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Quantum optics with giant emitters has shown a new route for the observation and manipulation of non-
Markovian properties in waveguide QED. In this paper we extend the theory of giant atoms, hitherto restricted
to the perturbative light-matter regime, to deal with the ultrastrong-coupling regime. Using static and dynamical
polaron methods, we address the low-energy subspace of a giant atom coupled to an Ohmic waveguide beyond
the standard rotating-wave approximation. We analyze the equilibrium properties of the system by computing
the atomic frequency renormalization as a function of the coupling characterizing the localization-delocalization
quantum phase transition for a giant atom. We show that virtual photons dressing the ground state are nonex-
ponentially localized around the contact points but decay as a power law. The dynamics of an initially excited
giant atom is studied, pointing out the effects of ultrastrong coupling on the Lamb shift and the spontaneous
emission decay rate. Finally, we comment on the existence of the so-called oscillating bound states beyond the
rotating-wave approximation.
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I. INTRODUCTION

The coupling of a single quantum emitter to a continuum
of electromagnetic modes has been an important problem
since the birth of quantum theory [1]. Current experiments,
involving different technological platforms, have shown that
propagating photons can be coupled efficiently to localized
quantum emitters. This field, known as waveguide quantum
electrodynamics, has received a great deal of attention due
to the interesting theoretical and experimental applications
[2–4]. In most scenarios, emitters are described as pointlike
particles of negligible size compared to the wavelength of the
electromagnetic radiation. This justifies the standard dipole
approximation widely employed in quantum optics. In recent
years, however, experiments involving artificial emitters cou-
pled at different points to a waveguide have required going
beyond the treatment of emitters as pointlike matter coupling
locally to a waveguide. This comes as a consequence of the
distance between coupling points, which can reach lengths
of the order of or larger than the characteristic wavelength
of the electromagnetic radiation [5,6]. In the literature, these
type of emitters are called giant atoms. As a consequence of
the nonlocal light-matter interaction, remarkable phenomena
have been reported. Examples are non-Markovian dynamics
[6–10], tunable decay rates and Lamb shifts [11–13], tunable
couplings [14], structure-waveguide-mediated atom-atom in-
teractions [15], engineering of energy levels [16], and bound
states emerging from interference between coupling points,
including oscillating [17,18] and chiral [19] bound states. In
addition, bound states originating from photonic band edges
for giant atoms have been studied in [20]. The large size

of the system also allows for a giant emitter to be coupled
to a waveguide in between the connection points of other
giant atoms. The many possible configurations can lead to
decoherence-free interactions between giant emitters [12,13]
or nonreciprocal excitation transfer [21]. See Ref. [22] for a
recent overview of the field.

The breakdown of the dipolar approximation leads to the
appearance of deviations from Markovian dynamics. These
typically arise from the coupling of quantum emitters to struc-
tured environments with nonflat spectral functions [23–25].
However, it has been shown that retardation effects can induce
strong non-Markovian features whenever coherent feedback
is allowed to influence the dynamics [26–33]. Giant emitters
fall naturally into this last category of non-Markovian systems
[22] and they have been a relevant topic in waveguide QED
systems.

Another assumption that is being reconsidered, due to
experiments, is the fact that photons are weakly coupled
to matter, so their interaction can be described in a pertur-
bative way. Several experiments have reached the so-called
ultrastrong-coupling (USC) regime between light and single
quantum emitters, in both cavity [34–36] and waveguide QED
[37–39]. In the USC regime higher-order processes, rather
than the creation (annihilation) of one photon by annihilating
(creating) one matter excitation, play a role. Then the rotating-
wave approximation (RWA) for the interaction breaks down,
the atomic bare parameters get renormalized, and the ground
state becomes nontrivial. This has interesting consequences.
Some of them are the possibility of transforming virtual
photons onto real photons by perturbing the ground state
[40–45], the localization-delocalization transition [46,47], or
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the possibility to perform nonlinear optics at the single- and
zero-photon limit [48–53]. Reviews for light-matter interac-
tions in the USC regime can be found in [54,55].

In this work we discuss the low-energy physics (both
at and out of equilibrium) of a giant atom coupled to a
continuum in the USC regime. To do so, the light-matter
coupling is treated within the spin-boson model. In the USC
this is a paradigmatic example of a nonanalytically solvable
model [56]. Different techniques are available in the litera-
ture to deal with it, such as matrix-product states [46,48,49],
density-matrix renormalization-group methods [57], hierar-
chical equations of motion or pseudomodes methods [58], and
path integral [59–61], polaronlike [47,62–67], or Gaussian
approaches [68]. It was recently reported [69] how to use
matrix-product states to describe the dynamics of giant atoms
in a waveguide in the USC regime.

In this paper we employ polaronlike techniques, com-
plementing and extending their work. We examine the
renormalization of atomic parameters and provide expressions
for them. We prove the existence of the localization-
delocalization transition in giant emitters, as well as a profile
of the virtual photons in the ground state which we charac-
terize for both phases. Regarding the dynamics, we discuss
the spontaneous emission, its rate, and the Lamb shift in the
USC regime. Within the non-Markovian regime we provide
numerical results and analytical expressions for the emission
and the existence of bound states, also oscillating ones.

The rest of the paper is organized as follows. In Sec. II we
introduce the theoretical model, including the discrete model
for the waveguide as well as the spin-boson Hamiltonian and
spectral density of the system. In Sec. III we describe the
polaron formalism and apply it to our model to reach the
effective Hamiltonian used throughout the work. In Sec. IV
we analyze the equilibrium properties of the system, including
its ground state and renormalization of the transition energy
leading to the discussion of the quantum phase transition.
In Sec. V we compute the Lamb-Shift and effective decay
rate for the system. In Sec. VI we study different cases of
the non-Markovian dynamics of the system, using numerical
simulations and approximate analytical expressions with par-
ticular focus on oscillating bound states. Finally, a summary
and conclusions of this work are given in Sec. VII.

