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The simultaneous ground-state refrigeration of multiple vibrational modes is a prerequisite for observing
significant quantum effects of multiple-vibration systems. Here we propose how to realize a large amplification
in the net-refrigeration rates based on cavity optomechanics and to largely improve the cooling performance
of multivibration modes beyond the resolved-sideband regime. By employing an auxiliary mechanical coupling
(AMC) between two mechanical vibrations, the dark mode, which is induced by the coupling of these vibrational
modes to a common optical mode and cuts off cooling channels, can be fully removed. We use fully analytical
treatments for the effective mechanical susceptibilities and net-cooling rates and find that when the AMC is
turned on, the amplification of the net-refrigeration rates by more than six orders of magnitude can be observed.
In particular, we reveal that the simultaneous ground-state cooling beyond the resolved-sideband regime arises
from the introduced AMC, without which it vanishes. Our work paves the way for quantum control of multiple
vibrational modes in the bad-cavity regime.
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I. INTRODUCTION

Cavity optomechanics [1–4] provides a promising plat-
form to explore mechanical properties of quantum systems
via optical means and to manipulate cavity-field statistics by
mechanically changing the boundary of a cavity [5–29]. As
a prominent application closely related to this optomechani-
cal platform, optomechanical refrigeration has become a hot
research topic [30–35]. This is due to the fact that to ob-
serve significantly quantum effects of systems, a prerequisite
is to cool these systems to their quantum ground states by
effectively suppressing their thermal noise. Until now, cooling
a single mechanical mode to its quantum ground state of
optomechanical systems has been mainly achieved with the
resolved-sideband-refrigeration [30–35] and feedback-aided-
refrigeration [36–45] mechanisms, which are preferable in the
good-cavity and bad-cavity regimes, respectively.

In recent years, much attention has been paid to
multivibration-mode systems [1–4]. This is because these
systems can provide an incomparable platform to investigate
topological energy transfer [46], macroscopic mechanical co-
herence [47–58], and quantum many-body effects [59–65]. In
particular, they have been widely applied in high-performance
sensors [66–68], quantum-mechanical computers [69,70], and
nonreciprocal devices [71–79]. The applications relevant to
multivibration-mode systems, however, are fundamentally
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limited by thermal noise. To effectively suppress the thermal
noise, simultaneously cooling these multivibration systems
to their quantum ground states becomes an important and
urgent task. Although cooling a single vibrational mode to its
quantum ground state has been realized in both the optical
[33–35,80–92] and microwave [93–99] domains, the simul-
taneous cooling of multiple vibrational modes remains an
outstanding challenge in cavity optomechanics. The physi-
cal origin behind this challenge can be explained by cooling
suppression due to dark modes [100,101], which are induced
by the coupling of multiple vibrational modes to a common
cavity-field mode [43,49,102–110].

In this paper, based on the feedback-cooling mechanism,
we propose a dark-mode-removing method to achieve the
simultaneous ground-state cooling of the two mechanical
modes in the unresolved-sideband regime. This is realized by
employing auxiliary mechanical coupling (AMC) to break the
symmetry of the system, and then, both dark and bright modes
can be effectively controlled. By obtaining the exact analytical
results of the net-cooling rates, effective mechanical suscepti-
bilities, and steady-state mean phonon numbers, we find that
when the AMC is turned on in the system, a millionfold
amplification in the net-refrigeration rates can be observed.
Specifically, these net-refrigeration rates can be amplified to
more than six orders of magnitude by properly tuning the
AMC strength.

In particular, we show that the tremendously amplified
net-refrigeration rates can result in a giant improvement
for the refrigeration performance of the mechanical modes.
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FIG. 1. (a) Schematic diagram of a three-mode optomechanical system. An optical mode c (with frequency ωc and decay rate κ) is
coupled to two vibrational modes qj (with frequency ω j and damping rate γ j) via radiation-pressure couplings (with strength Gj), and
the two vibrational modes are coupled to each other through an AMC (with strength ũ). The cavity-field mode interacts with the vacuum
bath, and the two vibrational modes are connected to their high-temperature heat baths. Note that the FFL denotes the strength of the
first feedback loop, and the SFL describes the strength of the second feedback loop. (b) The effective mechanical damping � j,eff (ω) of
the jth vibrational mode versus the frequency ω when the system operates without (μ̃ = 0, solid curves) and with (μ̃/ωm = 0.02, dashed
curves) the AMC. (c) The net-refrigeration rate γ j,C(ω) of the jth vibrational mode as a function of the AMC strength μ̃. The parameters
used are ω j=1,2 = ωm = 2π × 107, G1/ωm = 0.4, G2 = 0.7G1, gcd1 = 1, gcd2 = 0.6, κ/ωm = 4, γ j/ωm = 10−6, ϑ = 0.8, ωfb/ωm = 3, and
n̄1 = n̄2 = 103.

Without AMC, the two vibrational modes cannot be effi-
ciently cooled due to an inefficient net-cooling rate. However,
when the AMC is turned on, the simultaneous ground-state
cooling of these vibrations is achieved beyond the resolved-
sideband regime, owing to the millionfold amplification in the
net-cooling rates. Remarkably, we reveal that the larger the
feedback-loop strength of the resonator is, the better the cool-
ing efficiency of this resonator is. Physically, the introduced
AMC offers an effective strategy to remove the dark mode
and, in turn, to rebuild cooling channels for extracting thermal
phonons stored in the dark mode. This study could pave the
way for studying quantum control and observing quantum-
mechanical coherence effects involving multiple vibrational
modes.

