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The theory of optimal quantum control serves to identify time-dependent control Hamiltonians that efficiently
produce desired target states. As such, it plays an essential role in the successful design and development of
quantum technologies. However, often the delivered control pulses are exceedingly sensitive to small perturba-
tions, which can make it hard if not impossible to reliably deploy these in experiments. Robust quantum control
aims at mitigating this issue by finding control pulses that uphold their capacity to reproduce the target states
even in the presence of pulse perturbations. However, finding such robust control pulses is generically hard,
since the assessment of control pulses requires the inclusion of all possible distorted versions in the evaluation.
Here we show that robust control pulses can be identified based on disorder-dressed evolution equations. The
latter capture the effect of disorder, which here stands for the pulse perturbations, in terms of quantum master
equations describing the evolution of the disorder-averaged density matrix. In this approach to robust control,
the purities of the final states indicate the robustness of the underlying control pulses, and robust control pulses
are singled out if the final states are pure (and coincide with the target states). We show that this principle can be
successfully employed to find robust control pulses. To this end, we adapt Krotov’s method for disorder-dressed
evolution and demonstrate its application with several single-qubit control tasks.
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I. INTRODUCTION

The increasingly precise control of individual quantum
systems has brought into reach the active harnessing of quan-
tum properties towards quantum technologies with a tangible
quantum advantage. Potential applications range from quan-
tum sensing [1] to quantum communication [2,3], quantum
simulation [4–6], and quantum computation [7,8]. Promising
platforms [9] that are currently under intense development
include, for instance, superconducting circuits, trapped ions,
quantum dots, ultracold atoms in optical lattices, and nitrogen-
vacancy centers.

Besides shielding devices from the detrimental effect of
environmental decoherence, the accurate and efficient control
of systems’ quantum dynamics is an indispensable prerequi-
site for the successful deployment of quantum technologies.
This is the objective of optimal quantum control, which aims
at identifying optimal control pulses such that the resulting
Hamiltonians generate a desired quantum evolution [10–14].
Such control pulses, which often correspond to pulses of ex-
ternal electromagnetic fields applied to the quantum systems,
lie, for instance, at the heart of the realization of quantum logic
gates in the circuit model of quantum computation.

While optimal control pulses can, in rare cases, be
determined analytically, one typically must resort to nu-
merical means [12,15]. Numerical approaches include, e.g.,
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the Krotov [16–19], the gradient ascent pulse engineer-
ing (GRAPE) [20], and the chopped random-basis (CRAB)
[21,22] algorithms. Various experiments have successfully de-
ployed optimal control pulses obtained through these methods
[23–27]. However, such numerically obtained control pulses
in general prohibit a transparent interpretation, which makes
it hard if not impossible to assess their performance under
perturbations.

Under realistic experimental conditions, we must ex-
pect that imprecise device control and uncontrolled external
influences, e.g., stray fields, limit the accurate implemen-
tation of control pulses, resulting in deviations from the
desired dynamics. Robust quantum control aims to mitigate
the impact of such noise and disorder by identifying con-
trol pulses that uphold their performance even under the
presence of perturbations (see, e.g., [28–44]). Robust con-
trol thus relies on the insight that control pulses are not
unique, which gives us the freedom to further select them for
robustness.

Various approaches to robust quantum control have been
proposed, including those adapted from classical control the-
ory [45–47]. A common and intuitive strategy to numerically
find robust control pulses relies on sampling-based ensem-
ble optimization, where the average fidelities over randomly
drawn ensembles of perturbed pulses are compared for dif-
ferent unperturbed pulses [36–38,48]; robust pulses are then
identified as those which maximize the average fidelity with
the target state. Analytical robust control solutions for special
cases have been developed, e.g., in the context of shortcuts to
adiabaticity [33,49].
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Here we propose a deterministic method for the identi-
fication of robust control pulses based on the formalism of
disorder-dressed quantum evolution. In this framework, which
holds in the perturbative limit of weak pulse perturbations,
an evolution equation for the disorder-averaged quantum state
is formulated, where the disorder here stands for the pulse
perturbations [50,51] (earlier versions are found in [52,53]
and applications to condensed matter systems are described,
e.g., in [54–57]). Even if each disorder realization follows a
coherent quantum evolution (i.e., is described as an isolated
quantum system, where a pure state remains pure), the dy-
namics of the disorder-averaged state is in general incoherent
and hence is captured by an (in general non-Markovian) quan-
tum master equation. The loss of coherence, or equivalently
purity, of the disorder-averaged state then reflects the degree
of divergence among the different disorder realizations. This
directly leads to the key insight for our application to robust
control: A control pulse can be identified as robust if the purity
of the disorder-averaged state revives when the control pulse
approaches its completion. We use this principle in order to
optimize control pulses based directly on the disorder-dressed
evolution (instead of the Schrödinger equation); pulses that
are optimized this way are automatically robust, removing the
need for a separate ensemble search for robustness.

To formulate our approach, we first adapt, in Sec. II, the
disorder-dressed master equation (DDME) [51] to the con-
text of optimal control, where the disorder describes small
perturbations of the control pulse. This can be seen as a
generalization to the DDME derived in [51], where we now
also include time-dependent pulse perturbations. In Sec. III
we then present an algorithm, based on the well-known Kro-
tov method, which numerically finds optimal control pulses
that maximize the final-time fidelity between the disorder-
averaged state and the pure target state. As we will show,
the standard Krotov method must now be generalized to take
the disorder-induced incoherent contributions to the DDME
into account. While similar in spirit to ensemble optimization,
there is no explicit average over random disorder realizations
involved, as the DDME inherently describes the effect of the
disorder average. In Sec. IV we then demonstrate the viability
of our optimization algorithm with three paradigmatic single-
qubit operations that are commonly performed as quantum
logic gates: a Z gate, an X gate, and a Hadamard gate. In
each example, we observe the purity revivals predicted by
the DDME-optimized control pulses and we show how this
results in significantly increased target-state fidelities com-
pared to control pulses that are naively optimized based on
the Schrödinger equation (not taking pulse perturbations into
consideration).

II. DISORDER-DRESSED EVOLUTION FROM PULSE
PERTURBATIONS

We now derive the disorder-dressed master equation for
general time-dependent Hamiltonians and disorder potentials.
The latter are subsequently identified with pulse perturbations
in the context of optimal control. The (in general) mixed
density matrix that solves this equation describes the ensem-
ble average over a collection of pulse perturbations and thus
comprises the disorder effect statistically robustly in a single

quantum state. We assume that the effect of pulse perturba-
tions dominates over environmental decoherence and hence
single disorder realizations can be described as closed quan-
tum systems.