II. SPIN-BOSON MODEL FOR A GIANT EMITTER

We start by introducing the Hamiltonian of the system,
described schematically in Fig. 1(a),

H = Hq + Hwg + Hint. (1)

Here Hq = (�/2)σ z is the Hamiltonian of the two-level sys-
tem with transition frequency � between its ground state
|g〉 and excited state |e〉; Hwg is the Hamiltonian modeling
the waveguide and Hint accounts for the qubit-waveguide in-
teraction. The waveguide is modeled by using the discrete
transmission line shown in Fig. 1(b). This covers several
current realizations with superconducting qubits, as reported
in Refs. [12,13]. The waveguide modes are found by diag-
onalizing the corresponding microscopic circuit model via
the standard procedure based on [70] (see Appendix A for
a detailed derivation). The Hamiltonian of the waveguide is
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FIG. 1. (a) Pictorial illustration of the giant emitter with three
connection points. (b) Schematic of a circuit-QED implementation of
a giant atom coupled to an Ohmic waveguide with three connection
points. (c) Dispersion relations for the discrete and continuous mod-
els for the Ohmic waveguide. The group velocity for the waveguide
is vg = c = 1 throughout this work. (d) Spectral function J (ω) for
a continuous dispersion relation ωk = vg|k| shown by solid lines
and the corresponding results using the dispersion relation from
Eq. (3) for Nc = 1 (squares), Nc = 2 (triangles), Nc = 3 (circles),
and Nc = 10 (diamonds). The spacing between coupling points is
x = 5δx and the coupling strength α = 0.1. The cutoff frequency is
ωc = 3 and the number of modes is N = 300 for both plots (c) and
(d).

then given by

Hwg =
∑

k

ωka†
kak . (2)

In this procedure we choose a discretization length δx = L/N ,
with L the length of the transmission line and N the number
of propagating modes. For a linear medium in one dimension,
discretization yields the LC chain, with the set of momenta
kn = 2πn/L, n ∈ {−N/2, . . . , N/2}, and the dispersion rela-
tion

ωk = ωc

√
2 − 2 cos(knδx), (3)

where ωc = vg/δx is the cutoff frequency, with vg the group
velocity of the propagating photons. The extended nature of
the giant atom is incorporated in the interaction Hamilto-
nian. We assume that this interaction is established via the
simultaneous coupling of the two-level system to a set of
contact points in the waveguide [see Fig. 1(b)]. The interaction
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Hamiltonian reads

Hint = σ x
Nc∑
j=1

∑
k

gk

Nc
(akeikx j + H.c.). (4)

Here gk = g
√

ωk/2L are frequency-dependent couplings, with
g = √

πvgα, and α is the dimensionless coupling parame-
ter. In addition, Nc is the total number of contact points at
positions x j and 1/Nc is a normalization factor chosen to
ensure that in the zero-distance limit the model reduces to
the standard small-atom case with the appropriate coupling
strength. This facilitates the comparison for different Nc hav-
ing a well-defined limit as Nc → ∞. We can now write down
the complete Hamiltonian (1) in the form of a spin-boson-like
model [71]

H = �

2
σ z +

∑
k

ωka†
kak + σ x

∑
k

(g̃kak + H.c.), (5)

with effective coupling functions

g̃k = gk

Nc

Nc∑
j=1

eikx j . (6)

The Hamiltonian (5) is a general effective description for a
giant atom in interaction with a waveguide. For completeness,
readers are referred to Appendix A for its derivation from the
specific circuit represented in Fig. 1(b). Spin-boson models
are characterized by their spectral function

J (ω) ≡ 2π
∑

k

|g̃k|2δ(ω − ωk ). (7)

The spectral function encapsulates all the information on the
bath frequency modes and their coupling to the two-level
system [72]. The discretization we use guarantees that in the
continuum limit N → ∞ (δx → 0), ωk ≈ vg|k| [see Fig. 1(c)]
and

J (ω) = JOhm(ω)G(ω). (8)

The Ohmic part JOhm(ω) = παω comes from the local cou-
pling to a one-dimensional continuum, while the modulation
function

G(ω) = 1

N2
c

∑
j,l

eiω(x j−xl )/vg (9)

arises from interference caused by the multiple coupling
points. For equidistant contact points with distance x, the
modulation function simplifies to

G(ω) = 1

N2
c

1 − cos(Ncωx/vg)

1 − cos(ωx/vg)
. (10)

Figure 1(d) shows the spectral function of the waveguide
and its modification for different Nc, compared to the small
emitter limit Nc = 1, for both the discrete (open circles) and
continuous descriptions of the waveguide (solid lines). The
interdistance x is fixed, so the main peaks coincide for all Nc.
On the other hand, as the contact points increase, the peaks
become narrower with a width proportional to N−1

c .