II. MODEL AND HAMILTONIAN

As shown in Fig. 1(a), we consider a three-mode op-
tomechanical system in which two vibrational modes are
optomechanically coupled to a common optical mode. An
AMC between the two vibrational modes is introduced to
improve the net-cooling rates and the cooling performance of
the system. To control the system, an external control laser
with amplitude � and frequency ωL is applied to the optical
cavity. The Hamiltonian of the system reads (h̄ = 1)

H0 = ωcc†c +
2∑

j=1

(
1

2mj
p2

x, j+
1

2
mjω̃

2
j x

2
j

)
−λ1c†cx1−λ2c†cx2

+ μ(x1 − x2)2 + �(c†e−iωLt + ceiωLt ), (1)

where c (c†) denotes the annihilation (creation) operator of
the optical mode. The operators px, j ( j = 1, 2) and x j are,
respectively, the momentum and position operators of the jth
vibrational mode, with frequency ω̃ j and mass mj . The λ j

terms describe the optomechanical interactions between the

optical mode and the jth vibrational mode, and the μ term
denotes the AMC between the two vibrations. Note that the
FFL denotes the strength of the first feedback loop, and the
SFL describes the strength of the second feedback loop.

For the convenience of studying the system, we introduce
the dimensionless position (q j = √

mjω jx j) and momentum
[p j = √

1/(mjω j )px, j] operators and the normalized reso-

nance frequencies ω j =
√

ω̃2
j + 2μ/mj for j = 1, 2. In a

rotating frame defined by exp(−iωLc†ct ), the system Hamil-
tonian (1) becomes

H = 
cc†c +
2∑

j=1

ω j

2

(
q2

j + p2
j

) − λ̃1c†cq1 − λ̃2c†cq2

− 2μ̃q1q2 + �(c† + c), (2)

where λ̃1 = λ1
√

1/(m1ω1), λ̃2 = λ2
√

1/(m2ω2), μ̃ =
μ

√
1/(m1m2ω1ω2), and 
c = ωc − ωL. We need to

emphasize here that the Hamiltonian in Eq. (2) is the
starting point of our analysis and numerical simulations.

III. LANGEVIN EQUATIONS AND STEADY-STATE MEAN
PHONON NUMBERS

In this section, we obtain the Langevin equations of the
system, analyze a cold-damping feedback-cooling scheme,
and derive the steady-state average phonon numbers.

A. Langevin equations

We consider the case where the two vibrational modes
are subjected to quantum Brownian forces and the optical
mode interacts with their vacuum baths. Then, the quantum
Langevin equations can be used to describe the evolution of
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the system:

ċ = −[κ + i(
c − λ̃1q1 − λ̃2q2)]c − i� +
√

2κcin,

q̇ j = ω j p j, j = 1, 2,

ṗ1 = −ω1q1 + 2μ̃q2 + λ̃1c†c − γ1 p1 + ξ1,

ṗ2 = −ω2q2 + 2μ̃q1 + λ̃2c†c − γ2 p2 + ξ2, (3)

where the operators cin and ξ j are, respectively, the input noise
operator of the cavity-field mode and the Brownian noise
operator resulting from the coupling of the corresponding
vibrational modes to the thermal baths. These noise operators
satisfy zero mean values and the following correlation func-
tions:

〈cin(t )c†
in(t ′)〉 = δ(t − t ′),

〈c†
in(t )cin(t ′)〉 = 〈c†

in(t ′)cin(t )〉 = 0,

〈ξ j (t )ξ j (t
′)〉 = 1

2π

γ j

ω j

∫
ωe−iω(t−t ′ )

[
1 + coth

(
h̄ω

2kBTj

)]
dω,

(4)

where kB is the Boltzmann constant and Tj is the thermal bath
temperature associated with the jth vibrational mode.

We assume that the cavity is strongly driven, and this
allows us to linearize the dynamics of the system by writing
each operator as the sum of their averages and fluctua-
tions, i.e., A = 〈A〉ss + δA for A ∈ {c, c†, q j, p j}. By neglect-
ing higher-order fluctuation terms, the linearized quantum
Langevin equations, which are described by the quadrature
fluctuations δX = (δc† + δc)/

√
2 and δY = i(δc† − δc)/

√
2,

are given by

δẊ = − κδX + 
δY +
√

2κXin,

δẎ = − κδY − 
δX + G1δq1 + G2δq2 +
√

2κYin,

δq̇ j = ω jδp j, j = 1, 2,

δ ṗ1 = − ω1δq1 + 2μ̃δq2 + G1δX − γ1δp1 + ξ1,

δ ṗ2 = − ω2δq2 + 2μ̃δq1 + G2δX − γ2δp2 + ξ2, (5)

where Xin = (δc†
in + δcin )/

√
2 and Yin = i(δc†

in − δcin )/
√

2
are the corresponding Hermitian input noise quadratures and
the parameter 
 = 
c − λ̃〈q1〉ss − λ̃〈q2〉ss is the normalized
effective driving detuning. Moreover, G1 = √

2λ̃1〈c〉ss and
G2 = √

2λ̃2〈c〉ss are the effective optomechanical coupling
strengths, with 〈c〉ss = −i�/(κ + i
). Note that the phase
reference of the cavity field 〈c〉ss is assumed to be real and
positive.

