∗)(aia
†
j + a†

i a j ),

is distinct from both above-mentioned coupling methods in
the CIM. Such coupling can be realized by a loop structure,
as illustrated in Fig. 1(b). This structure can be either directly
inserted into the main loop in Fig. 1(a) or attached as a parallel
passway through optical switchers [81].

Accordingly, the Ising interaction Hamiltonian can be im-
plemented through

Hco−int = gc

8α

∑
i

[(
a†

i − a†
i+1 + 1

α∗ aia
†
i+1

)
+ H.c.

]
. (19)

Here, the subscript “co-int” denotes the coherent-state inter-
action. Coherent cluster states are now generated as

ρCluster =
∫ π

gc

0
ds{−i[Hco−int+H, ρ(s)] + Ld(ρ(s))} + ρ(0),

(20)

with

ρ(0) ≡ |+cat〉〈+cat|.
Note that the effective coherent Ising interaction (19) requires
the evolution to be adiabatic, gc � �d. Therefore, ideal co-
herent cluster states cannot be generated in practice due to the
finite evolution time and the presence of single-photon loss.
To characterize the generated imperfect cluster states, we use
an entanglement criterion, which we introduce next.

D. Cluster-state entanglement verification
with modular variables

The entanglement of spin cluster states can be detected
with the respective stabilizer entanglement criterion for clus-
ter states [56,60]. Specifically, a state of N spins exhibits
cluster-state entanglement if the entanglement witness W
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satisfies

W ≡
∑

n

〈
σ (n−1)

z σ (n)
x σ (n+1)

z

〉2 � N

2
,

σ (−1)
z = σ (N+1)

z = I. (21)

By construction, an ideal 1D cluster state (10) with N spins
satisfies the entanglement witness (21). More generally, im-
perfect, mixed states still satisfy the witness as long as they
maintain essential characteristics of cluster states. We thus
can take the entanglement witness (21) in order to assess the
presence of cluster states even if the actual generated states are
imperfect and mixed. In contrast to other proximity measures,
such as the fidelity, satisfaction of the entanglement witness
here provides a clear division between “cluster-state-like” and
not.

Due to the similarity between the spin cluster states (10)
and the coherent cluster states (12), it is natural to extend
the spin-based criterion (21) to DOPO systems. However, the
respective entanglement criterion cannot be based on a naive
mapping according to Eq. (7), as the latter is not applicable to
general continuous-variable states. To obtain a generally valid
procedure, we use the fact that effective Pauli operators for
continuous variables can be formulated as [63,82]

σ̄x ≡ cos( p̂l ) − isin( p̂l )
sin(π x̂/l )

|sin(π x̂/l )| ,

σ̄y ≡ sin( p̂l ) + icos( p̂l )
sin(π x̂/l )

|sin(π x̂/l )| ,

σ̄z ≡ sin(π x̂/l )

|sin(π x̂/l )| . (22)

By construction, these operators have the same commutation
relation as the Pauli matrices σx, σy, and σz.

Based on this correspondence, we can, in principle, evalu-
ate the stabilizer entanglement criterion (21) with continuous-
variable states directly by substituting the operators (22).
It is more instructive and practical, however, to map the
continuous-variable state to an effective spin state first and
then to evaluate (21). Specifically, we identify a decomposi-
tion of the continuous variable such that the effective Pauli
operators (22) satisfy

σ̄x = σx ⊗ Ianci,

σ̄y = σy ⊗ Ianci,

σ̄z = σz ⊗ Ianci; (23)

that is, after tracing out the ancilla space, we preserve the
Pauli algebra in the effective spin space.

To determine the ancillary space, we consider the position
basis and express the position eigenstates using modular vari-
ables [63–68]:

|x̄〉 ⊗ |Nx〉 ≡ |x = x̄ + lxNx〉, (24)

with Nx being the integer variable and the modular variable
x ∈ (0, lx], as illustrated in Fig. 2. While the choice of lx is,
in principle, arbitrary, there exists an optimal value to cap-
ture the spin properties of the optical spins in Eq. (7), e.g.,
the separation of the wave packets in Fig. 2. This optimal

FIG. 2. Mapping a bosonic mode (i.e., a continuous-variable sys-
tem) onto an effective spin using modular variables. The continuous
variable is split into integer parts (dashed boxes) and modular parts
(wave functions in different boxes). By tracing out the modular parts,
the continuous variable is then mapped to a discrete-level chain
(dashed boxes). This chain is then further restructured as a chain of
cells with two internal levels. The latter internal space constitutes an
effective spin.

value is usually

lopt
x = 2

√
2α (25)

for real α.
A continuous-variable system can now be mapped onto a

discrete system by tracing out the modular part:

ρdiscrete =
∫ lx

0
dx̄〈x̄|ρ|x̄〉. (26)

The integer variable Nx can be further regrouped into a chain
of cells with two internal states each,

|m〉cell ⊗ |n〉es ≡ |Nx = 2m + n + 1〉, (27)

with m being the integer cell index and the internal state label
n = 0, 1. By tracing out the cell space |m〉cell, we then obtain
an effective spin state:

ρes =
∑

m

〈m|cellρdiscrete|m〉cell

=
∑

m

∫ lx

0
dx̄〈m|cell ⊗ 〈x̄|ρ|x̄〉 ⊗ |m〉cell. (28)

This mapping hence allows us to reinterpret arbitrary
continuous-variable states ρ as effective spin states ρes, in-
cluding the steady states of DOPOs. In particular, with the
choice (25), the mapping (7) is recovered. Finally, it is
straightforward to verify that

σ̄z|x̄〉 ⊗ |m〉cell ⊗ |n〉es = −1n|x̄〉 ⊗ |m〉cell ⊗ |n〉es,

σ̄x|x̄〉 ⊗ |m〉cell ⊗ |n〉es = |x̄〉 ⊗ |m〉cell ⊗ |1 − n〉es,

σ̄y|x̄〉 ⊗ |m〉cell ⊗ |n〉es = −1ni|x̄〉 ⊗ |m〉cell ⊗ |1 − n〉es.