III. EFFECTIVE RWA MODELS IN THE USC: POLARON
THEORY FOR THE GIANT ATOM

The low-energy spectrum of a spin-boson model (5) can
be well approximated by an effective excitation-number-
conserving Hamiltonian derived from a polaron transforma-
tion [64–66]. The polaron transformation seeks to disentangle
the atom and waveguide, by choosing a set of variational
parameters such that the ground state of the transformed
Hamiltonian is as close as possible to |g〉 ⊗ |0〉, i.e., to the
direct product of the ground state of the uncoupled atom |g〉
and the ground state of the waveguide |0〉. Furthermore, it
has been shown to be accurate for various realizations of the
spin-boson model, e.g., considering multiple emitters [30,73],
and for different functional forms of the spectral function
[66]. In this section we summarize the main aspects of the
static and dynamical polaron theory in order to proceed with
its application to the case at hand, a giant atom beyond the
rotating-wave approximation. The polaron transformation is
given by

Up = exp

(
−σ x

∑
k

( fka†
k − f ∗

k ak )

)
, (11)

where fk is the set of variational parameters.
As mentioned, we choose these variational parameters so

that the ground state is approximately |g〉|0〉. For Eq. (5)
this is equivalent to minimize the ground-state energy
min fk {〈0|〈g|U †

p HUp |g〉|0〉}. For a detailed application of the
polaron transformation on the spin-boson Hamiltonian we
point the reader to Appendix B. We find that [cf. Eq. (6)]

fk = g̃k

ωk + �r
, (12)

with

�r = � exp

(
−2

∑
k

| fk|2
)

. (13)

Both �r and fk are related by a self-consistent equation that
can be solved numerically. Once such parameters are found,
we can obtain all the properties of the model. Within the
scope of the present work, we can restrict our treatment to the
low-energy sector, where the polaron model can be well ap-
proximated by the effective number-preserving Hamiltonian

Hp ≈ Heff

= �r

2
σ z +

∑
k

ωka†
kak + 2�r

∑
k

fk (σ+ak + H.c.)

+Vlocal + EZP, (14)

where Vlocal = −2�rσ
z
∑

k,k′ fk fk′a†
kak′ and

EZP = −�r

2
+

∑
k

fk (ωk fk − g̃k − g̃∗
k ). (15)

In this effective Hamiltonian we can recognize
�r in Eq. (13) as a renormalized atomic frequency.
This is a well-known consequence in the USC regime
[71,73,74]. This renormalization is responsible for the
localization-delocalization transition that corresponds to
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the ferromagnetic-antiferromagnetic phase transition in the
Kondo model [75]. In the delocalized phase (�r → 0), the
ground state is degenerated since the atom can be in either
the symmetric or antisymmetric superpositions. In the next
section we will tackle this renormalization of the atom
frequency and the existence of a quantum phase transition.

Laboratory and polaron frames

The Hamiltonian (14) is rather convenient for calcula-
tions because it commutes with the excitation operator Ne =
σ+σ− + ∑

k a†
kak . This allows the use of the standard meth-

ods for the study of waveguide QED within the RWA. In the
polaron frame the ground state is trivial and the dynamics
splits into subspaces of different numbers of excitations. Ex-
pected values of observables in the polaron frame are of minor
physical relevance, but they are convenient for calculations
because the physical observables can be found in terms of
them. Since measurements are performed in the laboratory
frame, where the Hamiltonian (5) is expressed, it is mandatory
to find the relation between both pictures. In what follows,
observables with superscript p are observables computed in
the polaron frame, i.e.,

Op := 〈ψ p(t )|O|ψ p(t )〉 = 〈ψ (t )U †
p |O|Upψ (t )〉, (16)

whereas actual observables are given by

O = 〈ψ (t )|O|ψ (t )〉 = 〈ψ p(t )|UpOU †
p |ψ p(t )〉. (17)

With this, the dynamics for the atomic excitation, i.e., making
O = σ+σ−, can be written as

Pe =�r

�

[
Pp

e + 2 Re

(
c
∑

k

fkφ
∗
k

)
+ 2

∑
kk′

fk f ∗
k′φ

∗
k φk′

]
+ PGS

e ,

(18)

where c = 〈0| ⊗ 〈g|σ−|ψ p〉 and φk = 〈0| ⊗ 〈g|ak|ψ p〉 are the
amplitudes for the excited state and the k-mode field of an
arbitrary state in the polaron frame, respectively. The first and
last terms of Eq. (18) are the equilibrium, at T = 0, atomic
populations in the polaron frame and in the ground state,
respectively. In fact,

PGS
e = 1

2
(1 + 〈σ z〉GS) = 1

2

(
1 − �r

�

)
, (19)

which tells us, among other things, that the ground-state
atomic excitation is related to the frequency renormalization
�r . We also note that to return to the laboratory framework,
both the atomic and field amplitudes are needed. This is a
consequence of the nonlocal character of Up in Eq. (11),
which mixes matter and light operators. Finally, we will be
interested in the temporal evolution of the occupation of mode
nk . In terms of quantities in the polaron frame, we obtain the
relationship

nk (t ) = nGS
k + |φk (t )|2 − 2 Re[c(t )φk (t ) fk]. (20)

The same comments as for Pe can be repeated here. Both
relations will be used throughout this work.

IV. EQUILIBRIUM PROPERTIES

For sufficiently weak atom-waveguide coupling, the
ground state is well approximated by the trivial vacuum |g〉 ⊗
|0〉. This is consistent with performing the RWA on (5). A
first consequence of entering the USC regime is that strong
light-matter correlations are formed. This is easily understood
with the polaron Ansatz, since the actual ground state (GS) of
Eq. (5) can be approximated by

|ψGS〉 ∼= Up |g〉 ⊗ |0〉

= 1√
2

(
|+〉

∏
k

| − fk〉 − |−〉
∏

k

| fk〉
)

, (21)

where | fk〉 = D( fk )|0k〉 is a k-mode coherent state, with
D( fk ) = exp( fka†

k − f ∗
k ak ) the bosonic displacement oper-

ator. States |±〉 = 1√
2
(|g〉 ± |e〉) are the atom-symmetric

and antisymmetric superpositions, respectively. The state in
Eq. (21) is a multiphoton Schrödinger cat state. Its photon
number can be obtained via 〈ψGS|a†

kak|ψGS〉 = | fk|2. The pho-
tonic profile in position space can be recovered via a discrete
Fourier transform

fx = 1

Nc

∑
j,k

fkeik(x−x j ), (22)

which indicates that the photonic amplitudes are superpo-
sitions of small emitter contributions fk centered at each
coupling point to the waveguide.