B. Cold-damping feedback

To realize the cold-damping feedback refrigeration, the
case of 
 = 0 is considered, so that the highest sensitivity
for the position measurements of the vibrational modes can
be achieved [36–45]. This feedback-refrigeration mechanism
is essentially different from the sideband-cooling mechanism
requiring the red-sideband resonance, i.e., 
 = ω j [30–35].
By using a negative-derivative feedback, the effective decay
rate of the mechanical mode can be largely developed by the
cold-damping feedback technique.

Physically, the position of the two mechanical modes is
measured through the phase-sensitive detection of the cavity
output field, and then, the readout of the cavity output field is
fed back into the two vibrational modes by applying feedback
forces. The intensity of these feedback forces is proportional
to the time derivative of the output signal and, therefore, to
the velocity of the mechanical modes. Then, the linearized
quantum Langevin equations in Eq. (5) become

δẊ = −κδX +
√

2κXin,

δẎ = −κδY + G1δq1 + G2δq2 +
√

2κYin,

δq̇ j = ω jδp j,

δ ṗ1 = − ω1δq1 + 2μ̃δq2 + G1δX − γ1δp1 + ξ1

−
∫ t

−∞
g1(t − s)δY est (s)ds,

δ ṗ2 = − ω2δq2 + 2μ̃δq1 + G2δX − γ2δp2 + ξ2

−
∫ t

−∞
g2(t − s)δY est (s)ds, (6)

where the convolution term
∫ t
−∞ g j (t − s)δY est (s)ds ( j =

1, 2) denotes the feedback force acting on the jth vibrational
mode. These feedback forces depend on the past dynamics of
the detected quadrature δY , which is driven by a weighted sum
of the fluctuations of the vibrational modes. Here the causal
kernel is defined by

gj (t ) = gcd, j
d

dt
[θ (t )ωfbe−ωfbt ], (7)

where gcd, j and ωfb are the dimensionless feedback gain and
feedback bandwidth associated the jth vibrational mode, re-
spectively. In Eq. (7), we have assumed that the electronic
loop can provide an instantaneous feedback in the system, and
this assumption is included in the argument of the Heaviside
function θ (t ) [32,43,45]. This assumes fast electronics that
can respond much quicker than the oscillation time of the
system [32,43,45]. The estimated intracavity phase quadrature
δY est results from the homodyne measurement of the output
quadrature δY out (t ). Here we generalize the usual input-output
relation,

δY out(t ) =
√

2κδY (t ) − Y in(t ), (8)

to the case of a nonunit detection efficiency by modeling a
detector with quantum efficiency ϑ with an ideal detector
preceded by a beam splitter (with transmissivity

√
ϑ), which

mixes the incident field with the uncorrelated vacuum field
Y υ (t ). Then, we obtain the generalized input-output relation,

Y out(t ) =
√

ϑ[
√

2κδY (t ) − Y in(t )] − √
1 − ϑY υ (t ). (9)

The estimated phase quadratures δY est(t ) are obtained as

δY est(t ) = Y out(t )√
2ϑκ

= δY (t ) − Y in(t ) + √
ϑ−1 − 1Y υ (t )√
2κ

.

(10)

Below, we seek the steady-state solution of Eq. (6) by
solving it in the frequency domain with the Fourier transform.
r(t ) = (1/2π )1/2

∫ ∞
−∞ e−iωt r̃(ω)dω (for r = δX , δY , δqj , δp j ,

ξ j , Xin, and Yin), and consequently, the quantum Langevin
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equations in Eq. (6), with the cold-damping feedback, can be
solved in the frequency domain. Based on the steady-state
solution, we can calculate the spectra of the position and
momentum operators for two mechanical modes, and then, the
steady-state mean phonon numbers in these resonators can be
obtained by integrating the corresponding fluctuation spectra.

C. Final average phonon numbers

The final steady-state average phonon numbers in the jth
vibrational mode can be obtained with

n f
j = 1

2

[〈
δq2

j

〉 + 〈
δp2

j

〉 − 1
]
, j = 1, 2, (11)

where 〈δq2
j 〉 and 〈δp2

j〉 are the variances of the position and
momentum operators, respectively. We solve Eq. (6) in the
frequency domain and integrate the corresponding fluctuation
spectra, and then, the corresponding variances can be obtained
as 〈

δq2
j

〉 = 1

2π

∫ ∞

−∞
Sqj (ω)dω,

〈
δp2

j

〉 = 1

2πω2
j

∫ ∞

−∞
ω2Sqj (ω)dω. (12)

The fluctuation spectra of the position and momentum opera-
tors are defined by

SA(ω) =
∫ ∞

−∞
e−iωτ 〈δA(t + τ )δA(t )〉ssdτ (A = q j, p j ),

(13)

where 〈·〉ss denotes the steady-state average of the system. The
fluctuation spectra in the frequency domain are expressed as

〈δÃ(ω)δÃ(ω′)〉ss = SA(ω)δ(ω + ω′). (14)

Thus, in the frequency domain, we can solve this system and
obtain the analytical results of the steady-state average phonon
numbers.

D. Dark-mode effect and its removal

We next show the dark-mode effect and its removal from
the two-vibrational-mode optomechanical system. For con-
venience, we introduce the annihilation (creation) operators
of the two vibrational modes: b j = (q j + ip j )/

√
2 [b†

j =
(q j − ip j )/

√
2]. In the process of optomechanical cooling,

the beam-splitting-type interactions (corresponding to the
rotating-wave interaction term) between these bosonic modes
dominate the linearized couplings in this system. By consid-
ering a red-detuned driving of the cavity and performing the
rotating-wave approximation (RWA), the Hamiltonian of the
system can be simplified as (discarding the noise terms)

HRWA = 
δc†δc +
2∑

j=1

[ω jδb†
jδb j + Gj (δcδb†

j + δb jδc†)]

+η(δb†
1δb2 + δb†

2δb1). (15)

To show the dark-mode effect and its removal from the sys-
tem, we discuss in detail the physical system when the AMC
is absent (η = 0) and present (η �= 0).