We model a disordered quantum system as an ensemble
{(Ĥε (t ), pε )} of perturbed Hamiltonians Ĥε (t ), each asso-
ciated with its corresponding probability of occurrence pε ,
where ε denotes a discrete or continuous index over the set
of disorder realizations. For the sake of concreteness, we
consider, unless specified otherwise, ε to be continuous.

We derive the DDME following [51], but now generalized
to time-dependent Hamiltonians and perturbations of the form

Ĥε (t ) = ˆ̄H (t ) + V̂ε (t ), (1)

where the mean Hamiltonian ˆ̄H (t ) ≡ ∫
dε pεĤε (t ) represents

the desired Hamiltonian giving rise to the intended dynamics
and the deviations V̂ε (t ) represent time-dependent perturba-
tions (usually denoted disorder potentials) satisfying∫

dε pεV̂ε (t ) = 0 ∀ t . (2)

We first derive a general form of the DDME based on these
definitions and later specify ˆ̄H (t ) and V̂ε (t ) to arrive at the
DDME that can be interpreted in the context of pulse pertur-
bations in optimal control.

A single realization ρ̂ε (t ) within the ensemble follows a
closed-system evolution and can thus be described by the von
Neumann equation

∂t ρ̂ε (t ) = − i

h̄
[Ĥε (t ), ρ̂ε (t )] (3)

and all realizations evolve from the same initial state ρ̂ε (0) =
ρ̂0. To discuss formal solutions of (3), we introduce the
time-evolution operator for some time-dependent Hamilto-
nian Ĥ (t ),

Û (tf, ti ) = T exp

(
− i

h̄

∫ tf

ti

dt ′Ĥ (t ′)
)

, (4)

where T denotes time ordering and we use the shorthand nota-
tion Û (tf ) ≡ Û (tf, 0). With this convention, the time-evolution
operators generated by the Hamiltonians ˆ̄H and Ĥε (t ) are
denoted by ˆ̄U (tf, ti ) and Ûε (tf, ti ) from here on.

We seek an evolution equation for the disorder-averaged
quantum state

ˆ̄ρ(t ) ≡
∫

dε pε ρ̂ε (t ) =
∫

dε pεÛε (t )ρ̂0Û
†
ε (t ), (5)

which statistically describes the effect of the perturbations
without resorting to individual disorder realizations. To this
end, we define the individual offsets of ρ̂ε (t ) from the
disorder-averaged state, denoted by �ρ̂ε (t ), so that

ρ̂ε (t ) = ˆ̄ρ(t ) + �ρ̂ε (t ). (6)

By inserting (1) and (6) into (3), we obtain

∂t ρ̂ε (t ) = − i

h̄
[ ˆ̄H (t ), ˆ̄ρ(t )] − i

h̄
[V̂ε (t ), ˆ̄ρ(t )]

− i

h̄
[ ˆ̄H (t ),�ρ̂ε (t )] − i

h̄
[V̂ε (t ),�ρ̂ε (t )]. (7)
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Taking the ensemble average as in (5) then yields

∂t ˆ̄ρ(t ) = − i

h̄
[ ˆ̄H (t ), ˆ̄ρ(t )] − i

h̄

∫
dε pε[V̂ε (t ),�ρ̂ε (t )]. (8)

This shows that the dynamics of the disorder-averaged state
is coupled to the individual offsets �ρ̂ε (t ) caused by the
disorder potentials V̂ε (t ), which gives rise to an incoherent
evolution term that can generally lead to a loss of coherence.
The evolution equations for the offsets �ρ̂ε (t ) can be obtained
by taking the time derivatives in (6) and inserting (8), yielding

∂t�ρ̂ε (t ) + i

h̄
[Ĥε (t ),�ρ̂ε (t )]

= − i

h̄
[V̂ε (t ), ˆ̄ρ(t )] + i

h̄

∫
dε′ pε′[V̂ε′ (t ),�ρ̂ε′ (t )]. (9)

In the short-time limit, the offsets to the disorder-averaged
state are sufficiently small so that we can approximate
�ρ̂ε (t ) ≈ 0. By inserting this into (9) and integrating, we im-
mediately obtain �ρ̂ε (t ) = − it

h̄ [V̂ε (t ), ˆ̄ρ(t )], which can then
be substituted into (8) to recover the short-time master equa-
tion derived in [52], now generalized to the time-dependent
case.

The source terms on the right-hand side of (9) exhibit
contributions from the disorder-averaged state and from the
coupling to the offsets of other disorder realizations. With the
initial condition �ρ̂ε (0) = 0, the formal solution of (9) reads,
using Green’s formalism,

�ρ̂ε (t ) =
∫ t

0
dt ′Ûε (t, t ′)

(
− i

h̄
[V̂ε (t ′), ˆ̄ρ(t ′)]

+ i

h̄

∫
dε′ pε′[V̂ε′ (t ′),�ρ̂ε′ (t ′)]

)
Û †

ε (t, t ′). (10)

For the control problem to be meaningful, we can assume that
the disorder is weak compared to the intended Hamiltonian,
and hence we can approximate (10) to first order in V̂ε (t ),
which includes Ûε (t, t ′) ≈ ˆ̄U (t, t ′), so that

�ρ̂ε (t ) ≈ − i

h̄

∫ t

0
dt ′[ ˆ̃Vε (t, t ′), ˆ̄ρ(t )], (11)

where we defined ˆ̃Vε (t, t ′) ≡ ˆ̄U (t, t ′)V̂ε (t ′) ˆ̄U †(t, t ′).
Finally, by substituting (11) into (8), we obtain the general

form of the DDME,

∂t ˆ̄ρ(t ) = − i

h̄
[ ˆ̄H (t ), ˆ̄ρ(t )]

− 1

h̄2

∫
dε pε

∫ t

0
dt ′[V̂ε (t ), [ ˆ̃Vε (t, t ′), ˆ̄ρ(t )]]. (12)

This equation, which holds for general time-dependent Hamil-
tonians, will be the basis for our analysis of robust quantum
control. Apart from the assumption that the disorder poten-
tials can be treated perturbatively, the derivation is general,
in particular with respect to the dimension of the system and
the control pulses. In contrast to the disorder-dressed master
equation in the static limit (i.e., time-independent Hamilto-
nians and correlations within individual disorder realizations
are temporally unbounded), derived in [51], the evolution
(12) allows for time-dependent intended Hamiltonians and
disorder potentials, thus broadening the scope of analysis to

time-dependent control pulses and perturbations with possibly
finite temporal correlations.

