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Enhancing dissipative cat-state generation via nonequilibrium pump fields
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Cat states, which were initially proposed to manifest macroscopic superpositions, play an outstanding role in
fundamental aspects of quantum dynamics. In addition, they have potential applications in quantum computation
and quantum sensing. However, cat states are vulnerable to dissipation, which puts the focus of cat-state gener-
ation on higher speed and increased robustness. Dissipative cat-state generation is a common approach based on
the nonlinear coupling between a lossy pump field and a half-frequency signal field. In such an approach, the
pump field is usually kept in equilibrium, which limits the cat-state generation. We show that the equilibrium
requirement can be removed by leveraging a synchronous pump method. In this nonequilibrium regime, the speed
of the cat-state generation can be increased by one order of magnitude, and the robustness to single-photon loss
can be enhanced. The realization of synchronous pumps is discussed for both time-multiplexed systems and
standing modes.
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I. INTRODUCTION

Cat states emulate Schrödinger’s famous thought experi-
ment with superpositions of macroscopically distinguishable
quantum states, which here take the role of the simultaneously
“dead” or “alive” cat. As such, they continue to challenge
attempts to settle the quantum-classical boundary. Therefore,
realizing cat states on different experimental platforms is of
fundamental relevance [1–7]. In addition, cat states have prac-
tical applications in fields of quantum metrology [8–12] and
quantum computation [13–19].

A common method to generate optical cat states relies on
dissipation, where cat states emerge as a result of the compe-
tition between the two-photon pumping and the two-photon
loss [5,20–24]. The main detrimental influence on cat-state
generation is the single-photon loss, which can destroy the
coherence of the cat states. Therefore, both the two-photon
pumping rate and the two-photon loss rate are desired to be
high, so that the influence of the single-photon loss is insignif-
icant.

Typically, the two-photon pumping and the two-photon
loss are induced by a nonlinear coupling to an equilibrium
pump field, which undergoes approximately adiabatic evo-
lution. Such an adiabatic condition limits the achievable
two-photon pumping rates and two-photon loss rates. While
the two-photon pumping can be enhanced by the average pho-
ton number in the pump field, the generation and storage of
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cat states are still challenging due to weak two-photon losses
[25–29]. Larger nonlinearities are the most obvious solutions
but require significant improvements in experimental tech-
nologies. An alternative way is to achieve stronger two-photon
processes with currently accessible nonlinearities.

The pump fields and the signal fields can be conceived
as either standing electromagnetic modes (zero group ve-
locity) [30,31] or traveling electromagnetic modes (nonzero
group velocity) [32–38] of optical or microwave cavities, as
illustrated in Fig. 1. Standing modes are usually eigenmodes
of the systems, while traveling modes correspond to pulses
which are typically superpositions of different eigenmodes
in a cyclic arrangement. As different traveling modes pass
the pump devices periodically at different times, synchronous
pumping is used to control the pumping intensities on these
modes. Although both standing modes and traveling modes
can be described using the same theory in most cases [39,40],
a signal mode in the synchronous pumping method couples
with different initialized pump modes (pulses) in each cycle.
This pump-mode sequence can be similar to an equilibrium
pump field due to the initializing of pump modes in each
cycle, even if a single pump mode diverges from equilibrium
during the coupling. As keeping the pump field in equilibrium
significantly limits two-photon processes, synchronous pump-
ing may therefore have advantages in cat-state generation.

An important application of traveling modes and syn-
chronous pumping is the coherent Ising machine [6,41–48],
which is a kind of time-multiplexed optical network. These
machines can simulate large spin systems with their inherent
bistable optical modes. Each of these optical modes exhibits
two coherent states with different phases as steady states.
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As cat states are among the potential steady states in these
machines, traveling cat states could be conveniently stored
and handled in coherent Ising machines, potentially enhanc-
ing their computational power by exploiting quantum effects.
Therefore, it is natural to ask whether cat-state generation can
benefit from the special properties of synchronous pumping.

To answer these questions, we analyze cat-state generation
based on the synchronous pumping. In our approach, we do
not require the pump field to be in equilibrium, so the process
can potentially be faster. To confirm this, we compare the
synchronous pump model with the adiabatic pump model.
When the evolution of the pump field is adiabatic, we find
that the dynamics is equivalent to the one described by the
effective two-photon loss and the two-photon pump. However,
when entering the nonequilibrium regime of the pump field,
the cat-state generation can acquire higher speed (one order
of magnitude larger) and robustness. We also discuss potential
implementations of effective synchronous pumps in systems
without traveling modes. We show that, by introducing a tun-
able dissipation to the pump field, an effective synchronous
pump can also be realized in standing modes.