(29)

This shows that the mapping (28) indeed satisfies condition
(23), where the ancillary space is composed of the modular
space and the cell space,

Ianci ≡
∑

m

∫ lx

0
dx̄|m〉cell ⊗ |x̄〉〈x̄| ⊗ 〈m|cell.
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FIG. 3. Sequential coherent-cluster-state generation, divided into
a pumping stage and an interaction stage (N = 2). Depicted is the
fidelity with respect to the ideal coherent cluster state in Eq. (13) as
a function of time, in the absence of single-photon loss.

III. NUMERICAL SIMULATIONS FOR
COHERENT-CLUSTER-STATE GENERATION

In this section, we employ numerical simulations to inves-
tigate the generation of coherent cluster states in DOPOs. In
the following, we focus on the simplest case of two modes,
which is expected to provide lower bounds on the parame-
ter requirements. We also set the two-photon loss rate to be
�d = 1.

A. Basic picture without single-photon loss

We first consider the case without single-photon loss,
which provides insight into the mechanism of generating co-
herent cluster states. The system is described by two DOPOs
initially in the vacuum state. The two-photon pumps (2) and
the two-photon losses (3) in each DOPO drive the total system
into a separable two-mode cat state (17). After a time period
Tp = 3�−1

d , we further introduce the coherent Ising interac-
tion (19) to generate the targeted coherent cluster state (13).
Figure 3 exemplifies such a process.

At the initial time in Fig. 3, the fidelity is very low because
the vacuum state is almost orthogonal to the coherent cluster
state. The system begins to approach the target state during the
pump part and reaches a steady fidelity around 0.25, which
is about the fidelity between the direct product of two cat
states and a coherent cluster state. When the coherent Ising
interaction terms (19) are turned on, the fidelity continues to
increase and finally reaches a value close to unity. Figure 3
thus shows that coherent cluster states can be generated based
on the coherent Ising interaction, with the latter being realiz-
able with only beam-splitter interactions and classical pumps.
Note that the interacting part here is not sufficiently slow to
achieve the fidelity 1.

The adiabatic requirement gc � �d for the effective Ising
interaction (19) has a strong effect on generating coherent
cluster states. To see this, we consider in Fig. 4 the influence
of gc on the values of different qualifiers for quantum states.

FIG. 4. Influence of the effective Ising interaction strength
(which controls the generation speed) gc on the coherent-cluster-
state generation (N = 2), as reflected by the fidelity, the purity, and
the cluster-state entanglement witness W . Here, the duration of the
pumping part is 3�−1

d , the two-photon pumping intensity is S = −1,
and the duration of the Ising interaction part is t = π/gc.

The duration of the pumping part is fixed to be 3�−1
d , which

is large enough according to Fig. 3. Note that the interaction
strength gc decides the speed of the cluster-state generation
because the interacting time is t = π/gc.

In Fig. 4(a), we can see that entanglement can always be
detected for different choices of �d/gc when a comparatively
good separable cat state has been generated in the pumping
part. The value of the qualifier decreases with growing �d/gc

for large gc, which seems to contradict the adiabatic require-
ment. However, note that the change in the entanglement
qualifier is not directly related to the quality of the cluster
state unless the threshold (W = 1) is crossed. In addition,
the qualifier W does not reach the ideal value of 2 in the
limit of vanishing gc. This can be traced back to two different
issues. First, the ideal coherent cluster state (13) is not a
perfect cluster state due to the overlap between |α〉 and | − α〉.
Second, the approximate separable cat state generated in the
pumping part is not sufficiently pure.

To better clarify these points, we show in Fig. 4(b) the
corresponding purity and fidelity evolution. The fidelity with
respect to an ideal coherent cluster state (green solid curve)
always increases with decreasing gc. This result is consistent
with the adiabatic requirement. The purity of the state (red
dashed curve) can provide more insight into this adiabatic
requirement. It is not surprising to see a nearly pure state in
the slow limit because in this limit the effective Ising inter-
action in Eq. (19) is equivalent to an exact Ising interaction
Hamiltonian. When gc is very large, the purity is also high. In
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FIG. 5. Influence of the two-photon pump intensity S on the ef-
fective Ising interaction stage of the coherent-cluster-state generation
(N = 2). The initial state is a two-mode separable cat state with
α = i

√
2S/�d.

this short-time limit, the two-photon loss has little influence
on the system state. However, the purity drops significantly
for moderate gc. In this regime, the nonadiabatic effects drive
the system out of the dark space generated by the two-photon
loss and the two-photon pump, so the purity is reduced by
the two-photon loss. Although a high purity does not ensure
a large qualifier W or higher entanglement, it may provide
more insight into the counterintuitive results displayed in
Fig. 4(a).

Next, we express the state within the effective spin space
according to Eq. (28) and calculate the fidelity of this reduced
state with respect to the reduced state of an ideal coherent
cluster state (13) [black dotted curve in Fig. 4(b)]. This re-
duced fidelity exhibits the same trend dependence versus gc

as the entanglement qualifier W . Although the state generated
with a large gc differs from the ideal coherent cluster state
(green solid curve), these two states become similar in the
reduced space (black dotted curve). Accordingly, the reduced
space appears robust to specific imperfections as the effective
spin does not depend on the details of the continuous variables
in the modular position space |x̄〉. In the slow limit, although
the states generated are very close to an ideal coherent cluster
state, the difference is enlarged in the reduced space.

From Fig. 4, we can conclude that the intuitive mapping
between the coherent states and the spins is, in general, cor-
rect. However, an exact mapping, as described by Eq. (28),
can, in general, provide more precise results.

In addition to the coupling strength gc, the amplitude of
the coherent state |α| can also influence the effective rotation.
Although a larger-scale |α| can make the state more vulnera-
ble to single-photon loss, it may also improve the cluster-state
generation. The adiabatic approximation can be improved due
to the coefficient gc/α, and the precision of the coherent-
to-spin mapping is influenced by the overlap |〈−α|α〉|. We
demonstrate this influence with the entanglement qualifiers W
for different pumping intensities S (recall that α = i

√
2S/�d)

in Fig. 5.