The ground state, together with the atomic renormaliza-
tion frequency �r in Eq. (13), encapsulates the equilibrium
properties at zero temperature, in particular, the existence of
virtual excitations, both in the atom and in the photonic field,
as well as the existence (or absence) of a quantum phase
transition. It is known that the spin-boson model undergoes
a localization-delocalization transition when �r → 0 [71].
Again, this transition can also be understood within the po-
laron formalism. If we look at (14), when �r = 0, the ground
state is degenerate, so the gap closes and a quantum phase
transition can occur.

A. Atom excitations, renormalization, and the existence
of a quantum phase transition

A consequence of light-matter entanglement in the ground
state is that the atom is dressed by the quantum fluctuations of
waveguide photons. This is reflected in a renormalization of
the dressed atomic frequency [see �r in Eqs. (13) and (14)].
Furthermore, using the polaron theory, the qubit excitation
probability is given by Eq. (19). Thus, the discussion of �r

directly applies to the existence of excitations in the ground
state because of the coupling to the waveguide.

In Fig. 2(a) we plot �r as a function of the contact point
distance x and the coupling strength α for a giant emitter
with Nc = 3. Figure 2(b) focuses on particular cases and
limits of the renormalization of �r . We have verified that
in the limit x → 0 the dipole approximation is recovered,
i.e., results must reduce to the case Nc = 1. This is a conse-
quence of the normalization used in Eq. (6). For Nc = 1, we
know that for an Ohmic waveguide, �r ∼ �(�/ωc)α/(1−α)

in the scaling limit �/ωc � 1 [65], which is shown as a
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FIG. 2. (a) Renormalization of the two-level system energy with
the coupling strength α and the distance between coupling points
x for Nc = 3. (b) Set of specific values for the distance x between
connections showing the phase transition as α increases. For limiting
cases we have analytical expressions; for intermediate distances, the
transition is more abrupt.

dotted line in Fig. 2(b). On the other hand, when x → ∞,
�r behaves as if the contacts points were independent, thus
approaching the dipole approximation but with a coupling per
contact α → α/Nc (shaded line), showing perfect agreement
with the numerical calculation. An interesting finding is the
appearance of a distance-dependent localization transition for
a giant emitter, which resembles the one observed for the
two-impurity spin-boson model [30,76]. This a consequence
of the presence of position-dependent couplings in the giant
emitter and the competition between the bare qubit energy and
dissipation induced by the Ohmic bath.

The polaron calculations predict a more abrupt decrease of
�r , in contrast to the single emitter limit(s). However, it is not
clear that our polaron theory is valid in these (intermediate)
ranges of coupling, and the results must be contrasted with
other approaches. Thus, now we resort to a field-theoretic
argument. In fact, the existence of a quantum phase transi-
tion in the spin-boson model is well studied in the literature
[71,72]. A condition for a symmetry breaking point and thus
〈σ x〉 �= 0 is that

∫
dω J (ω)ω−2 diverges. This happens when-

ever J (ω) ∼ ω1−β for 0 < β < 1. The Ohmic case (Nc = 1)
lies at the margin [75]. It is known that, in this case, there is
a continuum transition of the Berezinskii-Kosterlitz-Thouless
transition type. This can be proven by mapping the spin-
boson model (5) to a gas of charges. Concretely, the partition

function can be approximated by [77]

Z ∼ exp

[
−4

∫ β

0
dτi

∫ β

0
dτ jεiε jλ

(
τi − τ j

τc

)]
, (23)

where εi = ±1, τc = ω−1
c (β−1 is the temperature), and the

effective interaction is given by

d2λ(τ )

dτ 2
= ω2

c

∫
dω J (ω)e−ωτ , (24)

which yields λ(τ ) ∼ ln(τ ) in the dipole approximation for
the Ohmic case, thus a Berezinskii-Kosterlitz-Thouless–like
transition. For a giant atom with arbitrary contact points, the
integral on the right-hand side can be computed using the
general spectral function in Eq. (8) such that

d2λ(τ )

dτ 2
∼

Nc∑
j,l

[τ + i(xl − x j )/vg]−2. (25)

As an example, for a giant emitter with Nc = 3 equidistant
points it yields

λ(τ ) ∼ −3 ln(τ ) − 2 ln(τ 2 + x2) − ln(τ 2 + 4x2), (26)

i.e., logarithmic interactions persist, one per each leg of the gi-
ant emitter, thus confirming the existence of a quantum phase
transition in a giant emitter with arbitrary coupling points.

B. Virtual photons in the ground state

The existence of virtual photons around the contact points
at ultrastrong coupling has been hypothesized in [22]. Photon
localization of the ground state has been successfully stud-
ied using polaron and matrix-product-state simulations for a
small emitter in [62,73], corroborating the usefulness of the
variational polaron Ansätze. In this section we describe such
photonic clustering for a giant emitter and analyze its spatial
profile.

For atoms coupled to cavity-array systems in the USC
regime, the photonic cloud generated around the emitter
has been found to have an exponentially decaying profile
[48,62,73]. Interestingly, the Ohmic model for the waveguide
predicts a power-law decay for the photonic cloud localized
around each of the contact points of the giant emitter. Fur-
thermore, this power-law decay changes when crossing the
quantum phase transition.