II. THEORETICAL MODEL

A. Cat-state generation based on the adiabatic pump fields

The dissipative generation of cat states is based on the
nonlinear coupling Hamiltonian (setting h̄ = 1)

Hnl = ωpumpb†b + ωsignala
†a + gnl[b

†a2 + b(a†)2]. (1)

The annihilation operators a and b correspond to a signal
mode in the signal field and a pump mode in the pump field,
respectively; the frequencies satisfy ωpump = 2ωsignal. In the
interaction picture, the Hamiltonian becomes

H I
nl = gnl[b

†a2 + b(a†)2]. (2)

By introducing a strong loss γp and pump terms [�p(b + b†)]
to the pump field, a master equation for cat-state generation
can be obtained [5,20–24],

∂ρ

∂t
= −S[(a†)2 − a2, ρ] + �d

2
L(a2, ρ), (3)

with the effective two-photon pump intensity

S = 2�pgnl/γp,

the effective two-photon loss rate

�d = 4g2
nl/γp,

and the Lindblad superoperator

L(A, ρ) ≡ (2AρA† − A†Aρ − ρA†A).

This method has successfully been applied to the experimental
generation of cat states [30,31]. The speed of cat-state gener-
ation is approximately proportional to �d [29], which can be
estimated by the mean-field equation of the signal operator a.
The Heisenberg equations of motion for the pump field and
the signal field in the rotating frame are

ḃ = −ignla
2,

ȧ = −i2gnla
†b. (4)

By coupling the pump field to a Markovian bath and intro-
ducing a pumping, the following Langevin equation can be
obtained:

ḃ = −ignla
2 − γpb + ξp − i�p, (5)

with quantum noise ξp. If the loss rate of the pump field γp

is much larger than the nonlinear coupling strength gnl, the
pump field can be assumed to be in the equilibrium state:

b ≈ −ignla2 + ξp − i�p

γp
. (6)

Note that the pump field b in Eq. (6) is not time independent
but contains a higher-order time-dependent term a2. This equi-
librium pump field can adiabatically follow the signal field
and be described by two parameters, S and �d. The effective
equation of the signal field then becomes

ȧ = −2g2
nla

2a† − i2gnla†ξp − 2gnla†�p

γp
. (7)

Note that Eq. (7) is a Langevin equation equivalent to the
master equation (3). By taking the average of the operator
equation (7), the following amplitude equation can be derived:

Ȧ = −2g2
nl|A|2A − 2gnl�pA∗

γp
. (8)

Note that the average of the bath noise ξp is zero. This equa-
tion has three static solutions,

A0 = 0,

A+ = i
√

�p/gnl,

A− = −i
√

�p/gnl.

The solutions A+ and A− correspond to a cat state in the
quantum regime. Therefore, we expand the amplitude around
the solution A+ = i

√
�p/gnl,

A = i
√

�p/gnl + δA. (9)

The equation for δA is

d (δA)

dt
= −4gnl�p

γp
δA. (10)

Here we have α = i
√

2S/�d, S = 2�pgnl/γp, and �d =
4g2

nl/γp. The solution of Eq. (10) is

δA = δ0 exp(−|α|2�dt ), (11)

i.e., the time for the system to achieve a targeted δA is propor-
tional to 1/(|α|2�d ).

Therefore, a larger �d provides faster cat-state generation,
which can increase both the robustness against signal-field
single-photon loss and the manipulation times. However, a
condition for Eq. (3) to be valid is γp � gnl, which limits the
achievable values of �d. A larger gnl can increase �d, but gnl is
usually an intrinsic parameter of the experimental setup used.

B. Synchronous-pump-based dynamics

While synchronous pumping [32–38] too is based on the
nonlinear coupling in Eq. (2), the total system undergoes
periodic dynamics with period Tcycle, as illustrated in Fig. 1.
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Standing modes Traveling modes

SignalPump Injected pump

Cyclically traveling signal

FIG. 1. Illustrations of standing-mode and traveling-mode con-
figurations. Using standing modes (left), the signal fields and the
pump fields are continuously coupled. In systems based on traveling
modes (right), the signal fields and the pump fields are periodically
coupled in the nonlinear coupling devices, and the coupling time can
be controlled, e.g., by the length of the device.

Unlike continuous pumps in cavities, synchronous pumps are
usually applied to traveling modes. A one-dimensional (1D)
vector potential A(r, t ) can be quantized as

A(r, t ) =
∑

m

√
h̄

2ωmε0L
(eikmr−iωmt am + H.c.), (12)

with [am, a†
n] = δm,n. In free space, ωm = |km|c, where c is

the speed of light. In the presence of nonlinear media, the
dispersion relation becomes complicated [36]. For simplicity,
we assume that the speed of light is unchanged. In a cavity,
quantum modes are usually formed by pairs of modes with
opposite momenta k and −k:

A(r, t ) =
∑

n

√
h̄

ωnε0L
sin(knr)(e−iωnt bn + eiωnt b†

n). (13)

Each single mode an has zero group velocity according to
dω/dk, as the frequencies corresponding to both kn and −kn

are the same. Therefore, one single mode in Eq. (13) exhibits
no propagating properties.