As the pumping intensity can also influence the quality
of the cat state generated for a given time [83], we do not
consider the pumping part and set the initial state to be a two-
mode separable cat state (17) with α = i

√
2S/�d and N = 2.

Figure 5 shows that the qualifier W significantly increases for
larger |S|. We stress that the value of W does not quantify
the amount of entanglement but merely ensures entanglement
when surpassing the threshold of 1. However, a larger W can
be more robust to single-photon loss if the influence of the
single-photon loss rate �s on W is continuous. Therefore,
there should be an optimal value of S for which the single-
photon loss is included.

B. The optimal parameters with single-photon loss

Catlike states are usually vulnerable to single-photon loss
[83–87]; similarly, the single-photon loss represents the main
detrimental effect in coherent-cluster-state generation. We de-
scribe the effects of the single-photon loss with the following
Lindblad terms:

Ls(ρ) =
2∑

n=1

�s

2
[2anρ(t )a†

n − a†
nanρ(t ) − ρ(t )a†

nan], (30)

where we assume the same single-photon loss rate �s for the
two modes in Fig. 6. We numerically simulate the process
described in Fig. 3 and show the value of the entanglement
qualifier W at the end of the evolution.

In Fig. 6(a), we consider a weak single-photon loss (�s =
0.01�d). In this case, the condition for entanglement genera-
tion is quite simple. When the pumping time Tp is short, we
need a longer interaction time π/gc. For a short interaction
time π/gc, a longer pumping time Tp is required. Extending
the duration for either the pumping part or the interacting
part does not prevent entanglement generation. This result is
similar to the ideal case: A higher-quality separable cat state
can be generated in the pumping stage with a longer time, and
weak interaction terms better satisfy the adiabatic condition.

In Fig. 6(b), the single-photon loss rate is � = 0.02�d,
which results in a different trend for entanglement genera-
tion. There are two boundary curves in Fig. 6(b). The lower
boundary is similar to the boundary in Fig. 6(a) except for
the large-gc limit, where increasing the duration of the inter-
action part can prevent entanglement generation. The upper
boundary is not shown in Fig. 6(a) but should also exist for
larger Tp and g−1

c . Note that the single-photon loss usually
prohibits entanglement in the long-time limit. For most of this
upper boundary, entanglement generation can be prevented by
increasing either π/gc or Tp. Therefore, the lower boundary
is related to the breakdown of the steady-state condition and
the adiabatic condition, so that parameters near this boundary
prefer a slower evolution; the upper boundary, in contrast,
is a consequence of the single-photon loss, so that a faster
evolution can improve the coherent-cluster-state generation.
The opposite trends at the two boundaries at large values of
gc can be seen as the result of the nonadiabatic effects and the
two-photon loss, indicated in Fig. 4(a).

In Fig. 6, we can see that the pumping times around
�dTp ∼ 1.5 are less affected by the single-photon loss. There-
fore, we choose two different values of �dTp and show the
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FIG. 6. Influence of the duration of the pumping stage and the
duration of the interaction stage on the coherent-cluster-state gen-
eration with the presence of single-photon loss. Depicted is the
cluster-state entanglement witness, where the black solid curves in-
dicate the entanglement detectable threshold. The initial state is a
vacuum state; the pumping strength is S = −1�d. The single-photon
loss rate is �s = 0.01�d for (a) and �s = 0.02�d for (b).

influence of the single-photon loss rate �s and the interaction
strength �d/gc in Fig. 7. In Figs. 7(a) and 7(b), the entangle-
ment boundaries have similar shapes, although entanglement
is generated with a higher single-photon loss rate in Fig. 7(a).
Therefore, there can be an optimal value of Tp while the mech-
anism for cluster-state generation remains the same. However,
the value of gc may influence the mechanism for cluster-state
generation, as both boundaries in Fig. 7 can be divided into
two parts. When �d/gc is smaller than 0.5, we see fast drops in
the boundary curves. After this value, the curves change less
significantly with �d/gc. Similar changes around �d/gc ∼ 0.5
are observed in Figs. 4–6. Note that the (approximate) coher-
ent cluster states generated in the fast limit are more robust
to single-photon loss, although they exhibit a reduced quality
in the ideal limit of vanishing single-photon loss. The highest
single-photon rate in Fig. 7, under which entanglement can
be generated, is about 0.03�d. This value is lower than that
for the entangled-cat-state generation [53] but at the same
order of magnitude. Therefore, the coherent-cluster-state gen-
eration, although being more vulnerable to single-photon

FIG. 7. Influence of the single-photon rate �d and the duration
of the interaction part on the generation of coherent cluster states
in the presence of single-photon loss. The initial state is a vacuum
state; the pumping strength is S = −1�d. The pumping duration is
Tp = 1.6�−1

d for (a) and Tp = 2�−1
d for (b).

loss compared to the entangled-cat-state generation, imposes
a similar requirement on the control of the single-photon
loss.

As the cluster-state generation is also affected by the two-
photon pumping intensity S, as shown in Fig. 5, we finally
consider the relation between S and the highest single-photon
loss rate �s under which entanglement is detectable. The
pumping duration is fixed to be 1.5�−1

d , which can generate
detectable entanglement for a wide range of gc in the presence
of single-photon loss according to Fig. 6. In Figs. 4–7, the
results change abruptly near gc ∼ 2�d, so we consider two
different values of the effective Ising interaction strength,
specifically, gc = �d/1.5 and gc = 20�d.