Let us remark that, similar to the time-independent case
derived in [51], the evolution equation (12) can be given the
algebraic structure of the Lindblad equation, which then al-
lows one to assess the non-Markovian nature of the evolution
and its positivity.

By interpreting the disorder in terms of pulse perturbations,
we can now write the intended Hamiltonian and the disorder
potentials explicitly in terms of control pulses

ˆ̄H (t ) = Ĥ0 +
M∑

m=1

fm(t )Ĥm (13)

and their associated perturbations

V̂ε (t ) =
M∑

m=1

gε,m(t )Ĥm, (14)

where M denotes the number of control pulses. Here Ĥ0 rep-
resents the drift Hamiltonian and {Ĥm}M

m=1 is a set of control
Hamiltonians with associated control pulses { fm(t )}M

m=1. Each
of the control pulses is subject to a small time-dependent
perturbation gε,m(t ) � fm(t ), where both gε,m(t ) and fm(t ) are
considered to be real functions in this work. By inserting the
resulting disordered Hamiltonian into (12), we obtain

∂t ˆ̄ρ(t ) = − i

h̄
[ ˆ̄H (t ), ˆ̄ρ(t )]

− 1

h̄2

M∑
m,n=1

∫ t

0
dt ′Cm,n(t, t ′)[Ĥm, [ ˆ̃Hn(t, t ′), ˆ̄ρ(t )]],

(15)

where ˆ̃Hn(t, t ′) ≡ ˆ̄U (t, t ′)Ĥn
ˆ̄U †(t, t ′) and Cm,n(t, t ′) repre-

sents the correlations between the perturbations of the pulses
m and n, given by

Cm,n(t, t ′) ≡
∫

dε pεgε,m(t )gε,n(t ′). (16)

Note that, while the first term of (15) corresponds to the
unitary evolution generated by the intended Hamiltonian, the
presence of disorder gives rise to effective decoherence, as
described by the second term. In the remainder, we refer to
(15) as the DDME.

We remark that the perturbative nature of the DDME im-
plies a finite temporal validity range that depends on the
amplitudes of the pulse perturbations. Outside its validity
range, the solution of the DDME ceases to be a good ap-
proximation to the disorder-averaged quantum state (5) and
eventually may even become unphysical, i.e., exhibit negative
eigenvalues. In the context of optimal control, the prerequisite
that the disorder-induced deviations remain small at the tar-
get time (an essential condition for high-fidelity applications)
guarantees that the DDME operates within its limits of valid-
ity. Indeed, in the numerical examples considered below, we
find excellent agreement between the solution of the DDME
and the respective brute-force ensemble-averaged states.

We can recover the static-limit quantum master equa-
tion derived in [51] if we consider both ˆ̄H (t ) and V̂ε (t ) in
(12) to be constant in time. In the context of optimal and
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robust quantum control, however, the possibility of time-
dependent control pulses is imperative. When assuming a
time-constant correlation function while keeping ˆ̄H (t ) time
dependent, Eq. (15) allows for the analysis of time-dependent
control pulses under static pulse perturbations.

In the opposite limit of vanishing correlation time
(for simplicity, we also assume vanishing correlations
among the control pulses), Cm,n(t, t ′) = αδ(t − t ′)δmn

∀m, n ∈ {1, 2, . . . , M}, with α > 0, the DDME reduces
to

∂t ˆ̄ρ(t ) = − i

h̄
[ ˆ̄H (t ), ˆ̄ρ(t )] − α

2h̄2

M∑
m=1

[Ĥm, [Ĥm, ˆ̄ρ(t )]], (17)

which agrees with the quantum master equation for Gaussian
white noise considered, e.g., in [58]. It is instructive to convert
(17) into Lindblad form

∂t ˆ̄ρ(t ) = − i

h̄
[ ˆ̄H (t ), ˆ̄ρ(t )] + α

h̄2

M∑
m=1

L(Ĥm) ˆ̄ρ(t ), (18)

where L(L̂)ρ̂ = L̂ρ̂L̂† − 1
2 L̂†L̂ρ̂ − 1

2 ρ̂L̂†L̂. This master equa-
tion is manifestly Markovian, in which case the Hermitian
Lindblad operators Ĥm can never increase the state purity.
This shows that the purity resurgences which characterize
robust control pulses cannot be observed in the limit of van-
ishing temporal correlations, and pulse optimization can at
best minimize the purity loss in this limit. Only finite temporal
correlation times can give rise to the non-Markovian behavior
that empowers robust quantum control.

III. KROTOV-BASED OPTIMIZATION

By the definition of ˆ̄ρ(t ), it follows directly that the fidelity
with the target state ρ̂targ is equal to unity at time t if and only
if the fidelity between ρ̂ε (t ) and the target state is equal to
unity for all ε. Therefore, by maximizing the fidelity between
a target state and the disorder-averaged state at some specified
final time T , one can obtain a set of control pulses that drive
the initial state to the target state robustly under the influence
of disorder.

The purity of a disorder-averaged state, defined by
P[ ˆ̄ρ(t )] = Tr[ ˆ̄ρ(t )2], is also equal to unity at the final time
if its fidelity with a pure target state is equal to unity. In the
context of pulse perturbations, this intuitively corresponds to
the situation where the closed evolution reaches the target
state regardless of any pulse perturbation that may occur in
the disorder model. Thus, for a given set of control pulses and
a model of disorder, one can use the purity at the final time of
the disorder-averaged state driven by these control pulses as a
measure of robustness. Similarly to [51], one can convert (12)
into Lindblad form and notice that the presence of negative
decoherence rates can give rise to a resurgence of coherence in
the system. With a robust set of control pulses, the purity may
initially decay at times t > 0 due to ensemble averaging, but
then increase again before t = T so that it reaches unity at the
final time. We stress that, under the strictly unital dynamics
described by the disorder average, such purity increases are
necessarily an indication of the non-Markovian nature of the
evolution.

Here we develop a pulse-optimization algorithm that max-
imizes the fidelity between a pure target state and the

disorder-averaged state F (ρ̂targ, ˆ̄ρ(t )) = Tr
[√

ρ̂
1/2
targ ˆ̄ρ(t )ρ̂1/2

targ

]
evaluated at the final time of the disorder-dressed evolution.
Starting from a set of control pulses that drive an initial state to
the target state with fidelity equal to unity in the disorderless
limit, we iteratively optimize the pulse shapes over each of
their discretized time steps as we reintroduce disorder. The
algorithm is inspired by the linear variant of Krotov’s method,
which is a standard optimal quantum control algorithm that
is usually applied to closed quantum systems following linear
evolution equations [19]. However, Krotov’s method has also
been generalized to nonunitary evolutions by considering the
density operator as a vector in Liouville space and replac-
ing the Hamiltonian by a Liouvillian [59–62]. Similarly, the
algorithm described here generalizes to disorder-dressed evo-
lutions by replacing the usual von Neumann equation with the
DDME.