(i) To study the dark-mode effect, we first assume that the
AMC is turned off (i.e., η = 0). In this case, the system can
induce a bright mode and a dark mode:

B+ = (G1δb1 + G2δb2)/G0, (16a)

B− = (G2δb1 − G1δb2)/G0, (16b)

respectively, where G0 =
√

G2
1 + G2

2. Then, the Hamiltonian
in Eq. (15) can be rewritten with the bright and dark modes as

Hhyb = 
δc†δc +
∑
j=±

ω±B†
±B± + G+(δcB†

+ + B+δc†)

+G−(B†
+B− + B†

−B+), (17)

where we introduced the resonance frequencies ω+ =
(G2

1ω1 + G2
2ω2)/G2

0 and ω− = (G2
2ω1 + G2

1ω2)/G2
0. The cou-

pling strengths G+ and G− are, respectively, defined as

G+ =
√

G2
1 + G2

2, G− = G1G2(ω1 − ω2)/G2
0. (18)

We see from Eq. (18) that when ω1 = ω2, the mode B− is
decoupled from the system and it becomes a dark mode.

(ii) We then turn on the AMC (i.e., η �= 0), so that the dark-
mode effect can be efficiently removed. We introduce two new
bosonic modes B̃± associated with the AMC, defined by

δb1 = f B̃+ + hB̃−, δb2 = −hB̃+ + f B̃−, (19)

and then, the Hamiltonian in Eq. (15) becomes

HRWA = 
δc†δc +
∑
j=±

[ω̃ j B̃
†
j B̃ j + (G̃∗

jδcB̃†
j + G̃ j B̃ jδc†)],

(20)

where the resonance frequencies ω̃± = (ω1 + ω2 ±√
(ω1 − ω2)2 + 4η2)/2 and the redefined-coupling strengths

G̃± are

G̃+ = f G1 − hG2, G̃− = hG1 + f G2, (21)

with f = |ω̃−−ω1|√
(ω̃−−ω1 )2+η2

, h = η f
ω̃−−ω1

. When ω1 = ω2 = ωm,

the coupling strengths in Eq. (21) can be simplified as

G̃± = (G2 ± G1)/
√

2. (22)

Equations (20) and (22) show that the dark mode B̃− can be
fully removed when the strengths of the two optomechanical
couplings are different (i.e., G1 �= G2). The underlying physi-
cal mechanism behind our proposed method can be explained
as follows: By tuning the coupling strength between the op-
tical mode and each mechanical mode, the symmetry of the
system is broken, and both bright and dark mechanical modes
can be effectively manipulated.

IV. COOLING OF TWO MECHANICAL MODES

In this section, we derive the analytical expressions of
the effective mechanical susceptibilities and net-refrigeration
rates and study the cooling performance of the two vibrational
modes.
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A. Analytical results for effective susceptibilities, cooling rates,
and noise spectra

We obtain the position fluctuation spectra of the two vibra-
tional modes as

Sqj (ω) = | χ j,eff (ω) |2 [Sfb, j (ω) + Srp, j (ω)

+ Sth, j (ω) + Sme, j (ω)]. (23)

In the coordinate fluctuation spectra, we introduce the effec-
tive susceptibility of the jth vibration mode as

χ j,eff (ω) = ω j
[
�2

j,eff (ω) − ω2 − iω� j,eff (ω)
]−1

, (24)

where � j,eff (ω) and � j,eff (ω) are, respectively, the effective
mechanical resonance frequency and the effective mechanical
decay rate of the jth vibrational mode, defined as

� j,eff (ω) = γ j + γ j,C(ω), (25)

� j,eff (ω) = ω j + δω j (ω). (26)

The net refrigeration rates γ j,C of the jth vibrational modes
are

γ1,C = −[G1gcd1F1(ω) + 2μ̃F3(ω)][
A2

1(ω) + A2
2(ω)

][
C2

1 (ω) + C2
2 (ω)

] ,

γ2,C = −[G2gcd2F2(ω) + 2μ̃F4(ω)][
A2

1(ω) + A2
2(ω)

][
Y 2

1 (ω) + Y 2
2 (ω)

] , (27)

and the mechanical frequency shifts δω j (ω) of the jth vibra-
tional mode are caused by the optical spring effect, given by

δω1 =
√

ω2
1 + E3(ω)[

A2
1(ω) + A2

2(ω)
][

C2
1 (ω) + C2

2 (ω)
] − ω1,

δω2 =
√

ω2
2 + T3(ω)[

A2
1(ω) + A2

2(ω)
][

Y 2
1 (ω) + Y 2

2 (ω)
] − ω2.