However, there is another way to construct quantum
modes:

dn =
∑

m

CmeikmXn am, (14)

with
∑

m |Cm|2 = 1 and km > 0. In this case the vector poten-
tial corresponding to each dn can be localized near (Xn − ct ),

A(r, t ) =
∑
m,n

1

NmCm
(eikm (r−Xn )−iωmt dn + H.c.)

≡
∑

n

[ f (Xn − r + ct )dn + H.c.], (15)

with Nm ≡ √
(2ωmε0L)/h̄, if we choose a set of proper Cm to

make f (x) decay with |x|. With a large Xn, the operator dn

can be approximately used as the annihilation operator of an
eigenmode as

[dn, d†
m] ≈ δn,m. (16)

Therefore, we obtain many quantum modes which “travel” at
the speed of light. In nonlinear systems, the speed of different

Pump

Signal

Incoherent
two-photon loss

(slow)

Coherent
nonlinear oscillation

(fast)

enhanced 
two-photon loss

suppressed
two-photon loss

(a) (b)

FIG. 2. Illustration of the two-photon process in an adiabatic
pump field and the two-photon process in a nonequilibrium pump
field, respectively. (a) The two-photon loss induced by an adiabatic
pump field. Photon pairs keep leaving the signal mode. (b) The pho-
ton conversion between a signal mode and a nonequilibrium pump
field. Photons can either leave signal mode or come back, which is
decided by coupling time.

modes can be different [36], which is called the walk-off
effect. Note that the interaction coefficients in this case can
change with time. For example, we consider an atom at posi-
tion r0 with the dipole moment d (t ):

Hint (t ) =
∫

dr δ(r − r0)d (t )A(r, t )

=
∑

n

[d (t ) f (Xn − r0 + ct )dn + H.c.]. (17)

The mode dn only interacts with the atom when Xn − r0 +
ct ≈ 0.

As different modes dn pass a certain device at different
times tn, it is convenient to label these modes with the cor-
responding passing times tn. Systems with these quantum
modes in the time domain are usually called time-multiplexed
systems [6,41–48].

In each cycle, every time-multiplexed pump mode in the
pump field is prepared in a coherent state |αp〉 and nonlinearly
coupled to the corresponding time-multiplexed signal mode
in the signal field. After a period of time tnl, the pump modes
are decoupled from the signal modes and reset to vacuum.
If there are no additional operations on the signal field, the
total system enters a new cycle after some free evolution.
The discrete dynamics of a single signal mode can then be
modeled as

ρn+1 = Trb{e−iH I
nltnlρn ⊗ |αp〉〈αp|eiH I

nltnl}. (18)

Here, ρn describes the reduced density matrix of the signal
mode after n cycles of evolution. The effective pumping inten-
sity per cycle can be controlled by the amplitude of the pump
mode αp and the coupling time tnl. In general, oscillations
can occur within each cycle of the coupling (18) due to the
coherence between the pump modes and the signal modes,
as illustrated in Fig. 2. These oscillations can be traced back
to Rabi oscillations in different subsystems corresponding to
different eigenvalues of a†a + 2b†b and can exhibit complex
properties. Such oscillations can prevent the generation of cat
states in continuously coupled standing modes, so that strong
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losses in the pump fields are necessary to suppress these
oscillations. However, the coupling time tnl between traveling
modes can be controlled to obtain a maximum flow from the
signal field to the pump field, so as to turn an oscillation into
a strong two-photon loss.

We can expand Eq. (18) up to second order in gnlt and take
the average over one cycle:

ρ̇ ≈ ρn+1 − ρn

Tcycle

≈ −ignltnl

Tcycle
[α∗

pa2 + αp(a†)2, ρn] + (gnltnl )2

2Tcycle
L(a2, ρn)

+ (gnltnl )2

2Tcycle
L(α∗

pa2 + αp(a†)2, ρn). (19)

If the pumping intensity is weak, i.e., |αp| 
 1, the last term,
L(α∗

pa2 + αp(a†)2, ρn), can be neglected. Equation (19) is
then equivalent to the master equation for cat-state generation:

∂ρ

∂t
= −S[(a†)2 − a2, ρ] + �d

2
L(a2, ρ),

with

S = ignltnlαp

Tcycle
,

�d = (gnltnl )2

Tcycle
. (20)

Since the cycle period is always larger than the nonlinear
coupling time, Tcycle � tnl, a small Tcycle ≈ tnl and a large tnl

are favored to obtain a large �d. However, when gnltnl ∼ 1,
the discrete evolution (18) can no longer be matched with the
perturbative model (3) and (20).