Figure 8 indicates the optimal values for the two-photon
pumping intensity in both cases, as expected in the previous
section. When the pumping intensity S is below the optimal
value, the entanglement generation is more sensitive to S. For
a moderate gc = �d/1.5, the optimal value of S is about �d.
The highest single-photon loss for entanglement generation
is about 0.02�d, which is not significantly different from the
results in Figs. 6 and 7. In addition to the higher tolerance
to single-photon loss shown for large values of gc in Fig. 8,
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FIG. 8. Influence of the single-photon loss rate �d and the two-
photon pumping intensity S on the generation of coherent cluster
states in the fast limit and the slow limit. The initial state is a
vacuum state; the pumping time is Tp = 1.5�−1

d . (a) The effective
Ising interacting is moderate, gc = �d/1.5. (b) The effective Ising
interacting is strong, gc = 20�d.

we can also find a shift of the optimal S to a larger value in
Fig. 8(b). This shift is the result of less single-photon loss due
to a shorter interaction duration π/gc. Note that the entangle-
ment qualifier W prefers large pumping intensities |S| in the
ideal case, as shown in Fig. 5.

In this section, we considered the coherent-cluster-state
generation in the presence of single-photon loss. We find that,
to achieve a higher tolerance to the single-photon loss, there
are optimal values of the pumping time Tp and the pumping
intensity S, which are both between �d and 2�d. A fast ef-
fective Ising interaction is always preferable in the presence
of single-photon loss, in spite of the detrimental nonadiabatic
effects.

C. Effects of nonequilibrium pumping

It has been shown that nonequilibrium pump fields can be
used in DOPO systems to improve the cat-state generation
[88]. We now demonstrate that a similar improvement can be
achieved for the generation of coherent cluster states.

The effects of the equilibrium model (2) and (3) can also
be realized by a cyclic model:

ρn+1 = Trb
{
e−iH I

nltnlρn ⊗ |αp〉c〈αp|ceiH I
nltnl

}
,

with

H I
nl =

2∑
n=1

gnl[b
†
na2

n + bn(a†
n)2],

|αp〉c = |αp〉 ⊗ |αp〉. (31)

Here, gnl is the nonlinear interaction strength, bn is the annihi-
lation operator of the pump mode of the nth DOPO mode, and
|αp〉c is the direct product of two pump-mode states. The loss
can be described by additional Lindblad terms in Eq. (31):

∂ρn(t )

∂t
= −i

[
H I

nl, ρn(t )
] + Ls(ρn(t )) + Lp(ρn(t )),

Ls(ρ) =
2∑

n=1

�s

2
[2anρ(t )a†

n − a†
nanρ(t ) − ρ(t )a†

nan],

Lp(ρ) =
2∑

n=1

�s

2
[2bnρ(t )b†

n − b†
nbnρ(t ) − ρ(t )b†

nbn],

(32)

with ρn(0) = ρn ⊗ |αp〉c〈αp|c and ρn+1 = Trb{ρn(tnl )}. The
amplitudes of the pump modes are chosen to generate steady
DOPO amplitudes αi = √

2. We set the duration of the non-
linear pumping for each cycle to be tnl = 0.5g−1

nl . Instead of
the pumping time Tp and the interaction time π/gc used in
the previous sections, we describe the duration of each part
with the number of pumping cycles Np and the number of
interaction cycles Ni. The initial state is assumed to be a
vacuum state.

In the pumping part, the system experiences the cyclic
dynamics (32) for Np cycles. In the interacting part, the system
dynamics is described by cycles composed of two parts. The
first part is described by Eq. (32), which contains single-
photon loss. The second part, which lasts for the time period
t = π/(gcNi ), consists of the beam-splitter interaction and
the classical pumping, as shown in Eq. (19). To simplify the
problem, we assume gc is sufficiently large that we can ignore
the influence of the single-photon loss in this part. Note that
the interaction can be adiabatic with a large gc if we have a
large Ni. After Ni cycles of interaction dynamics, we calcu-
late the entanglement qualifier W . For an easier comparison
with the adiabatic results described in Eqs. (2) and (3), we
assume the ratio between the adiabatic two-photon loss rate
�d and the nonlinear coupling intensity gnl is the same as
in the experiment [89], i.e., gnl = 15�d. However, note that
the nonequilibrium pumping cannot be characterized by an
effective two-photon loss rate �d.

In Fig. 9(a), we set (Np = 9), which is sufficiently large
to obtain a good two-mode separable cat state according to
our previous work [88], and consider the influence of the
number of interaction cycles Ni on the cluster-state entan-
glement witness. Similar to Fig. 7, a “fast” effective Ising
interaction is preferable for generating entanglement under
high single-photon loss rates �s. We find that the highest
tolerated single-photo loss rate is about 7 times larger by

023704-8



COHERENT-CLUSTER-STATE GENERATION IN NETWORKS … PHYSICAL REVIEW A 108, 023704 (2023)

FIG. 9. Performance of the coherent-cluster-state generation
with nonequilibrium pumps in the presence of single-photon loss.
(a) The number of pumping cycles is Np = 9. (b) Results correspond-
ing to Ni = 1 in (a) with different numbers of pumping cycles Np.

introducing the nonequilibrium pumping method. In Fig. 9(b),
we consider the influence of the number of pumping cycles
Np. The number of interacting cycles is set to be the optimal
value (Ni = 1) found in Fig. 9(a). The tolerance to the single-
photon loss can be further enhanced by choosing an optimal
Np according to Fig. 9(b). Note that the curves in Fig. 9 are not
smooth because both Np and Ni can take only integer values.

D. Discussion of the required parameters

Based on our numerical results, it can be concluded that
a minimum nonlinear coupling strength of approximately
gnl ≈ 20�s is required for generating coherent cluster states.
Achieving such a nonlinearity-to-loss ratio is challenging
in current CIMs and DOPO systems based on periodically
poled lithium niobate (PPLN) waveguides. Considering the
achievable parameters in PPLN, the highest nonlinear cou-
pling strength gnl ranges from 0.01�s to 0.1�s [90–92]. To
attain the required parameter range in PPLN systems, poten-
tial solutions include using higher-quality PPLN waveguides

or employing shorter optical pulses. Another approach is to
modify the structure of the existing CIMs, which would not
require significant improvements in experimental technology.
While current CIMs operate above threshold, it has been
successfully demonstrated that optical cluster states can be
generated in DOPO systems below threshold [25]. Therefore,
adjusting the working regime could potentially reduce the
parameter requirements. Alternatively, Josephson parametric
oscillators [93,94], known for their high nonlinearity-to-loss
ratio, could be utilized to construct CIMs in the microwave
regime.