(28)

In Eq. (23), we introduced the feedback-induced noise spec-
trum Sfb, j (ω), the radiation-pressure noise spectrum Srp, j (ω),
the mechanical-coupling-induced noise spectrum Sme, j (ω),
and the thermal noise spectrum Sth, j (ω) of the jth vibrational
mode, which are given by

Sth, j (ω) = γ jω

ω j
coth β j, (29)

Sme,1(ω) = N1(ω)

N2(ω)

γ2ω

ω2
coth β2, (30)

Sme,2(ω) = M1(ω)

M2(ω)

γ1ω

ω1
coth β1, (31)

Sfb,1(ω) = ω2(κ2 + ω2)ω2
fb

4κϑ

N3(ω)

N2(ω)
, (32)

Sfb,2(ω) = ω2(κ2 + ω2)ω2
fb

4κϑ

M3(ω)

M2(ω)
, (33)

Srp,1(ω) = κω2
fb

N4(ω)

N2(ω)
, (34)

Srp,2(ω) = κω2
fb

M4(ω)

M2(ω)
, (35)

where β j = h̄ω/(2kBTj ) and the other parameters are given in
the Appendix A.

B. Giant amplification of both mechanical decay rates and
net-cooling rates via the AMC

Here we study how to achieve a giant enhancement of both
effective mechanical decay rates � j,eff and net-cooling rates
γ j,C of the jth vibrational mode by introducing the AMC. In
Fig. 1(b), we plot the effective mechanical decay rates � j,eff as
a function of the frequency ω when the system operates with-
out (i.e., μ̃ = 0; see the solid curves) and with (i.e., μ̃/ωm =
0.02; see the dashed curves) the AMC. We find that by intro-
ducing the AMC, the effective mechanical decay rates � j,eff

are largely enhanced at resonance ω = ±ωm. Specifically, the
effective mechanical decay rates �eff, j without the AMC (i.e.,
ũ = 0) are approximately equal to 2γ j at ω = ±ωm, and this
means the cooling of these vibrational modes is inefficient
(see the solid curves). However, when the AMC is switched
on (i.e., ũ �= 0), the effective mechanical decay rates �eff, j at
ω = ±ωm can be amplified from ≈2γ j to � 104γ j [see the
dashed curves in Fig. 1(b)]. This indicates that, by employing
the AMC, a giant amplification of the effective mechanical
decay rates can be realized, which makes the simultaneous
refrigeration of the two vibrational modes feasible.

To further illustrate the underlying physics of the multi-
mode refrigeration under the AMC mechanism, we plot the
net-refrigeration rate γ j,C of the jth vibrational mode versus
the AMC strength ũ at the resonance ω = ωm, as shown in
Fig. 1(c). We find that when turning off the AMC (i.e., ũ = 0),
the net-refrigeration rates are extremely small (i.e., γ j,C ≈ γ j).
These results indicate that all the vibrational modes cannot
be cooled when the AMC is absent, i.e., ũ = 0. However,
when we turn on the AMC (i.e., ũ �= 0), the net-refrigeration
rates γ j,C are significantly enhanced with the increase of the
AMC strength ũ. For example, the net-refrigeration rates γ j,C

can be increased from γ j,C/γ j ≈ 1 to more than 106 in our
simulations.

C. Dependence of the multimode optomechanical cooling on the
system parameters

In cavity optomechanics, the cold-damping feedback re-
frigeration of a single vibrational mode can be achieved using
the cold-damping effect, which employs a designed feed-
back force applied to this vibrational mode, and this leads to
the freezing of their thermal fluctuations [32,36–45]. Corre-
spondingly, in principle, the feedback refrigeration of multiple
vibrational modes can also be realized based on this feedback-
cooling mechanism.

However, in contrast to this anticipation, we find that by us-
ing this feedback refrigeration mechanism, a counterintuitive
cooling phenomenon emerges; that is, the multiple vibrational
modes cannot be cooled. Physically, the dark mode, which is
induced by the coupling of the multiple vibrational modes to a
common optical mode, cuts off the thermal-phonon extraction
channels. Since the dark mode leads to this counterintuitive
uncooling phenomenon, it is natural to ask whether one can
remove this dark mode to further cool these vibrational modes
to their quantum ground states. To this end, the AMC is
introduced to our system to remove the dark mode and control
the refrigeration performance of these vibrational modes.
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FIG. 2. Steady-state mean thermal phonon numbers (a) n f
1 and (b) n f

2 in two vibrational modes as functions of the effective optomechanical-
coupling ratio G2/G1 and the feedback-gain ratio gcd2/gcd1 of the two vibrational modes when the system operates with the AMC (i.e.,
μ̃/ωm = 0.02). Here the red disks denote the case of SFL = FFL, i.e., gcd,2 = gcd,1 and G2 = G1. Plots showing, when the strength of the
second feedback loop is smaller (larger) than that of the first one [i.e., SFL < FFL (SFL > FFL)], n f

1 (blue solid curves) and n f
2 (red dashed

curves) versus (c) and (e) G2/G1 and (d) and (f) gcd2/gcd1. Note that SFL < FFL (SFL > FFL) describes the parameter conditions gcd2 < gcd1

and G2 < G1 (gcd2 > gcd1 and G2 > G1). Here the parameters used are gcd1 = 1 and gcd2 = 0.6 for (c), G1 = 0.4ω1 and G2 = 0.7G1 for (d),
gcd1 = 1 and gcd2 = 1.7 for (e), and G1 = 0.4ω1 and G2 = 1.8G1 for (f). The inset in (f) is a zoomed-in plot of n f

1 as a function of gcd2/gcd1,
which clearly shows the dependence of n f

1 on gcd2/gcd1. Other parameters are the same as those in Fig. 1.