Using Eq. (22) and at the scaling limit where ωk ≈ vg|k|,
the virtual photons are given by the Fourier transform of√|k|/(|k| + �r/vg). We are interested in the decay of the
photonic cloud well away from the connection points, so the
corresponding contribution of the integral is that of small-k
values. Therefore, there are two limits of the Fourier trans-
form that interest us. Within the delocalized phase �r �= 0,
so we can assume that the contributing k are negligible in
front of �r/vg, leading to a power-law decay with the form
fx ∼ (x − x j )−3/2. Instead, after crossing the quantum phase
transition to the localized regime �r = 0 and the decay goes
as fx ∼ (x − x j )−1/2.

In Fig. 3 we plot an example of the ground-state photons in
real space 〈ψGS|a†

xax|ψGS〉 = | fx|2 for both cases, with Nc = 5
and x = 20δx. Figure 3(a) illustrates the case for �r �= 0.
We observe sharp peaks around each of the coupling points
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FIG. 3. (a) Ground-state photons for a giant atom with five con-
nection points (Nc = 5) with coupling strength α/Nc = 1/5, in this
case �r �= 0. The inset focuses on the profile of the photonic clouds
around the rightmost coupling point. A fitting into a power-law decay
x−a, plotted as a black dashed line, leads to the exponent a � 2.96.
(b) Ground-state photons for α/Nc = 2/5, corresponding to �r = 0.
The decay also fits into a power law, in this case with a � 1.09. For
both plots, the distance between the closest couplings is x = 20δx,
the cutoff frequency is ωc = 3, � = 1, and the number of modes
N = 15 001.

and each of these peaks is surrounded by abrupt dips and
a slowly decaying profile. The dips can be attributed to the
overlap between the sharp peaks and slow decays. For this
case we predict a power-law decay of the photonic profile
away from the emitter scaling as approximately x−3. The inset
of the figure is a close-up of the rightmost coupling point and
shows a power-law fit by a black shaded line. From the fit we
recover a decay approximately equal to x−2.96, which agrees
with our prediction. The other example shown in Fig. 3(b)
corresponds to �r = 0. Here the peaks become higher and
sharper, the dips disappear, and the decay becomes slower.
Again, fitting the profile away from the rightmost coupling
point, we have a power-law decay approximately equal to
x−1.09, which perfectly agrees with our analytical estimation.

V. RELAXATION RATE AND LAMB SHIFT

In the simplest approach, the spontaneous emission of
an emitter in a continuum is obtained by means of Fermi’s
golden rule. Using second-order perturbation theory (in the
light-matter coupling) a two-level system with level splitting
� decays with a rate γ = J (�). Also, the atom frequency is
dressed by the Lamb shift δ.

Interestingly, for a giant emitter with multiple contact
points, interference effects start to play an important role in

the relaxation dynamics. The fact that the emitter-waveguide
interaction is no longer local introduces a new timescale in the
system accounting for the time delay between different cou-
pling points ζ = x/vg. When this time delay is much smaller
than the excited-state lifetime of the system as if it had a
single coupling point ζ � JOhm(�)−1, memory effects can
be neglected [11,22]. Consequently, an effective relaxation
rate γr and the frequency shift can be obtained in this regime
by using the Fermi golden rule, which now depends on the
distance between coupling points and can be engineered to
suppress or enhance spontaneous emission.

In the USC regime, both the emission rates and Lamb
shift can be calculated in a similar way as in the perturbative
regime. The only difference is that the formulas are now
evaluated at the renormalized frequency �r instead of the bare
one � [cf. Eq. (13)] [65,66]. Then

γr = J (�r ) = JOhm(�r )G(�r ) (27)

and

δ = 2�2
r

π
P

∫ ∞

0
dω

J (ω)

(�r − ω)(ω + �r )2
, (28)

where P denotes the principal value. In Fig. 4(a) we show
the normalized relaxation rate as a function of the distance
x/δx between contact points, for two values of the coupling
parameter: α = 0.01, where we recover the weak coupling or
RWA results [11,22], and α = 0.16, where the RWA breaks
down.

We observe that increasing the emitter-waveguide coupling
beyond the RWA produces a shift in position for the relax-
ation rate, displacing characteristic points of destructive and
constructive interference. This shift is a consequence of the
renormalization of the giant emitter frequency and it has to be
taken into account in order to observe interference effects in
experiments with ultrastrongly coupled giant emitters.

The Lamb shift, plotted in Fig. 4(b) reflects the same shift
in position as the relaxation rate. A more complete image of
this behavior is given in Fig. 4(c), where the shift is limited
by the localization transition appearing at larger values of the
coupling (deep strong coupling). Therefore, the spontaneous
decay in a giant emitter is strongly affected by interference
between contact points. This behavior persists in the USC
regime but with values that become strongly modified as the
coupling α increases.

VI. EMITTER AND FIELD DYNAMICS

The effective number-preserving Hamiltonian (14) permits
us to work in the single-excitation sector and apply standard
RWA methods. Using the dynamical polaron Ansatz, the time-
dependent state vector in the polaron frame can be described
as [65]

|ψ p(t )〉 = c(t )|e〉|0〉 +
∑

k

φk (t )|g〉a†
k |0〉. (29)

The amplitudes of the polaron state vector satisfy the set of
dynamical equations

i ˙̃c = 2�r

∑
k

fkφ̃ke−i(ωk−�r )t , (30a)
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FIG. 4. (a) Normalized effective decay rate and (b) Lamb shift
for a giant emitter with three coupling points (Nc = 3) and bare qubit
frequency � = 1 as a function of the spacing between connections.
Dashed lines indicate the behavior for α = 0.01 (RWA) and solid
lines α = 0.16 (beyond the RWA). (c) Full dependence of the effec-
tive decay rate on the coupling strength and the distance between
coupling points.

i ˙̃φk = 2�r fk

(
c̃ei(ωk−�r )t +

∑
l

fl φ̃l

)
, (30b)

where we have shifted to different rotating frames c̃ = ei�r t/2c
and φ̃k = ei(ωk−�r/2)tφk in order to simplify the equations.
Equations (30a) and (30b) can be integrated numerically, ob-
taining any observable in the polaron frame. Then, by using
the relation (18) or (20), the observables in the laboratory
frame can be computed.