III. NUMERICAL RESULTS

A. Cat-state generation beyond the adiabatic-pump-field limit

To better understand a pump field out of equilibrium, we
consider the condition for cat-state generation based on the
discrete model (18). The steady state of the adiabatic model
[Eq. (3)] is a cat state,

|cat(α)〉 ≡ 1√
2 + ε

(|α〉 + | − α〉), (21)

with the complex amplitude α = i
√

2S/�d and a
normalization-factor correction ε 
 1. We now show that the
model described by Eq. (18) can generate cat states without
resorting to the adiabatic condition, i.e., with a pump field out
of equilibrium. The nonlinear evolution time is expressed by
the phase term � = tnlgnl. We keep αp�

−1 = −2i constant,
so that the steady state in the adiabatic limit is a cat state
[Eq. (21)] with the size α = 2 ≡ αadiab according to Eqs. (3)
and (20). The initial state is assumed to be the vacuum
state, and the pumping process is repeated for N ≈ 30|�−1|
cycles. After each cycle, we calculate the system fidelity with
different cat states

Fn,α = 〈cat(α)|ρn|cat(α)〉.
The maximum value of Fn,α and the corresponding size αopt

are used to characterize the cat-state-generation capacity of
the system. We show the relation between �−1 and the

FIG. 3. Cat-state generation based on synchronous pumping
(18). (a) The highest fidelity with cat states achieved during the
discrete evolution with [αp�

−1 = −2i]. (b) The optimal cat-state size
αopt corresponding to the highest fidelity with [αp�

−1 = −2i]. We
find that synchronous pumping (18) can generate nearly perfect cat
states for �−1 � 3, while it approaches the adiabatic model (3) and
(20) for �−1 � 12.

cat-state-generation capacity in Fig. 3. As cat states with
vanishing size exhibit few quantum properties, we set the
minimum size to be α = 1.2.

Figure 3(a) shows that high-fidelity (>0.9) cat states can
be generated for �−1 > 2. Note that this fidelity value (0.9)
is relevant to generating detectable entanglement [49]. When
�−1 is larger than 12, the generated cat states are close to
the prediction of the adiabatic model. For small �−1, the
pump field is no longer in equilibrium, as indicated by the
optimal size αopt increasingly deviating from the adiabatic
value αadiab. However, the highest fidelity achieved does not
decrease significantly in this nonequilibrium regime if �−1 is
larger than 3. There are oscillations for small �−1 in Fig. 3,
which corresponds to the oscillation illustrated in Fig. 2.
Therefore, we conclude that cat states can be generated in
synchronously pumped systems for �−1 ∼ 1, a regime which
cannot be treated adiabatically or perturbatively.

B. Speed of cat-state generation

As the cat-state generation based on synchronous pumping
does not require an adiabatic pump field, one can expect a
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FIG. 4. (a)–(d) Comparison between the discrete evolution (18)
and the adiabatic model (3). The effective two-photon loss rate for the
adiabatic model is �d = 0.064gnl; the parameter for the synchronous
pumping is αp�

−1 = −2i. (a) The highest fidelity with optimized cat
states at different times. Results for gntt < 5 are shown in the inset.
(b) The optimal cat-state size corresponding to the highest fidelity
in (a). (c,d) Wigner functions of the discrete evolution with �−1 = 2
at t = 0.5/gnl and t = 4/gnl, respectively. The synchronous pumping
in the nonequilibrium regime is found to be one order of magnitude
faster compared to the adiabatic method used in experiments [30].

speed gain. For example, the pump-field loss in experiments is
about γp ≈ 60gnl [30]. If the synchronous pump with �−1 = 2
is applied to a system with the same gnl, the effective �d can
be about seven times larger according to Eqs. (3) and (20).
However, note that the adiabatic description is not valid in
this regime. To make the speedup effects clear, we calculate
the evolution of the optimal fidelity and the optimal size using
different pumping schemes, shown in Fig. 4. Without loss of
generality, we assume that the discrete evolution (18) contains
only the nonlinear coupling part, i.e., Tcycle = tnl.

In Fig. 4(a), the cat-state fidelity of the discrete dynamics
(18) with �−1 = 2 (black hollow squares) can reach 0.9 after
one cycle or at gnlt = 0.5, while the adiabatic method Eq. (3)
(light green squares) reaches the same fidelity at gnlt = 4.
For a typical nonlinear coupling strength gnl = 700 kHz [30],
these two times correspond to about 0.7 and 6 μs, respec-
tively. However, neither method generates a steady cat state
at these times according to αopt in Fig. 4(b). At gnlt = 3,
the synchronous pumping method obtains the steady fidelity,
while the same fidelity appears at gnlt = 15 in the adiabatic
method.

The cost of this speedup is a slight reduction of the steady-
state fidelity and cat-state size. To avoid such reduction, a
larger �−1 (red hollow triangles) can be applied, with which
a moderate speedup can still be obtained almost without any

cost. As the generation of large cat states is faster [29], we
consider an adiabatic model with a weak pump S = −1.4�d

(violet triangles), which results in the cat-state size of the dis-
crete dynamics with �−1 = 2 according to Eq. (21). Indeed,
in Fig. 4(b), the asymptotic optimal size αopt of the weakly
pumped adiabatic model (violet triangles) nearly coincides
with the one of the discrete dynamics with �−1 = 2 (black
hollow squares). The fidelity of the weakly pumped adiabatic
model (violet triangles) first reaches 0.9 at gnlt = 5, which is
one order of magnitude larger than the time for the discrete
dynamics with �−1 = 2 (black hollow squares) to reach the
same fidelity. In addition to the transient states, the time
for the adiabatic model with S = −1.4�d (violet triangles)
to approach the steady state is also one order of magnitude
larger compared to the discrete dynamics with �−1 = 2 (black
hollow squares).