Specifically, when the AMC is on, we plot the steady-state
mean phonon numbers n f

1 and n f
2 versus the optomechanical-

coupling-strength ratio G2/G1 and the feedback-gain ratio
gcd,2/gcd,1 of the two vibrational modes in Figs. 2(a) and 2(b).
It is seen that the two vibrational modes can be efficiently
cooled to their quantum ground states (n f

1 < 1, n f
2 < 1) when

the system operates in the regimes for SFL < FFL (i.e.,
gcd,2 < gcd,1 and G2 < G1) or SFL > FFL (i.e., gcd,2 > gcd,1

and G2 > G1). In contrast to the above ground-state refrigera-
tion results, we find that when SFL = FFL (i.e., gcd,2 = gcd,1

and G2 = G1; see the red disks), the two vibrational modes
are not cooled. The physical origin behind this no-cooling
phenomenon is due to the dark mode, which decouples from
the system and prevents the extraction of the phonons. These
results mean that the simultaneous ground-state refrigeration
of these vibrational modes is achievable owing to the breaking
of the system symmetry by introducing the AMC. Breaking
the system symmetry leads to the removal of the dark mode.

To further elucidate how the refrigeration performance of
the two vibrational modes depends on the parameters of the
SFL and FFL, we plot n f

1 and n f
2 versus G2/G1 [see Figs. 2(c)

and 2(e)] and gcd,2/gcd,1 [see Figs. 2(d) and 2(f)]. We can
see from Figs. 2(c) and 2(d) that when SFL < FFL (i.e.,
gcd,2 < gcd,1 and G2 < G1), these mechanical modes can be
cooled effectively and that the refrigeration performance of
the first vibrational mode is better than that of the second
one. Correspondingly, when SFL > FFL (i.e., gcd,2 > gcd,1

and G2 > G1), the simultaneous ground-state refrigeration of
these vibrational modes can also be realized, and the cooling
performance of the second vibrational mode is better than
that of the first one. Physically, the strength of the feedback
loop directly governs the feedback cooling performance, and
this means that the larger the feedback-loop strength of the
resonator is, the better the cooling efficiency of this resonator
is.

Since the AMC plays a key role in removing the dark
mode and achieving simultaneous refrigeration of the two
vibrational modes, the effect of the AMC on the refrigeration
performance should be studied in detail. To this end, we plot
the steady-state mean phonon numbers n f

1 and n f
2 as functions

of the AMC strength ũ when SFL > FFL and SFL < FFL
in Figs. 3(a) and 3(b). We find that in the absence of the
AMC (i.e., ũ = 0), neither of the two vibrational modes can be
cooled. In contrast, the simultaneous ground-state refrigera-
tion of these vibrational modes is achieved [ i.e., (n f

1 , n f
2 < 1)]

by introducing the AMC. This is because by employing the
AMC, the dark mode can be completely removed and the re-
frigeration channels of these vibrational modes can be opened.

In addition, in Figs. 3(c) and 3(d), we plot n f
1 and n f

2
versus the feedback bandwidth ωfb when the AMC is on.
We find that the simultaneous ground-sate refrigeration of
the two vibrational modes is realized (i.e., n f

1 , n f
2 < 1) under

the proper parameter conditions and that the optimal refrig-
eration of these vibrational modes can be observed for the
parameter ωfb, j/ωm > 2. In particular, we demonstrate that,
with decreasing the feedback bandwidth, i.e., ωfb, j → 0, the
refrigeration of the two vibrations becomes inefficient. The
physical origin behind this is that a smaller feedback band-
width corresponds to a longer time delay of the feedback loop,
and it leads to a lower cooling efficiency for the vibrational
modes.

In particular, we find from Figs. 3(c) and 3(d) that, when
SFL < FFL (SFL > FFL), the refrigeration performance of
the first (second) vibrational mode is better than that of
the second (first) one with increasing feedback bandwidth
ωfb, j . This asymmetrical cooling is directly induced by the
asymmetrical feedback-loop strength, which indicates that the
cooling performance is better for a stronger feedback loop.

Furthermore, in Figs. 3(e) and 3(f), the final average
phonon numbers n f

1 and n f
2 are plotted as a function of
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FIG. 3. Steady-state mean thermal occupations n f
1 (blue solid curves) and n f
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(c) and (d) the feedback bandwidth ωfb, and (e) and (f) the cavity-field decay rate κ for the cases when SFL < FFL and SFL > FFL. Other
parameters are the same as those in Fig. 2.

the cavity-field decay rate κ when SFL < FFL and SFL >

FFL. We see that when we decrease the cavity-field decay
rate κ , the refrigeration performance of the two vibra-
tional modes becomes much worse in the resolved-sideband
regimes (i.e., κ/ωm  1). However, by increasing κ , these
vibrational modes are efficiently cooled to their quantum
ground states (i.e., n f

1 , n f
2 < 1), beyond the resolved-sideband

regimes: κ/ωm > 1. In addition, the optimal refrigeration
can be observed for κ/ωm � 4. These unresolved-sideband
refrigerations are fundamentally different from those in the
sideband cooling, for which the optimal cooling is reached
only in the resolved-sideband regime [30,31,34].