Before looking at the numerical results, it is convenient
to discuss some generalities about the expected dynamical
behavior. For this we can neglect the contributions of the
Vlocal operator, which only produces a photon frequency shift
that does not significantly contribute to the single-excitation
dynamics. In addition, it makes further analytical treatment
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P
e

x = 3δx

x = 20δx

x = 30δx

x = 100δx

FIG. 5. Evolution of the excited-state probability of a giant emit-
ter with three coupling points Nc = 3 for three different distances
between contact points and fixed coupling strength α = 0.8, � = 1,
ωc = 6, and N = 3000. The expected equilibrium probabilities PGS

e

are illustrated with horizontal dotted lines.

difficult and it is not relevant for the results discussed in this
section. If this is done, the set of equations is formally equiv-
alent to the one-excitation dynamics in RWA models and the
Wigner-Weisskopf theory can be directly applied. Integrating
out the photonic degrees of freedom, a (nonlocal) differential
equation for c̃(t ) is obtained,

˙̃c = −2�2
r

π

∫ ∞

0

J (ω)dω

(ω + �r )2

∫ t

0
dτ c̃(t − τ )ei(ω−�r )τ . (31)

The dependence of the spectral function on the time delays
between coupling points ζ gives rise to a multiple-time-delay
differential equation for the excited-state amplitude,

˙̃c(t ) = − γ

2N2
c

Nc−1∑
j=0

(Nc − j)ei�r jζ c̃(t − jζ )�(t − jζ ). (32)

Here �(·) is the Heaviside step function. The time delays jζ
introduce new timescales in the system and non-Markovian
effects are expected.

An analogous time-delay equation was first presented in
[17] within the RWA regime for the same continuous model
studied here. These types of non-Markovian dynamical equa-
tions have also been found in the study of the spontaneous
emission in single-end optical fibers [28], atoms in front of
reflecting mirrors [26], and two distant emitters in waveguide
QED, within the RWA [29] and beyond the RWA [30]. In par-
ticular, in addition to the relaxation rate previously discussed,
oscillations in the emitter dynamics will occur.

On top of that, already in the RWA regime the existence of
bound states for giant atoms has been discussed [17]. These
can exist even in the absence of band gaps as an interference
effect, as seen in Fig. 5, due to the spatial separation of
coupling points. Bound states arising from interference effects
are also present in the USC regime, as we will show later in
numerical simulations.

Applying a Laplace transform in Eq. (32) gives us insight
into the nature of these bound states. By defining the
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excited-state amplitude in Laplace space as ĉ(s) =∫ ∞
0 dt e−st c̃(t ) we have

ĉ(s) =
[

s + i�r

2
+ γ

2N2
c

Nc−1∑
j=0

(Nc − j)e(−s+i�r/2) j|ζ |
]−1

,

(33)

where we have set c̃(0) = 1 in order to study the spontaneous
emission. The above dynamical equation in the Laplace space
is exactly the same as that obtained for the RWA limit in [17],
with the difference that the bare qubit frequency � must be
replaced by �r .

By definition, bound states do not radiate; thus (if they
exist) they are purely imaginary poles of Eq. (33). Searching
for purely imaginary poles with the form sn = −i2nπ/Ncζ ,
with n ∈ N, we obtain

�rζ = 2nπ

Nc
− JOhm(�r )ζ

2Nc
cot

(
nπ

Nc

)
, (34)

where ζ = x/vg is the time delay between the two closest
coupling points. It is worth recalling that all these relations ne-
glect the local Vlocal operator [cf. the Hamiltonian (14)]. They
are however a good estimation for understanding the emitter
dynamics and locating the appearance of bound states in the
parameter space of the model, in particular, that their existence
requires a finite time delay ζ and that the renormalized atom
frequency and spontaneous emission play a role.

The existence of both bound states and non-Markovian
dynamics in the USC regime can be proven by monitoring
the spontaneous emission. In doing so we assume the atom
waveguide at the GS and then the qubit is driven within
a π pulse. After the pulse the wave function is given by
|ψ (0)〉 = σ+|GS〉. Since [σ x,Up] = 0, we may work in the
single-excitation manifold in the polaron picture. Therefore,
we can numerically integrate Eqs. (30a) and (30b), including
the Vlocal terms, and transform back to the laboratory frame
using Eq. (18). In Fig. 5 we plot the spontaneous emission.
We notice that Pe(t = 0) �= 1, since for our initial state Pe =
1/2(1 + �r/�) [cf. Eq. (18)]. Furthermore, each of the plot-
ted decay processes has a different equilibrium excited-state
occupancy, as given by Eq. (19). As shown in Fig. 5 for
x = 3δx, short time delays between coupling points lead to
relaxations that can be closely described by an exponential
decay defined by the effective spontaneous emission rate in
Eq. (27). The evolution of the excited-state occupancy can be
well approximated by

Pe ≈ PGS
e + �r

�
e−γr t , (35)

plotted by the black dashed line in Fig. 5. The lack of major
non-Markovian effects can be seen via Eq. (33), as the limit
ζ → 0 leads to a time evolution governed by the decay rate
γr .