Krotov’s method is an iterative optimization algorithm,
for which the pulse update rule is designed to achieve, by
construction, monotonic convergence of its cost functional.
We consider here the linear variant of the algorithm, where
the guarantee for monotonic convergence may be lost in some
control problems, but which often still converges for an ap-
propriate choice of step size.

To specify the quantum evolution to be solved with the
DDME in each iteration, the algorithm requires the input of an
initial state ρ̂0, a set of initial guess pulses { f guess

m (t )}M
m=1, drift

and control Hamiltonians, and temporal correlation functions
governing the disorder or noise suffered by the control pulses
[cf. (16)]. The guess pulses will only be used in the first
iteration, after which the control pulses will be repeatedly
updated. In order to harness the disorder-averaged state as the
solution of the DDME to obtain the updated control pulses, the
algorithm further requires a target state ρ̂targ, a set of inverse
Krotov step sizes {λm}M

m=1, and a set of update shape functions
{Sm(t )}M

m=1 that can be used to ensure boundary conditions on
the control pulses, where Sm(t ) ∈ [0, 1] ∀ m. The cost func-
tional is given by [59,62]

J
({

f (i)
m (t )

}M

m=1

) = JT
({

f (i)
m (t )

}M

m=1

)

+
M∑

m=1

λm

∫ T

0
dt

[
� f (i)

m (t )
]2

Sm(t )
, (19a)

where

JT
({

f (i)
m (t )

}M

m=1

) = 1 − Tr[ρ̂targ ˆ̄ρ (i)(T )] (19b)

and

� f (i)
m (t ) ≡ f (i)

m (t ) − f ref
m (t ) (19c)

for some reference pulse f ref
m (t ) to the mth control pulse

and we use superscripts to denote the iteration number i ∈
{0, 1, 2, . . .} with f (0)

m (t ) ≡ f guess
m (t ) ∀ m. In this work we use

the standard choice f ref
m (t ) = f (i−1)

m (t ) [63]. The JT corre-
sponds to the infidelity and is the main part of J that we would
like to minimize; the second term of J is a running cost on the
control pulses, which is necessary for the derivation of the
Krotov update step.
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Let us express the right-hand side of the DDME as a
superoperator K that depends on the upper limit t of the time
integral and all control pulses { fm(t ′)}M

m=1 ∀ 0 � t ′ � t , acting
on ˆ̄ρ(t ) so that ∂t ˆ̄ρ(t ) = K(t, { fm(t ′)}M

m=1) ˆ̄ρ(t ). The algorithm
then involves solving the costate ˆ̄χ (t ) from the final value
problem

∂t ˆ̄χ (i)(t ) = −K†(t, { f (i)
m (t ′)}M

m=1) ˆ̄χ (i)(t ),

ˆ̄χ (i)(T ) = ρ̂targ.
(20)

Note that the time integral in the DDME is still evaluated from
0 to t , even though the equation is solved backward. Within
the algorithm, this corresponds to first solving for

η̂m,n(t ) ≡
∫ t

0
dt ′Cm,n(t, t ′) ˆ̃Hn(t, t ′) (21)

[cf. (15)] and then solving (20) backward by treating it as a
time-local equation that depends on η̂m,n(t ).

In practice, the disorder-averaged state is evaluated on a
discretized time grid, where ts = s�t for s ∈ {0, 1, . . . , NT}
with uniform spacing �t ≡ T

NT
. Every control pulse is then

evaluated on an interleaved time grid such that fm,(k) ≡
fm(t̃k−1) for k ∈ {1, 2, . . . , NT} and t̃k−1 ≡ tk−1+tk

2 . To avoid
confusion, we use subscripts with square brackets to denote
evaluation on the former time grid and round brackets for the
latter. We introduce, based on first-order Lie-Trotter decom-
position, a superoperator

V(k) ≈ exp
(
�tK(k),{ fm,(k′ )}

) ∀ 1 � k′ � k (22)

such that ˆ̄ρ[k] = V(k) ˆ̄ρ[k−1], where K(k),{ fm,(k′ )} ≡
K(tk, { fm,(k′ )}M

m=1), that is, V(k) solves the DDME to evolve
ˆ̄ρ[k−1] to ˆ̄ρ[k]. The costates are then written as

ˆ̄χ[k] = V†
(k+1)V

†
(k+2) · · ·V†

(NT )ρ̂targ. (23)

Similarly, we introduce the superoperator Ū(k,k′ ) correspond-
ing to the unitary evolution generated by the intended
Hamiltonian such that

ˆ̃Hm,[k,k′] ≡ Ū(k,k′ )Ĥm

≡ Ū(k)Ū(k−1) · · · Ū(k′+1)Ĥm

≡ ˆ̄U(k)
ˆ̄U(k−1) · · · ˆ̄U(k′+1)

× Ĥm
ˆ̄U †

(k′+1) · · · ˆ̄U †
(k−1)

ˆ̄U †
(k). (24)

The update rule that we apply to minimize J (i) is given by

� f (i)
m,(k) = Sm,(k)

λm

NT∑
j=k

Tr

[
ˆ̄χ (i)

[ j]

∂K( j),{ fm,(k′ )}
∂ fm,(k)

∣∣∣∣
(i)

ˆ̄ρ (i)
[ j]

]
, (25a)

where

∂K( j),{ fm,(k′ )}
∂ fm,(k)

∣∣∣∣
(i)

ρ̂ = − i

h̄
δk j[Ĥm, ρ̂]

− 1

h̄2

M∑
n1,n2=1

[
Ĥn1 ,

[
∂η̂n1,n2,( j)

∂ fm,(k)

∣∣∣∣
(i)

, ρ̂

]]
(25b)

∀ρ̂ and

∂η̂n1,n2,( j)

∂ fm,(k)

∣∣∣∣
(i)

= − i(�t )2

h̄

k−1∑
k′=0

Cn1,n2,( j)(k′+1)

× Ū (i)
[ j,k]

[
Ĥm, ˆ̃H (i)

n2,[k,k′]

]
. (25c)