We find that, surprisingly, the dark-mode effect can also
cause a cooling suppression for the near-degenerate-vibration
case. To see the width of the frequency-detuning window
associated with this dark-mode effect, in Fig. 4 we plot n f

1

and n f
2 versus the ratio ω2/ω1 without (i.e., ũ = 0) and with

(i.e., ũ/ω1 = 0.02) the AMC. We find that without the AMC,
the simultaneous ground-state refrigeration of the two vibra-
tional modes is unfeasible in the frequency-detuning range
0.98 < ω2/ω1 < 1.02. However, when the AMC is turned on,
the simultaneous ground-state cooling can be realized in the
corresponding region. Our findings mean that the AMC mech-
anism can lead to the simultaneous ground-state refrigeration
of both near-degenerate and degenerate vibrational modes.

In particular, when SFL < FFL (SFL > FFL), the cooling
efficiency of the first (second) vibrational mode is better than
that of the second (first) one. This is because the cooling is
governed by the feedback loop, and the cooling performance
is better for a larger feedback loop.

V. DISCUSSION AND CONCLUSION

Here we present a discussion to compare the cooling per-
formance based on both bare and squeezed quadratures. It
is obvious that the quadratures q j and p j in Eq. (2) are
squeezed with respect to the bare quadratures and that our
present cooling pertains to the squeezed quadratures. Due to
the fact that the antisqueezing may have an effect on phonon
number, it is worth discussing further the cooling results in
the bare-quadrature-based case. To this end, we plot the final
mean phonon numbers n f

j as a function of the AMC strength μ̃

in both bare- and squeezed-quadrature-based cases, as shown
in Figs. 5(a) and 5(b). The blue solid curves show the cooling
results in the squeezed-quadrature-based case, while the red
dashed curves correspond to those in the bare-quadrature-
based case. We find that the two mechanical resonators can
be simultaneously cooled to their quantum ground states by
introducing the AMC. Physically, the introduced AMC offers
an effective strategy to remove the dark mode and, in turn,
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gcd2 = 0.5 and G2 = 0.5G1, and those for (b) are gcd2 = 1.9 and
G2 = 1.9G1. Other parameters are set as in Fig. 1.

to rebuild cooling channels for extracting thermal phonons
stored in the dark mode. This implies that no actual cooling
is observed for the two mechanical resonators when μ̃ = 0.

Moreover, we find that when μ̃/ωm � 0.025, excellent
agreement is observed between the bare-quadrature-based
(red dashed curves) and squeezed-quadrature-based (blue
solid curves) cooling results; that is, the cooling performances
in both bare- and squeezed-quadrature cases are approxi-
mately the same in the region μ̃/ωm � 0.025. This can be
explained by the fact that a weaker AMC strength leads to
a smaller squeezing effect with respect to the bare quadra-
tures. In the region μ̃/ωm > 0.025, the cooling performance
of the bare-quadrature-based case becomes worse, while that
of the squeezed-quadrature-based case becomes better with
increasing μ̃. Physically, by increasing the AMC strength, the
quadratures q j and p j in Eq. (2) are significantly squeezed
with respect to the bare quadratures, and thus, the cooling
performance in the squeezed-quadrature-based case can be
improved. These results mean that, when the AMC strength μ̃

is properly chosen (i.e., μ̃/ωm � 0.025), the squeezing effect
caused by the AMC has little effect on cooling performance.
However, when μ̃/ωm > 0.025, the difference in the cool-
ing results in the bare- and squeezed-quadrature-based cases
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FIG. 5. Steady-state average phonon numbers (a) n f
1 and (b) n f

2

as a function of the AMC μ̃ for the cooling cases of the squeezed
(blue solid curves) and bare (red dashed curves) quadratures under
SFL < FFL. Here the bare- and squeezed-quadrature-based cases
are, respectively, based on the quadratures in Eqs. (1) and (2).

cannot be neglected owing to a significant squeezing effect.
Namely, the squeezed-quadrature-based cooling is more ef-
ficient than that with the bare quadratures for larger values
of the AMC strength, but the differences between these two
cases are negligible if the strength is μ̃/ωm � 0.025. Note
that in our other simulations, we set μ̃/ωm = 0.02 < 0.025,
and this indicates that squeezed-quadrature-based cooling can
be used to implement bare-quadrature-based cooling when
μ̃/ωm � 0.025.

In summary, we proposed a method to achieve the si-
multaneous ground-state refrigeration of multiple vibrational
modes beyond the resolved-sideband regime and to realize a
millionfold amplification in the net-refrigeration rates. This is
realized by introducing an AMC to break the symmetry of the
system, which then leads to removing the dark-mode effect.
Using fully analytical treatments, we showed that when the
AMC is switched on, the amplification of the net-refrigeration
rates can be observed for more than six orders of magni-
tude. Remarkably, we revealed that without the AMC, the
simultaneous ground-state refrigeration of the two vibrational
modes is unfeasible; however, with the AMC, these vibra-
tional modes can be efficiently cooled to their quantum ground
states. Our work could potentially be used for observing
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quantum-mechanical effects and controlling macroscopic me-
chanical coherence in the unresolved-sideband regime.

ACKNOWLEDGMENTS

B.-P.H. is supported partly by NNSFC (Grant No.
11974009), the Chengdu technological innovation RD
project (Grant No. 2021-YF05-02416-GX), and the Sci-
ence Foundation of Sichuan Province of China (Grant
No. 2018JY0180). A.M. is supported by the Polish Na-
tional Science Centre (NCN) under Maestro Grant No.
DEC-2019/34/A/ST2/00081. F.N. is supported in part by
Nippon Telegraph and Telephone Corporation (NTT) Re-
search, the Japan Science and Technology Agency (JST) [via
the Quantum Leap Flagship Program (Q-LEAP) program, the

Moonshot R&D Grant No. JPMJMS2061], the Japan Society
for the Promotion of Science (JSPS) [via the Grants-in-Aid
for Scientific Research (KAKENHI) Grant No. JP20H00134],
the Army Research Office (ARO) (Grant No. W911NF-
18-1-0358), the Asian Office of Aerospace Research and
Development (AOARD) (via Grant No. FA2386-20-1-4069),
and the Foundational Questions Institute Fund (FQXi) via
Grant No. FQXi-IAF19-06.