For a sufficiently large distance between coupling points,
non-Markovianity takes a central role, as illustrated by the
decay for x = 20δx in Fig. 5. Initially, it has an approxi-
mately exponential decay given by JOhm(�r ), until the emitted
light reaches a coupling point. Then an oscillatory behavior
increases as the light emitted from one connection point is
partially reabsorbed and emitted back to the waveguide by

another contact point. At longer times, these oscillations be-
come damped as the energy is gradually emitted outside the
atom, until the system reaches equilibrium at the correspond-
ing PGS

e .
We encounter a different behavior for x = 30δx in Fig. 5.

Due to the interference of the field emitted from each coupling
point, the system relaxes to a bound state, as signaled by
the difference in occupancy from the ground state once the
evolution reaches the equilibrium. This comes as a direct con-
sequence of the initial excited state having a nonzero overlap
with bound states for these parameters.

Furthermore, Fig. 5 illustrates yet another type of decay.
For x = 100δx we find long-lived oscillations around an equi-
librium value higher than PGS

e . This is reminiscent of the
reported oscillating bound states in the RWA [17]. In the next
section we discuss how these oscillating bound states behave
whenever the coupling cannot be treated perturbatively.

Oscillating bound states

Some interest has been aroused in the existence of oscil-
lating bound states [17,69]. They originate from the interplay
of two coexisting bound states. Consequently, part of the field
emitted during the spontaneous emission process is trapped
while oscillating between the coupling points of the emitter.
In USC, approximate oscillating bound states are found by
searching for two coexisting solutions of Eq. (34). Due to
the dependence of �r on α and ζ , via the variational param-
eters fk , the existence of two solutions for the same set of
parameters cannot be analytically proven. This numerically
requires fine-tuning, which at most allows for the prediction of
oscillating bound states with large but finite lifetime in USC,
as illustrated in Fig. 5 for x = 100δx.

Figure 6(a) illustrates the excited-state population Pe of a
giant atom with increasing coupling strength α. The rest of
the parameters are set so that in the RWA regime the excited
state decays into an oscillating bound state. It is clear that the
oscillating bound state found for the lower couplings is lost as
α increases. Figure 6(b) focuses on two specific values of the
coupling strength showing the long time behavior of the oscil-
lating bound state and its counterpart at higher coupling, for
which the population revivals slowly decrease in amplitude.
The field evolutions corresponding to both cases are plotted in
Figs. 6(c) and 6(d), respectively.

Within the RWA, fixing the distance between coupling
points and increasing the coupling should eventually reach an-
other pair of simultaneous solutions for Eq. (34) and therefore
an oscillating bound state [17]. In contrast, our simulations
indicate that entering the USC regime leads to the loss of
the oscillating bound state due to the renormalization of �r

and eventually to the quantum phase transition. This same
trend has also been recently reported in [69], where matrix-
product-state simulations showed this same breakdown of the
periodicity for the existence of oscillating bound states in
parameter space with the coupling strength.

VII. SUMMARY AND CONCLUSIONS

In this work we have developed a semianalytical approach
for the low-energy sector of giant emitters in the ultrastrong
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FIG. 6. (a) Time evolution of the excited-state population Pe with increasing coupling α. Black horizontal lines point to the two cases
highlighted in the other plots of the figure. (b) Plot of the spontaneous emission into an oscillating bound state in the RWA for α � 0.118 (solid
line) and for an increased coupling of α � 0.557, within the USC (dashed line). The field emitted into the waveguide for these cases is plotted
in (d) and (c), respectively. These simulations are carried out for a giant atom with three connections Nc = 3 with the parameters ζ = 186δx,
ωc = 3, � = 1, and number of modes N = 4001.

regime based on polaronlike methods. In particular, we have
focused on a single giant atom coupled via Nc connection
points to an Ohmic waveguide.

We have characterized the ground state of the system. In
particular, we have analyzed the virtual photons surround-
ing each of the coupling points. The latter decays spatially
away from the connection points to the waveguide as a power
law, unlike what occurs for pointlike emitters in a cavity
array [73]. We also have studied the renormalization of the
atomic frequency �r and shown that the system exhibits a
localization-delocalization quantum phase transition which is
dependent not only on the coupling strength α but also on the
distance between coupling points.

For the dynamics of the system we have focused on the
spontaneous emission. We have derived analytical expressions
for the Lamb shift δ and effective decay rate γr which charac-
terize the early evolution of the system whenever its lifetime
is much larger than the time delay ζ = x/vg between coupling
points. Both of these values were reported to have a periodic
behavior with the distance between coupling points in the
RWA regime [11]. We find that this periodicity is lost in USC
due to the renormalization of �r . These results suggest that
in real implementations of waveguide QED with giant atoms
that require going beyond the RWA, most of the predicted
non-Markovian effects might be blurred by the renormaliza-
tion of the bare atom. We were able to fully characterize the
dynamics within the polaron frame, providing an approximate
analytical expression for the evolution of the excited-state

amplitude. We find that some of the non-Markovian dynamics
found in the RWA, such as the nonexponential decay [7]
and bound states arising from the interference of the spon-
taneous emission from different coupling points [17], still
hold in the USC regime. However, other behaviors, such as
the recurrence of oscillating bound states as the coupling in-
creases [17], are lost when entering the USC regime. Instead,
as the localization-delocalization transition is approached by
increasing the coupling strength α, the oscillations in the
excited-state occupancy have a sharp drop in amplitude, be-
coming irregular in time and eventually disappear.
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APPENDIX A: DERIVATION OF THE
SPIN-BOSON HAMILTONIAN

In this Appendix we find the Hamiltonian describing the
system represented in Fig. 1(b), which leads to the spin-boson
form given in Eq. (5). As mentioned in Sec. II, we model
the waveguide as an one-dimensional chain of N inductively
coupled LC resonators with equal inductances L0 and capaci-
tances C0. The Lagrangian for such a system is