Here δk j is the Kronecker delta. Note that the summation
over future time indices in (26a) is present only because of
the contribution from the time-nonlocal incoherent term in
the DDME, and we recover the usual Krotov update step for
unitary evolution if we take the correlation function to be
identically 0, which is the case for unperturbed control pulses.
When Krotov’s method is applied to Markovian quantum dy-
namics, within each iteration, each time step of all control
pulses is updated sequentially from k = 1 to k = NT. The
quantum state must be evaluated using the updated set of
control pulses from previous time steps of the current itera-
tion, while the costates are evaluated outside the sequential
update loop using control pulses from the previous iteration.
The update rule can be applied to each control pulse inde-
pendently. After all control pulses have been updated until
k = NT (corresponding to the final time), the iteration number
is incremented. The same process is then repeated until some
predefined termination condition has been met, such as an
absolute or relative tolerance on J (i)

T ≡ JT({ f (i)
m (t )}M

m=1) or a
maximum number of iterations.
For the optimization algorithm developed here, which tar-
gets at robust quantum control within the framework of
disorder-dressed evolution, we maintain the general approach
of Krotov’s method with the termination condition defined by
an absolute tolerance Jtol. However, there is one crucial differ-
ence: Since the DDME is a non-Markovian quantum master
equation, the update rule for a control pulse at a specific time
step depends on the disorder-averaged state in the present
and all future time steps. Although it is generally possible
to apply a non-Markovian quantum master equation in the
Krotov framework in a time-local fashion as in [64], where
an extended Liouville space was considered, here we bypass
this difficulty by computing the update at time step k with V(κ )

being fully updated for all κ < k and only partially updated
for all κ � k; that is, the superscript (i) on operators (but not
control pulses) in (26) refers to evaluations based on { f (i)

m,(κ )}
∀ κ < k and { f (i−1)

m,(κ ) } ∀ κ � k. By “partially updated” we refer
to the fact that even before a control pulse gets updated at a
specific time step, the propagator at this time step has already
been affected by updated control pulses in the past. That
is why costates are evaluated at iteration i in (26a), instead
of at i − 1 as in the standard Krotov method. The tradeoff
here is the additional computational cost from solving the
DDME over the entire future time grid in each step of the
sequential update loop and the presence of the summation in
(26a); however, we do not focus on computational efficiency
in this work. A pseudocode for the Krotov-based optimization
algorithm used in this work is given in the Appendix.

IV. SINGLE-QUBIT CONTROL TASKS

In the following, we apply the Krotov-based DDME op-
timization algorithm to obtain robust control pulses for three
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single-qubit tasks. The three examples considered are state-
to-state transfer tasks that correspond to Z , X , and Hadamard
operations that are commonly applied in quantum information
processing.

Throughout this section, we restrict ourselves to a single
control pulse M = 1 and thus abbreviate, without ambiguity,
f (t ) ≡ f1(t ), C(t, t ′) ≡ C1,1(t, t ′), S(t ) ≡ S1(t ), and λ ≡ λ1.
Next we specify the drift and control Hamiltonians to be
Ĥ0 = h̄ω0σ̂z and Ĥ1 = h̄ω0σ̂x for some frequency ω0 and
we denote by σ̂q the Pauli-q operator for q ∈ {x, y, z}. Fur-
thermore, we work in units where h̄ = ω0 = 1. To discretize
time, we choose T = 10/ω0 and NT = 100. We also specify
the correlation function to take the stationary Gaussian form
C(t, t ′) = C0 exp

(− (t−t ′ )2

t2
corr

)
, where tcorr is the correlation time

and C0 is on the order of g2
ε (t ). We assume C0 = 0.01 and

tcorr = 100/ω0 = 10T , focusing on the limit of quasistatic
pulse perturbations where robust quantum control can be max-
imized.

We remark that the disorder correlation strength C0, which
encodes the (square of the) amplitude of the pulse perturba-
tions, is chosen such that the perturbations have a significant
impact on the performance of (nonrobust) pulses, poten-
tially reducing the purity of the disorder-averaged state at
the target time by more than 20% for some control tasks;
nevertheless, the chosen C0 is still well within the validity
range of the DDME, as demonstrated by the excellent agree-
ment between the solution of the DDME and the brute-force
ensemble-averaged quantum states. Indeed, additional numer-
ical analysis (not displayed) has shown that the approximation
still works reasonably well if C0 is increased by more than
an order of magnitude and the solution of the DDME may
become unphysical after C0 > 1.

Note that, for a single qubit, our choice of Ĥ0 and Ĥ1 guar-
antees controllability between arbitrary (pure) initial states
and (pure) target states (see, e.g., [65]). This allows us to use
an initial guess pulse h(t ) to first obtain a Schrödinger equa-
tion (SE)–optimized pulse fSE(t ) that drives the initial state
to the target state in the disorderless limit and then use this
SE-optimized pulse as our guess pulse for the Krotov-based
DDME optimizer to finally obtain the DDME-optimized pulse
fDDME(t ). We employ the standard Krotov method as used
in optimal quantum control to obtain fSE(t ) and choose h(t )
such that h(0) ≈ 0 and h(T ) ≈ 0. For both types of Krotov’s
method, we prevent the initial and final time values of the
control pulses from being updated by choosing S(t ) to be [66]

S(t ) =
⎧⎨
⎩

B(t ; 0, 2ton) for 0 < t < ton

1 for ton < t < T − toff

B(t ; T − 2toff, T ) for T − toff < t < T
(26a)

where B(t ; t0, t1) is given by the Blackman shape [67]

B(t ; t0, t1) = 1 − a

2
− 1

2
cos

(
2π

t − t0
t1 − t0

)

+ a

2
cos

(
4π

t − t0
t1 − t0

)
(26b)

for a = 0.16 and some tunable ton and toff.

The first example considers ρ̂0 = |+〉〈+| and ρ̂targ = |−〉〈−|,
where |+〉 and |−〉 are the positive and negative eigenstates
of σ̂x. Thus, the target operation corresponds to a Z gate
applied to a qubit initialized in the |+〉 state. We use an

initial guess pulse h(t ) = exp
(−ω2

0 (t− T
2 )2

2

)
, which is a Gaus-

sian function centered at T
2 . Krotov’s method based on both

the Schrödinger equation and the DDME are performed with
ton = toff = 2/ω0, and for the latter we choose λ = 1.25 and
Jtol = 0.003 to obtain fDDME(t ).
As a second example, we investigate the case where ρ̂0 =
|0〉〈0| and ρ̂targ = |1〉〈1| so that the target operation corre-
sponds to an X gate applied to a qubit initialized in the |0〉
state. We continue to use the same h(t ) and S(t ) as in the
previous example to obtain fSE(t ); however, this time we
choose λ = 0.5 and Jtol = 0.003 to obtain fDDME(t ) with a
higher learning rate.
Finally, we consider the transition from ρ̂0 = |0〉〈0| to ρ̂targ =
|+〉〈+| so that the target operation corresponds to a Hadamard
gate applied to a qubit initialized in the |0〉 state. For this
example, we choose h(t ) = sin ( πt