IV. CONCLUSIONS

We investigated the generation of coherent cluster states
in DOPO networks with effective optical Ising interactions.
DOPO networks can produce coherent cluster states based on
the generation of separable cat states, beam-splitter interac-
tions, and classical pumping. These coherent cluster states
can be mapped to an effective spin Hilbert space formed by
modular variables. In this effective spin Hilbert space, we can
apply the entanglement criteria designed for spin systems to
assess the quality of the state generation in the presence of
detrimental effects, e.g., single-photon loss, overlap between
coherent states, or nonadiabatic effects.

As a paradigmatic example, we considered the case of two
modes, which can be expected to deliver lower bounds on the
parameter requirements. We applied the respective stabilizer
entanglement criterion to explore the parameter regime that
supports the coherent-cluster-state generation. Our results in-
dicate that the single-photon loss acceptable for cluster-state
generation must remain below about one third of the single-
photon loss that is acceptable for the entangled-cat-state
generation. In addition, we found that a nonequilibrium pump
can significantly raise the threshold for the coherent-cluster-
state generation, with tolerable single-photon loss rates that
are about one order of magnitude larger.

This work may help us to explore the quantum properties
of, and possibly to realize one-way quantum computation in,
DOPO networks, such as coherent Ising machines. Moreover,
we hope that our analysis can contribute to elucidating the
properties of coherent-state coding spaces.

ACKNOWLEDGMENTS

J.Q.Y. is partially supported by the National Key Re-
search and Development Program of China (Grant No.
2022YFA1405200) and the National Natural Science Foun-
dation of China (NSFC; Grants No. 92265202 and No.
11934010). F.N. is supported in part by Nippon Telegraph
and Telephone Corporation (NTT) Research, the Japan Sci-
ence and Technology Agency (JST) [via the Quantum Leap
Flagship Program (Q-LEAP) and Moonshot R&D Grant No.
JPMJMS2061], the Asian Office of Aerospace Research and
Development (AOARD; via Grant No. FA2386-20-1-4069),
and the Foundational Questions Institute Fund (FQXi) via
Grant No. FQXi-IAF19-06.

023704-9



ZHOU, GNEITING, YOU, AND NORI PHYSICAL REVIEW A 108, 023704 (2023)

[1] H. J. Briegel and R. Raussendorf, Persistent Entanglement in
Arrays of Interacting Particles, Phys. Rev. Lett. 86, 910 (2001).

[2] R. Raussendorf and H. J. Briegel, A One-Way Quantum Com-
puter, Phys. Rev. Lett. 86, 5188 (2001).

[3] D. E. Browne and T. Rudolph, Resource-Efficient Linear Opti-
cal Quantum Computation, Phys. Rev. Lett. 95, 010501 (2005).

[4] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C.
Ralph, and M. A. Nielsen, Universal Quantum Computation
with Continuous-Variable Cluster States, Phys. Rev. Lett. 97,
110501 (2006).

[5] M. Varnava, D. E. Browne, and T. Rudolph, Loss Tolerance
in One-Way Quantum Computation via Counterfactual Error
Correction, Phys. Rev. Lett. 97, 120501 (2006).

[6] J. L. O’Brien, Optical quantum computing, Science 318, 1567
(2007).

[7] T. Tanamoto, Y.-X. Liu, X. Hu, and F. Nori, Efficient Quantum
Circuits for One-Way Quantum Computing, Phys. Rev. Lett.
102, 100501 (2009).

[8] H. Wang, C.-P. Yang, and F. Nori, Robust and scalable opti-
cal one-way quantum computation, Phys. Rev. A 81, 052332
(2010).

[9] N. C. Menicucci, Fault-Tolerant Measurement-Based Quantum
Computing with Continuous-Variable Cluster States, Phys. Rev.
Lett. 112, 120504 (2014).

[10] M. J. Hoban, J. J. Wallman, H. Anwar, N. Usher, R.
Raussendorf, and D. E. Browne, Measurement-Based Classical
Computation, Phys. Rev. Lett. 112, 140505 (2014).

[11] Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin,
Resource Costs for Fault-Tolerant Linear Optical Quantum
Computing, Phys. Rev. X 5, 041007 (2015).

[12] D. Buterakos, E. Barnes, and S. E. Economou, Deterministic
Generation of All-Photonic Quantum Repeaters from Solid-
State Emitters, Phys. Rev. X 7, 041023 (2017).

[13] Z.-P. Yang, H.-Y. Ku, A. Baishya, Y.-R. Zhang, A. F. Kockum,
Y.-N. Chen, F.-L. Li, J.-S. Tsai, and F. Nori, Deterministic one-
way logic gates on a cloud quantum computer, Phys. Rev. A
105, 042610 (2022).

[14] M. Rosenkranz and D. Jaksch, Parameter estimation with clus-
ter states, Phys. Rev. A 79, 022103 (2009).

[15] Y. Wang and K. Fang, Continuous-variable graph states for
quantum metrology, Phys. Rev. A 102, 052601 (2020).

[16] W. Dür and H.-J. Briegel, Stability of Macroscopic Entangle-
ment under Decoherence, Phys. Rev. Lett. 92, 180403 (2004).

[17] K. Fukui, W. Asavanant, and A. Furusawa, Temporal-mode
continuous-variable three-dimensional cluster state for topo-
logically protected measurement-based quantum computation,
Phys. Rev. A 102, 032614 (2020).

[18] T. Tanamoto, Y.-X. Liu, S. Fujita, X. Hu, and F. Nori, Producing
Cluster States in Charge Qubits and Flux Qubits, Phys. Rev.
Lett. 97, 230501 (2006).

[19] J. Q. You, X.-B. Wang, T. Tanamoto, and F. Nori, Efficient one-
step generation of large cluster states with solid-state circuits,
Phys. Rev. A 75, 052319 (2007).