Lwg =
N∑

n=1

(φn − φn+1)2

2L0
+ C0φ̇

2
n

2
. (A1)

The waveguide Hamiltonian can be obtained via a Legendre
transform

Hwg =
N∑

n=1

(φn − φn+1)2

2L0
+ Q2

n

2C0
, (A2)

where Qn = ∂Lwg/∂φ̇n are the charges of each LC resonator.
Assuming periodic boundary conditions, the Hamiltonian

(A2) can be diagonalized by means of a Fourier transform
φk = 1/

√
N

∑
k φneikxn ,

Hwg =
∑

k

|Qk|2
2C0

+ [2 − 2 cos(kδx)]
|φk|2
2L0

, (A3)

where k = 2πn/L, L = Nδx, and δx is the size of an LC
resonator. From Eq. (A3) we obtain the dispersion relation in
Eq. (3).

After quantization of the field, the waveguide is
described as

Hwg =
∑

k

ωk

(
a†

kak + 1

2

)
. (A4)

We model our qubit as a transmon [78]. Because of the ca-
pacitive coupling of the Nc coupling points to the qubit, the
Hamiltonian is given by

H = 1

2(Cg + CJ )

(
Qq +

∑
j

CgV (x j )

)2

− EJ cos(2πφq/�0) + Hwg. (A5)

At this point we assume that all terms of the order [Cg/(Cg +
CJ )]2 are negligible as CJ � Cg, which leads to the Hamilto-
nian

H = Q2
q

2(Cg + CJ )
− EJ cos(2πφq/�0)

+
∑

j

CgQqV (x j ) + Hwg. (A6)

The voltage within the waveguide is given by

V (x j ) = ∂tφ j = i[Hwg, φ j] (A7)

=
Nc∑
j=1

CgQq

∑
k

√
ωk

2L
(akeikx j + a†

ke−ikx j ).

By truncating the qubit subsystem to its first two levels we
arrive at

H =�

2
σz +

∑
k

ωk

(
a†

kak + 1

2

)

+ Cgσx

Nc∑
j

∑
k

√
ωk

2L
(akeikx j + a†

ke−ikx j ). (A8)

yielding the spin-boson model in Eq. (5).

APPENDIX B: POLARON TRANSFORMATION

In this Appendix we detail the main aspects of the polaron
transformation defined in Eq. (11). In particular, we show how
to find its variational parameters, as given in Eq. (12), and the
atomic frequency renormalization given by Eq. (13). We also
derive the expressions in the laboratory frame used in the main
text [Eqs. (18)–(20)].

The unitary transformation (11) contains the variational pa-
rameters fk that are found minimizing the energy functional.
On top of that, the basic idea is that Up disentangles the two-
level system from the waveguide. Thus, in the polaron picture,
Hp conserves the number of excitations and becomes tractable
with the same techniques as RWA models; in particular, we
can compute the single-excitation eigenstates. It is interesting
to note that the GS obtained from the variational method is an
eigenstate of Hp. This serves as a consistency test confirming
that the effective RWA model is accurate: If the GS is well
represented, the lowest-lying excitations are single-particle
excitations over it.

It is convenient to see how different operators transform
under Up. For example,

U †
p akUp = ak − fkσx (B1)

and

U †
p σzUp = exp

(
2σx

∑
k

( fka†
k − fkak )

)
σz

= exp

(
−2

∑
k

| fk|2
)

exp

(
2σx

∑
k

fka†
k

)

× exp

(
−2σx

∑
k

fkak

)
σz. (B2)

By expanding the operators in Eq. (B2) and retaining terms up
to second order in fk we arrive at

U †
p σzUp ≈ exp

(
−2

∑
k

| fk|2
)(

1 + 2σx

∑
k

fk (a†
k − ak )

−4
∑
k,p

fk fpa†
kap

)
σz. (B3)
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Then the transformed Hamiltonian Hp can be written as

Hp = �r

2
σz +

∑
k

ωka†
kak +

∑
k

gk (ak + a†
k )σx

+ �r

∑
k

fk (a†
k − ak )σxσz − 2�r

∑
k,p

fk fpa†
kapσz

−
∑

k

fkωk (a†
k − ak )σx +

∑
k

ωk| fk|2 − 2
∑

k

gk fk,

(B4)

where �r is defined as in Eq. (13). The ground-state energy
of this system is given by EZP in Eq. (15). By minimizing this
quantity in terms of the variational parameters ∂ fk EZP = 0, we
find the optimal variational parameters [Eq. (12)]. Finally, the
effective Hamiltonian in Eq. (14) follows after introducing
the expression in Eq. (12) for the variational parameters in
Eq. (B4) and using σx ∓ σxσz = 2σ±.

Expectation values in the polaron picture

Expectation values in the laboratory frame of qubit and
waveguide mode occupancies can be found using Eqs. (B3)
and (B1), respectively. For the excited-state probability we
have

Pe = 1
2 (1 + 〈σ z〉) = 1

2 (1 + 〈ψ |σz|ψ〉)

= 1
2 (1 + 〈ψ p|UpσzU

†
p |ψ p〉), (B5)

where |ψ p〉 is the state vector of interest, in the one-excitation
subspace given by Eq. (29) yielding Eq. (18).

Similarly, the expectation value nk in the laboratory frame
is given by

nk = 〈ψ |a†
kak|ψ〉 = 〈ψ p|Upa†

kakU
†
p |ψ p〉

= 〈ψ p|a†
kak − fk (a†

k − ak )σx + | fk|2|ψ p〉. (B6)

Again, using Eq. (29), we obtain Eq. (20), where nGS
k = | fk|2.
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