T ) and S(t ) with ton = toff =
0.3/ω0. Here fDDME(t ) is then obtained from fSE(t ) with
λ = 1.25 and Jtol = 0.003.
The results of the numerical experiments for the three ex-
amples are shown in Figs. 1(a)–1(d), 1(e)–1(h), and 1(i)–1(l)
in the same order, where each plot in the same vertical line
displays the same features across the different examples.
Curves associated with fSE(t ) are shown in orange, while
those associated with fDDME(t ) are colored in green. For each
of the examples, we show h(t ) (blue dotted), fSE(t ) (orange
dash-dotted), and fDDME(t ) (green dashed) in Figs. 1(a), 1(e),
and 1(i).
To compare the performance of the SE-optimized and the
DDME-optimized control pulses with respect to robustness,
we solve the disorder-dressed evolution for both control
pulses and compare the resulting state purities. In particular,
a final-time purity close to (or of exactly) unity indicates that
the state trajectories associated with different disorder realiza-
tions have all arrived close to (or exactly at) the target state.
The results of these purity comparisons are shown in
Figs. 1(b), 1(f), and 1(j). To demonstrate the excellent ap-
proximation of the DDME, we determine the disorder-dressed
evolution in two ways: by solving the DDME (solid and dash-
dotted lines) and by numerically exact brute-force averaging
(dashed and dotted lines) as described by the definition (5)
of the disorder-averaged quantum state. In the latter case, we
average over 4000 random realizations of symmetric Gaussian
noises gε (t ) according to a Gaussian probability distribution
and in agreement with the correlation function C(t, t ′). We
find very good agreement between the two methods within
the timescale considered.
Consistently across the examples, we observe that, while the
state purity under the SE-optimized evolution exhibits an
overall decreasing trend, the state purity under the DDME-
optimized evolution recovers after some time and rises close
to unity at the final time. Thus, we observe that, as expected,
fDDME(t ) exhibits significantly increased robustness against
disorder.
Figures 1(c), 1(g), and 1(k) display the fidelities between
the disorder-averaged state and the target state for both the
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FIG. 1. Robust control for the single-qubit control tasks: (a)–(d) ρ̂0 = |+〉〈+| and ρ̂targ = |−〉〈−|, (e)–(h) ρ̂0 = |0〉〈0| and ρ̂targ = |1〉〈1|,
and (i)–(l) ρ̂0 = |0〉〈0| and ρ̂targ = |+〉〈+|. (a), (e), and (i) Comparison of a DDME-optimized control pulse (green dashed line), which is
informed about the statistics of pulse perturbations, and a perturbation-ignorant SE-optimized control pulse (orange dash-dotted line). The
initial guess pulse (blue dotted line) is assumed to be Gaussian in (a)–(h) and sin( πt

T ) in (i)–(l). (b), (f), and (j) If perturbations are added
to the optimized pulses, the purity, P[ ˆ̄ρ(t )] = Tr ˆ̄ρ(t )2, of the disorder-averaged state tends to decrease for the SE-optimized control pulse,
while it is revived for the DDME-optimized control pulse and reaches a value close to unity at the target time. The latter indicates that
the differing evolutions induced by individual pulse perturbations all converge to the target state. Disorder-averaged states are obtained as
solutions of the DDME (solid and dash-dotted lines) and by brute-force ensemble averaging over the evolutions induced by 4000 random
pulse perturbations (dashed and dotted lines) and we find very good agreement between the two evaluation methods. This demonstrates that
the DDME approximates the evolution of the disorder-averaged states well. (c), (g), and (k) In agreement with the purity, the fidelity between

the target state and the disorder-averaged state, F (ρ̂targ, ˆ̄ρ(t )) = Tr
√

ρ̂
1/2
targ ˆ̄ρ(t )ρ̂1/2

targ arrives at above 0.999 for all three DDME-optimized control
pulses, while it decreases to (c) 0.971, (g) 0.975, and (k) 0.930 under the SE-optimized pulses. This drastic performance discrepancy is
highlighted in the insets, where the infidelities 1 − F close to the final time are displayed on a logarithmic scale. Recall that, by construction,
the SE-optimized pulses yield fidelities of unity in the absence of pulse perturbations. (d), (h), and (l) Bloch-sphere evolution under an
individual pulse perturbation. While the DDME-optimized pulse transports the initial state (dark gray arrow) close to the target state, the
final state driven by the SE-optimized pulse deviates greatly from the target state. This pattern holds generally throughout different disorder
realizations.

evolution generated by the SE-optimized (orange dash-dotted
and dotted lines) control pulse and the evolution generated
by the DDME-optimized (green solid and dashed lines) con-
trol pulse, where the disorder-dressed evolutions are again
obtained both by solving the DDME and by brute-force av-
eraging. To highlight the most relevant region, we magnify
the final-time infidelities in the insets on a logarithmic scale.
Consistent with the purity evolutions, the DDME-optimized
pulses achieve final-time fidelities above 0.999 for all exam-
ples, while about 3% in Fig. 1(c), 2% in Fig. 1(g), and 7% in

Fig. 1(k) are lost with the SE-optimized pulses. This strikingly
demonstrates the robustness boost that is obtained with the
disorder-dressed evolution approach.
Finally, for concreteness, we show in Figs. 1(d), 1(h), and
1(l) the Bloch-sphere trajectories for a single arbitrarily cho-
sen disorder realization when the qubit is driven by either
the SE-optimized (orange) or the DDME-optimized (green)
control pulse. For each example, we observe that the final
state under the SE-optimized evolution deviates largely from
the target state, while the final state of the DDME-optimized
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FIG. 2. Role of temporal correlations in the pulse perturbations
for the prospect of robust control. For the control task ρ̂0 = |+〉〈+|
and ρ̂targ = |−〉〈−| (the first example discussed in Sec. IV), and
starting from the SE-optimized control pulse, the Krotov-based
optimization is performed for different correlation times tcorr ∈
{0.05 T, 0.2 T, 0.6 T, T, 1.4 T } (displayed as lines from top to bot-
tom, corresponding to ascending order of tcorr) for T = 10/ω0 with
all other parameters fixed. Without specifying an absolute tolerance,
the optimizer is run for 30 iterations. We find that the infidelity does
not decrease in the near-Markovian limit (tcorr = 0.05 T ), indicating
that robust control becomes impossible in this limit, in agreement
with (18). With increasing correlation time, we observe a monotonic
crossover to the quasistatic case (tcorr = 1.4 T ), where the conver-
gence speed of the algorithm and the fidelity of the disorder-averaged
state with the target state increase with increasing correlation time.
The performance difference in terms of the infidelity reduction can,
depending on the correlation time, span several orders of magnitude.