[20] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S.
Yuan, A. Goebel, T. Yang, and J.-W. Pan, Experimental entan-
glement of six photons in graph states, Nat. Phys. 3, 91 (2007).

[21] X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, and K. Peng, Experi-
mental Preparation of Quadripartite Cluster and Greenberger-
Horne-Zeilinger Entangled States for Continuous Variables,
Phys. Rev. Lett. 98, 070502 (2007).

[22] M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, Ex-
perimental generation of four-mode continuous-variable cluster
states, Phys. Rev. A 78, 012301 (2008).

[23] R. Kaltenbaek, J. Lavoie, B. Zeng, S. D. Bartlett, and K. J.
Resch, Optical one-way quantum computing with a simulated
valence-bond solid, Nat. Phys. 6, 850 (2010).

[24] Y. Miwa, R. Ukai, J.-I. Yoshikawa, R. Filip, P. van Loock,
and A. Furusawa, Demonstration of cluster-state shaping and
quantum erasure for continuous variables, Phys. Rev. A 82,
032305 (2010).

[25] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong,
T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C.
Menicucci, and A. Furusawa, Ultra-large-scale continuous-
variable cluster states multiplexed in the time domain, Nat.
Photonics 7, 982 (2013).

[26] C. Reimer, S. Sciara, P. Roztocki, M. Islam, L. Romero Cortés,
Y. Zhang, B. Fischer, S. Loranger, R. Kashyap, A. Cino, S. T.
Chu, B. E. Little, D. J. Moss, L. Caspani, W. J. Munro, J.
Azana, M. Kues, and R. Morandotti, High-dimensional one-
way quantum processing implemented on d-level cluster states,
Nat. Phys. 15, 148 (2019).

[27] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz,
O. Kenneth, N. H. Lindner, and D. Gershoni, Deterministic
generation of a cluster state of entangled photons, Science 354,
434 (2016).

[28] W. Asavanant, Y. Shiozawa, S. Yokoyama, B.
Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J.
Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Furusawa,
Generation of time-domain-multiplexed two-dimensional
cluster state, Science 366, 373 (2019).

[29] K. V. Petrovnin, M. R. Perelshtein, T. Korkalainen, V.
Vesterinen, I. Lilja, G. S. Paraoanu, and P. J. Hakonen, Genera-
tion and structuring of multipartite entanglement in a Josephson
parametric system, Adv. Quantum Technol. 6, 2200031 (2023).

[30] J. Zhang and S. L. Braunstein, Continuous-variable Gaussian
analog of cluster states, Phys. Rev. A 73, 032318 (2006).

[31] P. van Loock, C. Weedbrook, and M. Gu, Building Gaussian
cluster states by linear optics, Phys. Rev. A 76, 032321 (2007).

[32] P. Wang, M. Chen, N. C. Menicucci, and O. Pfister, Weaving
quantum optical frequency combs into continuous-variable hy-
percubic cluster states, Phys. Rev. A 90, 032325 (2014).

[33] R. Yang, J. Zhang, I. Klich, C. González-Arciniegas, and O.
Pfister, Spatiotemporal graph states from a single optical para-
metric oscillator, Phys. Rev. A 101, 043832 (2020).

[34] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an
oscillator, Phys. Rev. A 64, 012310 (2001).

[35] P. P. Munhoz, F. L. Semião, A. Vidiella-Barranco, and J. A.
Roversi, Cluster-type entangled coherent states, Phys. Lett. A
372, 3580 (2008).

[36] N. B. An and T. T. Hoa, Generation of free-travelling four-mode
cluster-type entangled coherent states, Phys. Lett. A 373, 2601
(2009).

[37] L. Tang, Generation of cluster-type entangled coherent states,
J. Phys. B 42, 085502 (2009).

[38] S. Utsunomiya, K. Takata, and Y. Yamamoto, Mapping of Ising
models onto injection-locked laser systems, Opt. Express 19,
18091 (2011).

[39] Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto,
Coherent Ising machine based on degenerate optical parametric
oscillators, Phys. Rev. A 88, 063853 (2013).

023704-10

https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1103/PhysRevLett.97.120501
https://doi.org/10.1126/science.1142892
https://doi.org/10.1103/PhysRevLett.102.100501
https://doi.org/10.1103/PhysRevA.81.052332
https://doi.org/10.1103/PhysRevLett.112.120504
https://doi.org/10.1103/PhysRevLett.112.140505
https://doi.org/10.1103/PhysRevX.5.041007
https://doi.org/10.1103/PhysRevX.7.041023
https://doi.org/10.1103/PhysRevA.105.042610
https://doi.org/10.1103/PhysRevA.79.022103
https://doi.org/10.1103/PhysRevA.102.052601
https://doi.org/10.1103/PhysRevLett.92.180403
https://doi.org/10.1103/PhysRevA.102.032614
https://doi.org/10.1103/PhysRevLett.97.230501
https://doi.org/10.1103/PhysRevA.75.052319
https://doi.org/10.1038/nphys507
https://doi.org/10.1103/PhysRevLett.98.070502
https://doi.org/10.1103/PhysRevA.78.012301
https://doi.org/10.1038/nphys1777
https://doi.org/10.1103/PhysRevA.82.032305
https://doi.org/10.1038/nphoton.2013.287
https://doi.org/10.1038/s41567-018-0347-x
https://doi.org/10.1126/science.aah4758
https://doi.org/10.1126/science.aay2645
https://doi.org/10.1002/qute.202200031
https://doi.org/10.1103/PhysRevA.73.032318
https://doi.org/10.1103/PhysRevA.76.032321
https://doi.org/10.1103/PhysRevA.90.032325
https://doi.org/10.1103/PhysRevA.101.043832
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1016/j.physleta.2008.02.009
https://doi.org/10.1016/j.physleta.2009.05.059
https://doi.org/10.1088/0953-4075/42/8/085502
https://doi.org/10.1364/OE.19.018091
https://doi.org/10.1103/PhysRevA.88.063853


COHERENT-CLUSTER-STATE GENERATION IN NETWORKS … PHYSICAL REVIEW A 108, 023704 (2023)

[40] A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto,
Network of time-multiplexed optical parametric oscillators as a
coherent Ising machine, Nat. Photonics 8, 937 (2014).