The oscillations in the curves in Fig. 4(a) may be due to the
truncation of αopt, as these oscillations happen at times with
αopt exceeding the minimum value. Another concern may be
whether these transient states with minimum size αopt = 1.2
in Figs. 4(a) and 4(b) are cat states or not. Therefore, we check
this with the Wigner function. While the Wigner function in
Fig. 4(c) indicates a reduced quality compared to the steady
one in Fig. 4(d), this transient state exhibits a typical Wigner
function for a cat state. Therefore, we can identify these tran-
sient states with truncation scales as cat states.

C. Influence of single-photon loss in the signal mode

In optical systems [32–38], the main challenge for cat-
state generation is the strong detrimental single-photon loss
[49]. Although synchronous pumping is commonly used in
nonlinear optics, the adiabatic model remains valid in many
cases due to the strong single-photon loss. However, operating
nonlinear optical systems in the quantum regime is necessary
for applications in quantum information [6]. Therefore, we
now analyze the performance of the nonequilibrium pump
field in the presence of single-photon loss. To describe the
latter, we can introduce loss terms in Eq. (18) as follows:

∂ρn(t )

∂t
= −i

[
H I

nl, ρn(t )
] + �s

2
L(a, ρn(t )) + �s

2
L(b, ρn(t )),

(22)

with ρn(0) = ρn ⊗ |αp〉〈αp| and ρn+1 = Trb{ρn(tnl )}. To sim-
plify the problem, we assume here the same single-photon loss
rate �s for the signal mode a and the pump mode b. As the
loss in the signal mode and the loss in the pump mode are
usually different [50–52], we briefly verify the validity of this
assumption. To this end, we determine the highest accessible
cat-state fidelities for different parameters and compare the in-
fluence of the single-photon loss in the pump field; see Fig. 5.
Our numerical results demonstrate that the ratio between �s

s
and �

p
s does not have a significant influence on the problem

studied here. Therefore, we are free to characterize the losses
in the signal mode and the pump mode by the same rate �s.

In Figs. 6(a) and 6(b), we show the fidelity with optimized
cat states and the corresponding optimal sizes αopt, which are
calculated in the same way as in Fig. 3. When �−1 is larger
than 5, the accessible fidelity decreases with increasing �−1.
In this regime, the optimal size αopt always drops below the
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FIG. 5. Highest accessible cat-state fidelities as a functions of
�−1 for different choices of the single-photon loss of the pump field.
The pump intensity is set to be αp�

−1 = −2i, and the single-photon
loss in the signal field is set to be �s

s = 0.1gnl. We find that the
influence of the single-photon loss rate in the pump field �p

s on the
maximum fidelity is insignificant.

minimum value, indicating a transient cat state [Fig. 4(c)]. The
optimal value of �−1 in Fig. 6(a) ranges from 3 to 2, which is
far below the adiabatic regime, �−1 � 12, indicated in Fig. 3.
The sudden drops in Fig. 6(b) correspond to the competition
between the transient cat state in Fig. 4(c) and the steady cat
state in Fig. 4(d). The steady cat state has higher ideal fidelity,
but the transient one is less influenced by the loss. In some
cases, the objective may be to create cat states with certain
target sizes. Therefore, we also calculate the fidelity with a
cat state of ideal adiabatic size α = 2, as shown in Fig. 6(c).
In such cases, the nonequilibrium regime �−1 can be more
distinct.

Hence, we find that entering the nonequilibrium regime
of the synchronous pumping can significantly increase the
speed and the robustness of cat-state generation. Compared
to current methods of cat-state generation, the speed of the
synchronous pumping method can be one order of magnitude
larger. By choosing an optimized nonlinear interaction time
tnl, which is far away from the adiabatic limit �−1 � 12, the
qualities of cat states can be more distinct in the presence of
single-photon-signal-mode loss.

IV. APPLYING SYNCHRONOUS PUMPING
IN STANDING MODES

To utilize a nonequilibrium pump field for cat-state genera-
tion, the synchronous pumping method is necessary. While the
synchronous pumping is widely used in optical systems based
on traveling modes, it is not obvious how to apply this method
to standing modes, as they occur, e.g., in superconducting
resonators. In traveling modes, the pump mode can be sepa-
rated from the signal mode and reset, because the pump mode
and the signal mode have different group velocities. However,

FIG. 6. Synchronous pumping in the presence of single-photon
loss. The pump field is set to be αp�

−1 = −2i. (a) Relation between
the highest achievable fidelity and the nonlinear evolution time �.
(b) The relation between the optimal size αopt corresponding to
highest fidelity and the nonlinear evolution time �. (c) The highest
fidelity according to the cat state with α = 2. Optimal values of �−1

are always far away from the adiabatic limit (�−1 � 12).

standing modes have vanishing group velocities. Therefore,
an additional mechanism is required to reset the pump mode.