evolution remains close to the target state. This pattern holds
for other disorder realizations as well and further confirms the
robustness of the DDME-optimized pulse.
Let us repeat that we have focused on quasistatic pulse per-
turbations (tcorr 
 T ), since in this limit the performance of
robust quantum control can be maximized and full purity
revivals can in principle be achieved, as exposed by our nu-
merical examples. In contrast, the opposite limit of vanishing
temporal correlations severely limits robust control [cf. (18)].
We also verified this numerically with tcorr = 0.05 T in Fig. 2,
where our algorithm was not able to deliver fidelity increases
when starting with SE-optimized pulses. In between these two
extreme cases, we observe a monotonic crossover, where the
convergence speed of the algorithm, the maximum achiev-
able purity of the disorder-averaged state, and the fidelity of
the disorder-averaged state with the target state decrease with
decreasing correlation time (see Fig. 2).

V. CONCLUSION

We have demonstrated how robust control pulses can be
systematically identified with the help of disorder-dressed
evolution equations. The latter apply in the perturbative
limit of weak pulse distortions. In contrast to schemes
based on searches over random ensembles, our approach is

deterministic, relying on the maximization of the purity of
the disorder-averaged state. We expect that this conceptually
founded approach will further deepen our understanding of
what constitutes robust control pulses, and in special cases
analytical solutions may be possible. For the automatized
numerical determination of robust control pulses in field ap-
plications, we have developed an adapted and generalized
variant of Krotov’s method. Our single-qubit demonstrations
exposed the power of our method, indicated by target-state
fidelities beyond 0.999, which amounts to improvements of
up to two orders of magnitude across the examples.

To formulate the underlying disorder-dressed evolution
equation, we have generalized existing formulations to time-
dependent Hamiltonians; moreover, we have adapted them
to (in general time-dependent) pulse perturbations. In our
numerical analysis, we focused on the (quasistatic) limit of
correlation times larger than the pulse duration, where pulse
perturbations vary slowly over the temporal extent of the
pulse. In this limit, the disorder-dressed evolution becomes
highly non-Markovian and (in principle full) purity revivals
can emerge.

We have adopted Krotov’s method for our numerical
implementation, and its successful application to several
single-qubit control tasks verified the viability of the al-
gorithm. Irrespectively, the main focus of this work was
conceptual, and the adoption of other optimal control algo-
rithms to the disorder-dressed evolution may yield further
performance improvements. Moreover, a comparison of the
computational complexity of the disorder-dressed approach
with the computational complexities of other approaches to
robust control may be insightful. While there is an increased
cost per iteration due to the adaption of the disorder-dressed
master equation to the updated pulse at each time step, our
numerical experiments indicated that the required number of
iterations may be reduced by several orders of magnitude
compared to, e.g., ensemble optimization. For the single-qubit
tasks considered above, our algorithm converges after fewer
than 30 iterations.

While we restricted our numerical analysis to proof-of-
principle demonstrations with single qubits and single control
pulses, our method and the developed algorithm are applicable
to general (finite-dimensional) quantum systems and arbitrary
numbers of control pulses. For example, a natural next step
would be to address the robust control of entangling two-qubit
gates. Moreover, the DDME formalism is easily adapted to
error sources other than pulse perturbations, such as disorder
on the drift Hamiltonian. Finally, while the presented formal-
ism is designed for the mitigation of coherent error sources
(i.e., disorder in the Hamiltonian), it should be clear that the
formalism and code can be naturally extended to include also
decoherence channels induced by environmental coupling.
These channels would then, to first order in the sufficiently
small environment-induced decoherence rates, be added as
(Markovian) incoherent dynamical terms to the evolution of
the disorder-averaged quantum state.
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ALGORITHM 1. Krotov-based optimization algorithm for robust quantum control.

Inputs and auxiliary functions:
1. Initial density matrix ρ̂0

2. Target density matrix ρ̂targ

3. Drift Hamiltonian Ĥ0

4. Control Hamiltonians {Ĥm}M
m=1

5. Guess pulses {{ f guess
m,(k) }M

m=1}NT
k=1

6. Correlation functions {{Cn1,n2,( j)(l )}M
n1,n2=1}NT

j,l=1

7. Update shape functions {{Sm,(k)}M
m=1}NT

k=1
8. Inverse Krotov step sizes {λm}M

m=1

9. Absolute cost tolerance J tol
T

10. Maximum number of iterations imax

11. Unitary Solver Ū (i)
[ j, j′](·)

12. DDME Solver V (i)
[ j, j′](A;·)

13. Backward DDME Solver V†(i)
[ j, j′](A;·)

Success Criterion: ∃ iteration number i such that i � imax and J (i)
T ≡ JT({{ f (i)

m,(k)}M
m=1}NT

k=1) � J tol
T . Failure otherwise.

Output: Optimized set of control pulses {{ f opt
m,(k)}M

m=1}NT
k=1 such that J (i)

T � J tol
T .

1: procedure DDME_KROTOV_OPTIMIZATION (ρ̂0, ρ̂targ, Ĥ0, {Ĥm}, { f guess
m,(k) }, {Cn1,n2,( j)(l )}, {Sm,(k)}, {λm}, J tol

T , imax)
2: allocate storage array �[0 · · · NT] � for ˆ̄ρ(t )
3: allocate storage array X [0 · · · NT] � for ˆ̄χ (t )
4: allocate storage array A[1 · · · M, 1 · · · M, 0 · · · NT] � for η̂n1,n2 (t )

5: allocate storage array B[1 · · · M, 0 · · · NT, 0 · · · NT] � for ˆ̃Hm(t, t ′)
6: �[0] ← ρ̂0

7: X [NT] ← ρ̂targ

8: ∀m, k : f (0)
m,(k) ← f guess

m,(k) � initial guess pulse

9: B ← ˆ̃H (0)_SOLVER(. . .; B)
10: A ← η̂(0)_SOLVER(. . .; B, A)
11: �[NT] ← V (0)

[NT,0](A; �[0])
12: J (0)

T ← 1 − Tr{X [NT]�[NT]} � cost before optimization (19b)
13: i ← 0 � iteration number
14: while J (i)

T > J tol
T and i < imax do � optimization loop

15: i ← i + 1
16: ∀m, k : f (i)

m,(k) ← f (i−1)
m,(k)

17: for k ← 1, 2, . . . , NT do � sequential update loop
18: if k = NT then
19: for j ← NT − 1, NT − 2, . . . , k do
20: X [ j] ← V†(i)