[41] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C.
Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K.
Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto,
A fully programmable 100-spin coherent Ising machine with
all-to-all connections, Science 354, 614 (2016).

[42] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T.
Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu,
O. Tadanaga, H. Takenouchi, K. Aihara, K. Kawarabayashi,
K. Inoue, S. Utsunomiya, and H. Takesue, A coherent Ising
machine for 2000-node optimization problems, Science 354,
603 (2016).

[43] T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and
H. Takesue, Large-scale Ising spin network based on degenerate
optical parametric oscillators, Nat. Photonics 10, 415 (2016).

[44] Y. Yamamoto, K. Aihara, T. Leleu, K.-I. Kawarabayashi, S.
Kako, M. Fejer, K. Inoue, and H. Takesue, Coherent Ising
machines-optical neural networks operating at the quantum
limit, npj Quantum Inf. 3, 49 (2017).

[45] A. Yamamura, K. Aihara, and Y. Yamamoto, Quantum model
for coherent Ising machines: Discrete-time measurement feed-
back formulation, Phys. Rev. A 96, 053834 (2017).

[46] N. Mohseni, P. L. McMahon, and T. Byrnes, Ising machines
as hardware solvers of combinatorial optimization problems,
arXiv:2204.00276v1.

[47] C. Leefmans, A. Dutt, J. Williams, L. Yuan, M. Parto, F. Nori,
S. Fan, and A. Marandi, Topological dissipation in a time-
multiplexed photonic resonator network, Nat. Phys. 18, 442
(2022).

[48] M. Parto, C. Leefmans, J. Williams, F. Nori, and A. Marandi,
Non-Abelian effects in dissipative photonic topological lattices,
Nat. Commun. 14, 1440 (2023).

[49] P. D. Drummond, K. J. McNeil, and D. F. Walls, Non-
equilibrium transitions in sub/second harmonic generation, Opt.
Acta 27, 321 (1980).

[50] A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C.
Fabre, and G. Camy, Observation of Quantum Noise Reduction
on Twin Laser Beams, Phys. Rev. Lett. 59, 2555 (1987).

[51] P. Kinsler and P. D. Drummond, Quantum dynamics of the
parametric oscillator, Phys. Rev. A 43, 6194 (1991).

[52] H. Deng, D. Erenso, R. Vyas, and S. Singh, Entanglement,
Interference, and Measurement in a Degenerate Parametric Os-
cillator, Phys. Rev. Lett. 86, 2770 (2001).

[53] Z.-Y. Zhou, C. Gneiting, J. Q. You, and F. Nori, Generating and
detecting entangled cat states in dissipatively coupled degen-
erate optical parametric oscillators, Phys. Rev. A 104, 013715
(2021).

[54] M. Borhani and D. Loss, Cluster states from Heisenberg inter-
actions, Phys. Rev. A 71, 034308 (2005).

[55] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[56] G. Tóth, Entanglement detection in optical lattices of bosonic
atoms with collective measurements, Phys. Rev. A 69, 052327
(2004).

[57] M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement
in graph states, Phys. Rev. A 69, 062311 (2004).

[58] M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H.
Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, and

A. Sanpera, Experimental Detection of Multipartite Entangle-
ment Using Witness Operators, Phys. Rev. Lett. 92, 087902
(2004).

[59] N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin,
and H. Weinfurter, Experimental Analysis of a Four-Qubit Pho-
ton Cluster State, Phys. Rev. Lett. 95, 210502 (2005).

[60] G. Tóth and O. Gühne, Entanglement detection in the stabilizer
formalism, Phys. Rev. A 72, 022340 (2005).

[61] G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V.
Berardi, Realization and Characterization of a Two-Photon
Four-Qubit Linear Cluster State, Phys. Rev. Lett. 98, 180502
(2007).

[62] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474,
1 (2009).

[63] Y. Aharonov, H. Pendleton, and A. Petersen, Modular variables
in quantum theory, Int. J. Theor. Phys. 2, 213 (1969).

[64] P. Raynal, A. Kalev, J. Suzuki, and B.-G. Englert, Encoding
many qubits in a rotor, Phys. Rev. A 81, 052327 (2010).

[65] A. Ketterer, A. Keller, S. P. Walborn, T. Coudreau, and P.
Milman, Quantum information processing in phase space:
A modular variables approach, Phys. Rev. A 94, 022325
(2016).

[66] C. Flühmann, V. Negnevitsky, M. Marinelli, and J. P. Home,
Sequential Modular Position and Momentum Measurements of
a Trapped Ion Mechanical Oscillator, Phys. Rev. X 8, 021001
(2018).

[67] G. Pantaleoni, B. Q. Baragiola, and N. C. Menicucci, Modu-
lar Bosonic Subsystem Codes, Phys. Rev. Lett. 125, 040501
(2020).

[68] G. Pantaleoni, B. Q. Baragiola, and N. C. Menicucci, Hidden
qubit cluster states, Phys. Rev. A 104, 012431 (2021).

[69] C. Gneiting and K. Hornberger, Detecting Entanglement in
Spatial Interference, Phys. Rev. Lett. 106, 210501 (2011).

[70] M. A. D. Carvalho, J. Ferraz, G. F. Borges, P.-L. de Assis, S.
Pádua, and S. P. Walborn, Experimental observation of quantum
correlations in modular variables, Phys. Rev. A 86, 032332
(2012).

[71] C. Gneiting and K. Hornberger, Nonlocal Young tests with
Einstein-Podolsky-Rosen-correlated particle pairs, Phys. Rev.
A 88, 013610 (2013).

[72] J. C. G. Biniok, P. Busch, and J. Kiukas, Uncertainty in the
context of multislit interferometry, Phys. Rev. A 90, 022115
(2014).