This can be achieved by a switchable loss channel coupled
to the pump mode. During the nonlinear coupling, this channel
is off, so that the dynamics is governed by the Hamiltonian in
Eq. (2). At the end of each cycle of evolution described by
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Eq. (18), we then turn on a strong loss channel to evacuate
the pump mode. After the depletion, the pump mode can be
prepared in a coherent state by a strong pump. Such a loss
channel can be realized by widely used setups in supercon-
ducting circuits [53–65], in which the cavity frequencies or
the coupling strengths can be adjusted. By coupling a lossy
superconducting resonator to the pump field, a loss can be
introduced. Such a loss can be shut down by detuning the
lossy cavity from the pump mode or by reducing the coupling
strength. With currently accessible parameters, the loss rate
can be changed between 0.01gnl and 10gnl [53–65].

A. Lossy resonator with a tunable cavity frequency

The first way can be realized by introducing a lossy super-
conducting resonator with a tunable cavity frequency [53–58].
By changing the frequency of the resonator, the effective loss
of the pump field induced by the resonator can be adjusted.
Assume that the loss rate of the resonator and the coupling
strength between the resonator and the pump field are �re and
gloss, respectively. The Heisenberg equations of motion for the
pump field and the resonator in the rotating frame are

ḃ = −ignla
2 − iglossc,

ċ = (−i − �re )c − iglossb + ξ . (23)

Here,  is the tunable detuning of the resonator and ξ is the
quantum noise due to the loss. When the detuning and loss
rate are sufficiently large, the resonator can be assumed to be
in the equilibrium state,

c ≈ − gloss

2 + �2
re

b − i
gloss�re

2 + �2
re

b + −i + �re

2 + �2
re

ξ,

ḃ = −ignla
2 + i

g2
loss

2 + �2
re

b − g2
loss�re

2 + �2
re

b − gloss
−i + �re

2 + �2
re

ξ .

(24)

In the Langevin equation (24), we obtain an effective
loss (g2

loss�re )/(2 + �2
re ) and an effective frequency shift

−(g2
loss)/(2 + �2

re ). Both terms vanish for large detuning
. When the pump field is to be reset, the detuning of the
resonator  can be reduced to turn on the effective frequency
shift and effective loss of the pump field. The effective detun-
ing can decouple the pump field from the signal field, whereas
the effective loss can bring the pump field to a vacuum state.

Note that both the adjustable range of  and the cou-
pling strength between superconducting resonators gloss ∼
1 GHz [56,66]. The loss of a resonator �re can typically be
∼10 MHz, and the nonlinear coupling strength gnl is usually
∼100 kHz [30,67]. Assume that we use a moderate coupling
strength gloss ∼ �re ∼ 10 MHz. Note that the effective loss of
the pump mode can be suppressed to about 0.01gnl with a
detuning  = 1 GHz. Although this also results in a shift
of the frequency of the pump mode ∼100 kHz, this shift
can be compensated by changing the bare frequency of the
pump mode. To turn on the loss in the pump mode, a small
detuning  around (3gloss ∼ 30 MHz) can be applied. With
this small detuning, both the effective frequency shift of the
pump mode and the effective loss rate of the pump field are
∼1 MHz.

B. Tunable coupling between the pump field
and a lossy resonator

The other way realize a tunable dissiption channel is to
introduce a tunable coupling [59–65] between the pump field
and a loss resonator. Such a setup can also be described
by Eq. (24), while the adjustable parameter is the coupling
strength gloss instead of the detuning . As the adjustable
range of the coupling strength can be from 0 to 30 MHz
[65], the “turning-on” parameters (gloss ∼ �re ∼ 10 MHz and
 ∼ 30 MHz) in Eq. (24) can be applied. To shut down the
effective loss and the effective frequency shift, the coupling
strength gloss can be set to 0.

Note that the switch time of a superconducting quantum
interference device (SQUID) is about several nanoseconds
[54,58] and is negligible for a nonlinear process with gnl ∼
100 kHz. Depleting the pump mode may take some time, as
the effective dissipative rate is only one order of magnitude
larger than the nonlinear coupling rate. However, such a de-
crease is also insignificant because the speedup can be more
than one order of magnitude. After preparing the pump field
in a vacuum state, we can pump it to |αp〉 in Eq. (18) with a
classical pulse.

Therefore, synchronous pumps can also be applied in
devices based on standing modes. Instead of those prop-
agating pulses in optical systems, the control signals of
the loss channel and the pump are synchronized. Based
on these effective synchronous pumps, the advantages of a
nonequilibrium pump field can also benefit those standing-
mode devices.