[ j, j+1](A; X [ j + 1]) � store ˆ̄χ (i−1)(t ) ∀ future time steps
21: end for
22: end if
23: for j ← k, k + 1, . . . , NT do
24: �[ j] ← V (i)

[ j, j−1](A; �[ j − 1]) � store ˆ̄ρ (i)(t ) ∀ future time steps
25: end for
26: for m ← 1, 2, . . . , M do � update each control pulse independently
27: Dm,(k) ← D(i)_SOLVER(. . . ; �, X, B, m, k) � obtain gradient (25)
28: f (i)

m,(k) ← f (i−1)
m,(k) + Sm,(k)

λm
Dm,(k) � apply update (25a)

29: end for
30: B ← ˆ̃H (i)_SOLVER(. . . ; B) � recalculating A & B after sequential update step
31: A ← η̂(i)_SOLVER(. . . ; B, A)
32: �[k] ← V (i)

[k,k−1](A; �[k − 1]) � replace �[k] with the one evolved with updated { fm,(k)}M
m=1

33: end for
34: J (i)

T ← 1 − Tr{X [NT]�[NT]} � obtain cost after iteration i (19b)
35: end while
36: if J (i)

T � J tol
T then

37: ∀m, k : f opt
m,(k) ← f (i)

m,(k)

38: return {{ f opt
m,(k)}M

m=1}NT
k=1 � return optimized set of control pulses if converged

39: end if
40: end procedure
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ALGORITHM 1. (Continued.)

41: procedure D(i)_SOLVER (Ĥ0, {Ĥm}, { f (i)
m,(k)}, {Cn1,n2,( j)(l )}; �, X, B, m, k)

42: D̃1 ← − i
h̄ [Ĥm, �[k]] � derivative of coherent term

43: D ← Tr{X [k]D̃1}
44: for j ← k, k + 1, . . . , NT do � summation from product rule (25a)
45: D̃2 ← 0
46: for n1 ← 1, 2, . . . , M do
47: for n2 ← 1, 2, . . . , M do
48: D̃′

2 ← 0
49: for l ← 0, 1, . . . , k − 1 do � Riemann sum (25c)
50: D̃′

2 ← D̃′
2 + Cn1,n2,( j)(l+1)Ū (i)

[ j,k]([Ĥm, B[n2, k, l]])
51: end for
52: D̃′

2 ← − i(�t )2

h̄ D̃′
2

53: D̃2 ← D̃2 + [Ĥn1 , [D̃′
2, �[ j]]]

54: end for
55: end for
56: D̃2 ← − 1

h̄2 D̃2

57: D ← D + Tr{X [ j]D̃2} � add derivative of incoherent terms
58: end for
59: return D � derivative of coherent & incoherent terms
60: end procedure

61: procedure η̂(i)_SOLVER ({Cn1,n2,( j)(l )}; B, A)
62: for n1 ← 1, 2, . . . , M do
63: for n2 ← 1, 2, . . . , M do
64: A[n1, n2, 0] ← 0
65: for j ← 1, 2, . . . , NT do
66: Ã ← 0
67: for l ← 0, 1, . . . , j − 1 do � Riemann sum (21)
68: Ã ← Ã + �tCn1,n2,( j)(l+1)B[n2, j, l]
69: end for
70: A[n1, n2, j] ← Ã
71: end for
72: end for
73: end for
74: return A
75: end procedure

76: procedure ˆ̃H (i)_SOLVER (Ĥ0, {Ĥm}, { f (i)
m,(k)}; B)

77: for m ← 1, 2, . . . , M do
78: for j ← 0, 1, . . . , NT do
79: for l ← 0, 1, . . . , j do
80: B[m, j, l] ← Ū (i)

[ j,l](Ĥm ) � coherently evolve each Ĥm

81: end for
82: end for
83: end for
84: return B
85: end procedure

to thank D. Burgarth for discussions during his visits, partly
funded by the Australian Research Council, Project No.
FT190100106. F.N. was supported in part by Nippon Tele-
graph and Telephone (NTT) Corporation Research, the Japan
Science and Technology (JST) Agency (via the Quantum
Leap Flagship Program (Q-LEAP), Moonshot R&D Grant
No. JPMJMS2061), the Japan Society for the Promotion of
Science (JSPS) [via Grants-in-Aid for Scientific Research
(KAKENHI) Grant No. JP20H00134], the Army Research
Office (ARO) (Grant No. W911NF-18-1-0358), the Asian Of-
fice of Aerospace Research and Development (AOARD) (via

Grant No. FA2386-20-1-4069), and the Foundational Ques-
tions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06.

APPENDIX: PSEUDOCODE FOR THE KROTOV-BASED
OPTIMIZATION ALGORITHM

We present in Algorithm 1 the pseudocode for the Krotov-
based optimization algorithm for robust quantum control
introduced in the main text, following an implementation
inspired by [66], but highly modified. The pseudocode ter-
minates with the satisfaction of an absolute tolerance J tol

T
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or a maximum number of iteration imax, where if there
exists i � imax such that J (i) < J tol

T , then the algorithm suc-
ceeds and outputs a set of discretized optimal control pulses
{{ f opt

m,(k)}M
m=1}NT

k=1. Otherwise, the algorithm fails and termi-
nates right after the iteration where i = imax. We take the
unitary [generated by ˆ̄H (t )], DDME, and backward DDME
solvers to be given functions and denote their evolutions
from t = t j′ to t = t j for j � j′ by Ū (i)

[ j, j′](·), V (i)
[ j, j′](A; ·), and

V†(i)
[ j, j′](A; ·), respectively. Here the unitary solver depends on

Ĥ0, {Ĥm}M
m=1, and {{ f (i)

m,(k)}M
m=1} j

k= j′+1, but we suppress these
dependences in the pseudocode for clarity of the presenta-

tion. The DDME and backward DDME solvers additionally
depend on {η̂(i)

n1,n2,[k]} j
k= j′+1, which will be precomputed using

{{ f (i)
m,(k)}M

m=1} j
k=0 and stored in the storage array A, hence the

notation. Similarly, we suppress the inputs to the functions
D(i)__SOLVER, η̂(i)_SOLVER, and ˆ̃H (i)_SOLVER defined in the
pseudocode whenever they are called, and their inputs are to
be understood as corresponding to the inputs in the function
definition unless specified otherwise. All sets of inputs in the
function definitions are to be understood as running over all
indices (e.g., {Ĥm} means {Ĥm}M

m=1). The time integral in (21)
and thus (25c) are approximated by Riemann sums.
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