[73] M. R. Barros, O. J. Farías, A. Keller, T. Coudreau, P. Milman,
and S. P. Walborn, Detecting multipartite spatial entanglement
with modular variables, Phys. Rev. A 92, 022308 (2015).

[74] H. D. Simaan and R. Loudon, Off-diagonal density matrix for
single-beam two-photon absorbed light, J. Phys. A 11, 435
(1978).

[75] L. Gilles and P. L. Knight, Two-photon absorption and nonclas-
sical states of light, Phys. Rev. A 48, 1582 (1993).

[76] L. Gilles, B. M. Garraway, and P. L. Knight, Generation of
nonclassical light by dissipative two-photon processes, Phys.
Rev. A 49, 2785 (1994).

[77] V. V. Dodonov and S. S. Mizrahi, Competition between one-
and two-photon absorption processes, J. Phys. A 30, 2915
(1997).

[78] E. S. Guerra, B. M. Garraway, and P. L. Knight, Two-photon
parametric pumping versus two-photon absorption: A quantum
jump approach, Phys. Rev. A 55, 3842 (1997).

023704-11

https://doi.org/10.1038/nphoton.2014.249
https://doi.org/10.1126/science.aah5178
https://doi.org/10.1126/science.aah4243
https://doi.org/10.1038/nphoton.2016.68
https://doi.org/10.1038/s41534-017-0048-9
https://doi.org/10.1103/PhysRevA.96.053834
http://arxiv.org/abs/arXiv:2204.00276v1
https://doi.org/10.1038/s41567-021-01492-w
https://doi.org/10.1038/s41467-023-37065-z
https://doi.org/10.1080/713820226
https://doi.org/10.1103/PhysRevLett.59.2555
https://doi.org/10.1103/PhysRevA.43.6194
https://doi.org/10.1103/PhysRevLett.86.2770
https://doi.org/10.1103/PhysRevA.104.013715
https://doi.org/10.1103/PhysRevA.71.034308
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevA.69.052327
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1103/PhysRevLett.92.087902
https://doi.org/10.1103/PhysRevLett.95.210502
https://doi.org/10.1103/PhysRevA.72.022340
https://doi.org/10.1103/PhysRevLett.98.180502
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1007/BF00670008
https://doi.org/10.1103/PhysRevA.81.052327
https://doi.org/10.1103/PhysRevA.94.022325
https://doi.org/10.1103/PhysRevX.8.021001
https://doi.org/10.1103/PhysRevLett.125.040501
https://doi.org/10.1103/PhysRevA.104.012431
https://doi.org/10.1103/PhysRevLett.106.210501
https://doi.org/10.1103/PhysRevA.86.032332
https://doi.org/10.1103/PhysRevA.88.013610
https://doi.org/10.1103/PhysRevA.90.022115
https://doi.org/10.1103/PhysRevA.92.022308
https://doi.org/10.1088/0305-4470/11/2/018
https://doi.org/10.1103/PhysRevA.48.1582
https://doi.org/10.1103/PhysRevA.49.2785
https://doi.org/10.1088/0305-4470/30/9/008
https://doi.org/10.1103/PhysRevA.55.3842


ZHOU, GNEITING, YOU, AND NORI PHYSICAL REVIEW A 108, 023704 (2023)

[79] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard,
R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dy-
namically protected cat-qubits: A new paradigm for uni-
versal quantum computation, New J. Phys. 16, 045014
(2014).

[80] A. Miranowicz, J. Bajer, M. Paprzycka, Y.-X. Liu, A. M.
Zagoskin, and F. Nori, State-dependent photon blockade via
quantum-reservoir engineering, Phys. Rev. A 90, 033831
(2014).

[81] Q. Guo, R. Sekine, L. Ledezma, R. Nehra, D. J. Dean, A. Roy,
R. M. Gray, S. Jahani, and A. Marandi, Femtojoule femtosec-
ond all-optical switching in lithium niobate nanophotonics, Nat.
Photonics 16, 625 (2022).

[82] Y. Aharonov, H. Pendleton, and A. Petersen, Deterministic
quantum interference experiments, Int. J. Theor. Phys. 3, 443
(1970).

[83] W. Qin, A. Miranowicz, H. Jing, and F. Nori, Generating Long-
Lived Macroscopically Distinct Superposition States in Atomic
Ensembles, Phys. Rev. Lett. 127, 093602 (2021).

[84] S. Ashhab and F. Nori, Qubit-oscillator systems in
the ultrastrong-coupling regime and their potential for
preparing nonclassical states, Phys. Rev. A 81, 042311
(2010).

[85] W. F. Braasch, O. D. Friedman, A. J. Rimberg, and M. P.
Blencowe, Wigner current for open quantum systems, Phys.
Rev. A 100, 012124 (2019).

[86] R. Y. Teh, P. D. Drummond, and M. D. Reid, Overcoming
decoherence of Schrödinger cat states formed in a cavity using
squeezed-state inputs, Phys. Rev. Res. 2, 043387 (2020).

[87] Y.-H. Chen, W. Qin, X. Wang, A. Miranowicz, and F.
Nori, Shortcuts to Adiabaticity for the Quantum Rabi Model:

Efficient Generation of Giant Entangled Cat States via Paramet-
ric Amplification, Phys. Rev. Lett. 126, 023602 (2021).

[88] Z.-Y. Zhou, C. Gneiting, W. Qin, J. Q. You, and F. Nori, Enhanc-
ing dissipative cat-state generation via nonequilibrium pump
fields, Phys. Rev. A 106, 023714 (2022).

[89] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M.
Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H.
Devoret, Confining the state of light to a quantum manifold by
engineered two-photon loss, Science 347, 853 (2015).

[90] R. Hamerly, A. Marandi, M. Jankowski, M. M. Fejer, Y.
Yamamoto, and H. Mabuchi, Reduced models and design prin-
ciples for half-harmonic generation in synchronously pumped
optical parametric oscillators, Phys. Rev. A 94, 063809 (2016).

[91] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang,
B. Desiatov, M. M. Fejer, and M. Lončar, Ultrahigh-efficiency
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