V. CONCLUSIONS

We considered dissipative cat-state generation with a
synchronous pump field in the nonequilibrium regime. A
nonequilibrium pump field, which cannot be adiabatically
eliminated, was shown to be capable of generating high-
quality cat states. Our numerical results confirm that cat-state
generation can be enhanced in the nonequilibrium regime.
Compared to the adiabatic method, the speed of generation
can be increased by more than one order of magnitude, and
the fidelity is less affected by the single-photon loss. These
benefits result from faster two-photon processes, made possi-
ble by abandoning the requirement of adiabatic pump fields.
We also discussed the application of synchronous pumping
in systems based on standing modes. Synchronous pumping
can then be realized by well-developed setups in supercon-
ducting circuits, which are commonly used platforms for
cat-state generation. Therefore, our work provides a method to
improve the cat-state generation in different systems, and
reveals that synchronously pumped systems may be advan-
tageous for generating cat states.

ACKNOWLEDGMENTS

J.Q.Y. is partially supported by the National Natural Sci-
ence Foundation of China (NSFC) (Grants No. 11934010 and
No. U1801661) and the National Key Research and Devel-
opment Program of China (Grant No. 2016YFA0301200).
F.N. is supported in part by Nippon Telegraph and Tele-

023714-7



ZHOU, GNEITING, QIN, YOU, AND NORI PHYSICAL REVIEW A 106, 023714 (2022)

phone Corporation (NTT) Research, the Japan Science and
Technology Agency (JST) [via the Quantum Leap Flag-
ship Program (Q-LEAP)], the Moonshot R&D Grant No.
JPMJMS2061, the Japan Society for the Promotion of Science
(JSPS) [via the Grants-in-Aid for Scientific Research (KAK-

ENHI) Grant No. JP20H00134], the Army Research Office
(ARO) (Grant No. W911NF-18-1-0358), the Asian Office of
Aerospace Research and Development (AOARD) (via Grant
No. FA2386-20-1-4069), and the Foundational Questions In-
stitute Fund (FQXi) via Grant No. FQXi-IAF19-06.

[1] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, A
“Schrödinger Cat” superposition state of an atom, Science 272,
1131 (1996).

[2] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J.
Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R.
Ozeri, R. Reichle, and D. J. Wineland, Creation of a six-atom
‘Schrödinger cat’ state, Nature (London) 438, 639 (2005).

[3] S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M.
Raimond, and S. Haroche, Reconstruction of non-classical cav-
ity field states with snapshots of their decoherence, Nature
(London) 455, 510 (2008).

[4] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio,
S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J.
Schoelkopf, Deterministically encoding quantum information
using 100-photon Schrödinger cat states, Science 342, 607
(2013).

[5] M. J. Everitt, T. P. Spiller, G. J. Milburn, R. D. Wilson, and
A. M. Zagoskin, Engineering dissipative channels for realizing
Schrödinger cats in SQUIDs, Front. ICT 1, 1 (2014).

[6] Y. Yamamoto, K. Aihara, T. Leleu, K.-I. Kawarabayashi, S.
Kako, M. Fejer, K. Inoue, and H. Takesue, Coherent Ising
machines—optical neural networks operating at the quantum
limit, npj Quantum Inf. 3, 49 (2017).

[7] Z. Wang, M. Pechal, E. A. Wollack, P. Arrangoiz-Arriola, M.
Gao, N. R. Lee, and A. H. Safavi-Naeini, Quantum Dynamics
of a Few-Photon Parametric Oscillator, Phys. Rev. X 9, 021049
(2019).

[8] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini,
W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, Toward
Heisenberg-limited spectroscopy with multiparticle entangled
states, Science 304, 1476 (2004).

[9] T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S.
Takeuchi, Beating the standard quantum limit with four-
entangled photons, Science 316, 726 (2007).

[10] J. A. Jones, S. D. Karlen, J. Fitzsimons, A. Ardavan, S. C.
Benjamin, G. A. D. Briggs, and J. J. L. Morton, Magnetic field
sensing beyond the standard quantum limit using 10-spin N00N
states, Science 324, 1166 (2009).

[11] M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T.
Cundiff, Quantum spectroscopy with Schrödinger-cat states,
Nat. Phys. 7, 799 (2011).

[12] A. Facon, E.-K. Dietsche, D. Grosso, S. Haroche, J.-M.
Raimond, M. Brune, and S. Gleyzes, A sensitive electrometer
based on a Rydberg atom in a Schrödinger-cat state, Nature
(London) 535, 262 (2016).

[13] T. Choi, S. Debnath, T. A. Manning, C. Figgatt, Z.-X. Gong,
L.-M. Duan, and C. Monroe, Optimal Quantum Control of
Multimode Couplings between Trapped Ion Qubits for Scalable
Entanglement, Phys. Rev. Lett. 112, 190502 (2014).

[14] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H.
Devoret, and R. J. Schoelkopf, Implementing a universal gate

set on a logical qubit encoded in an oscillator, Nat. Commun. 8,
94 (2017).