APPENDIX: CALCULATION OF THE STEADY-STATE
MEAN PHONON NUMBERS

In this Appendix, we show the remaining expressions for
the parameters used in the Eqs. (27)–(35). These expressions
are defined as follows:

A1 = ω(κ + ωfb), A2 = κωfb − ω2, A3 = ω(γ2ω
2 − κ
2), A4 = ω2(γ2κ + 
2),

A5 = ωωfb(γ2κ − ω2), A6 = ω2ωfb(γ2 + κ ), A7 = G2gcd2ωω2ωfb, A8 = ωω2
2ωfb, A9 = κω2

2ωfb,

W1 = ω(γ1ω
2 − κ
1), W2 = ω2(γ1κ + 
1), W3 = ωωfb(γ1κ − ω2), W4 = ω2ωfb(γ1 + κ ),

W5 = G1gcd1ωω1ωfb, W6 = ωω2
1ωfb, W7 = κω2

1ωfb, B1 = A1A3 − A2A4,

B2 = A2A3 + A1A4, B3 = A1A5 + A2A6 + A1A7 + A1A8 − A2A9,

B4 = A2A5 − A1A6 + A2A7 + A2A8 + A1A9, C1 = B1 − B3,

C2 = B2 − B4, D1 = 2μ̃A1 − G2gcd1ωωfb, D2 = 2μ̃A1 − G1gcd2ωωfb, D3 = 2μ̃A2,

Ej = C1D1Dj+1 + D2D3C3− j + (−1) j
(
D2

3Cj − C2D1D4− j
)
,

Yj = Lj − Lj+2, Lj = AjW1 + (−1) jA3− jW2,

Fj = ω jωfbx2y2
[
γ 2

3− jω
2(ω2 − κωfb)

− G3− jgcd(3−j)γ3− jω
2ω3− jωfb + 
2

3− j (ω
2 − κωfb)

]
,

Tj =Dj+1D1Y1 + (−1) jD2
3Yj + (−1) j+1D1Y2D4− j + D2D3Y3− j, (A1)

Ej+2 = ω1
[
Ejω2

(
A2

1 + A2
2

) + (−1) j+1AjG1gcd1ωωfb
(
C2

1 + C2
2

)]
, Lj+2 = Aj (W3 + W5 + W6) + (−1) j+1A3− j (W4 − W7),

Fj+2 = ω1ω2x2y2
{[ − (G2gcd1 + G1gcd2)ω2 + 2G3− jgcd(3−j)μ̃ω3− j + (G2gcd1 + G1gcd2)ω2

3− j

]
ωfb(ω2 − κωfb)

+ γ3− j
[(

G2gcd1 + G1gcd2)ω2ωfb(κ + ωfb) − 2μ̃xy
]}

,

Tj+2 = ω2
[
Tjω1

(
A2

1 + A2
2

) + (−1) j+1AjG2gcd2ωωfb
(
Y 2

1 + Y 2
2

)]
, N1 = ω2

2 f+ f−, f± = 2μ̃(κ ± iω)(ω ∓ iωfb) − G2gcd1ωωfb,

N2 = ω2x
[
γ 2

2 ω2 + 
2
2

] − 2G2gcd2ω
2ω2ωfb[ω2γ2 − κ
2] + {

γ 2
2 ω2x + 2G2gcd2γ2κω2ω2

+ κ2
2
2 + [ω3 − ωω2(G2gcd2 + ω2)]2}ω2

fb,

N3 = 4g2
cd2μ̃

2ω2
2 + 4gcd1gcd2μ̃ω2
2 + g2

cd1

[
γ 2

2 ω2 + 
2
2

]
, N4 = (G2ω2x+ + y−)(G2ω2x− + y+),

x± = ω(G2gcd1 − G1gcd2)/(κ ± iω), y± = (ω ∓ iωfb)
[
G1ω(ω ∓ iγ2) − 2G2μ̃ω2 − G1ω

2
2

]
/ωfb, M1 = ω2

1w+w−,

M2 = ω2(κ2 + ω2)
[
γ 2

1 ω2 + 
2
1

] − 2G1gcd1ω
2ω1ωfb[ω2γ1 − κ
1] + ω2

fb

{
γ 2

1 ω2x + 2G1gcd1γ1κω2ω1

+ κ2
2
1 + [ω3 − ωω1(G1gcd1 + ω1)]2}, w± = 2μ̃(κ ± iω)(ω ∓ iωfb) − G1gcd2ωωfb,

M3 = 4g2
cd1μ̃

2ω2
1 + 4gcd1gcd2μ̃ω1
1 + g2

cd2

[
γ 2

1 ω2 + 
2
1

]
,

M4 = (G1ω1x+ + z−)(G1ω1x− + z+), z± = (ω ± iωfb)[2G1μ̃ω1 + G2(
1 ∓ iγ1ω)]/ωfb,

where j = 1, 2, 
 j = ω2
j − ω2, 
3− j = ω2

3− j − ω2, x = κ2 + ω2, and y = ω2
fb + ω2.
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