[15] L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang,
Y. P. Song, C.-L. Zou, S. M. Girvin, L-M. Duan, and L. Sun,
Quantum error correction and universal gate set operation on a
binomial bosonic logical qubit, Nat. Phys. 15, 503 (2019).

[16] C.-S. Yang, Y.-L. Zhang, G.-C. Guo, and X.-B. Zou, Experi-
mentally feasible scheme for a high-fidelity controlled-phase
gate with general cat-state qubits, Phys. Rev. A 100, 062324
(2019).

[17] J. Guillaud and M. Mirrahimi, Repetition Cat Qubits for
Fault-Tolerant Quantum Computation, Phys. Rev. X 9, 041053
(2019).

[18] X.-L. He, Z.-F. Zheng, Y. Zhang, and C.-P. Yang, One-step
transfer of quantum information for a photonic cat-state qubit,
Quantum Inf. Process. 19, 80 (2020).

[19] H.-Yu Ku, N. Lambert, F.-J. Chan, C. Emary, Y.-N. Chen, and
F. Nori, Experimental test of non-macrorealistic cat states in the
cloud, npj Quantum Inf. 6, 98 (2020).

[20] L. Gilles and P. L. Knight, Two-photon absorption and nonclas-
sical states of light, Phys. Rev. A 48, 1582 (1993).

[21] L. Gilles, B. M. Garraway, and P. L. Knight, Generation of
nonclassical light by dissipative two-photon processes, Phys.
Rev. A 49, 2785 (1994).

[22] E. S. Guerra, B. M. Garraway, and P. L. Knight, Two-photon
parametric pumping versus two-photon absorption: A quantum
jump approach, Phys. Rev. A 55, 3842 (1997).

[23] H. Tan, F. Bariani, G. Li, and P. Meystre, Generation of macro-
scopic quantum superpositions of optomechanical oscillators by
dissipation, Phys. Rev. A 88, 023817 (2013).

[24] X. Wang, A. Miranowicz, H.-R. Li, and F. Nori, Hybrid
quantum device with a carbon nanotube and a flux qubit for
dissipative quantum engineering, Phys. Rev. B 95, 205415
(2017).

[25] S. Ashhab and F. Nori, Qubit-oscillator systems in the
ultrastrong-coupling regime and their potential for preparing
nonclassical states, Phys. Rev. A 81, 042311 (2010).

[26] W. F. Braasch, O. D. Friedman, A. J. Rimberg, and M. P.
Blencowe, Wigner current for open quantum systems, Phys.
Rev. A 100, 012124 (2019).

[27] R. Y. Teh, P. D. Drummond, and M. D. Reid, Overcom-
ing decoherence of Schrödinger cat states formed in a cavity
using squeezed-state inputs, Phys. Rev. Research 2, 043387
(2020).

[28] Y.-Hong Chen, W. Qin, X. Wang, A. Miranowicz, and F. Nori,
Shortcuts to Adiabaticity for the Quantum Rabi Model: Effi-
cient Generation of Giant Entangled Cat States via Parametric
Amplification, Phys. Rev. Lett. 126, 023602 (2021).

[29] W. Qin, A. Miranowicz, H. Jing, and F. Nori, Generating Long-
Lived Macroscopically Distinct Superposition States in Atomic
Ensembles, Phys. Rev. Lett. 127, 093602 (2021).

023714-8

https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1038/nature04251
https://doi.org/10.1038/nature07288
https://doi.org/10.1126/science.1243289
https://doi.org/10.338 9/fict.2014.00001
https://doi.org/10.1038/s41534-017-0048-9
https://doi.org/10.1103/PhysRevX.9.021049
https://doi.org/10.1126/science.1097576
https://doi.org/10.1126/science.1138007
https://doi.org/10.1126/science.1170730
https://doi.org/10.1038/nphys2091
https://doi.org/10.1038/nature18327
https://doi.org/10.1103/PhysRevLett.112.190502
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1103/PhysRevA.100.062324
https://doi.org/10.1103/PhysRevX.9.041053
https://doi.org/10.1007/s11128-020-2578-x
https://doi.org/10.1038/s41534-020-00321-x
https://doi.org/10.1103/PhysRevA.48.1582
https://doi.org/10.1103/PhysRevA.49.2785
https://doi.org/10.1103/PhysRevA.55.3842
https://doi.org/10.1103/PhysRevA.88.023817
https://doi.org/10.1103/PhysRevB.95.205415
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.100.012124
https://doi.org/10.1103/PhysRevResearch.2.043387
https://doi.org/10.1103/PhysRevLett.126.023602
https://doi.org/10.1103/PhysRevLett.127.093602


ENHANCING DISSIPATIVE CAT-STATE GENERATION … PHYSICAL REVIEW A 106, 023714 (2022)

[30] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M.
Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H.
Devoret, Confining the state of light to a quantum manifold by
engineered two-photon loss, Science 347, 853 (2015).

[31] S. Touzard, A. Grimm, Z. Leghtas, S. O. Mundhada, P.
Reinhold, C. Axline, M. Reagor, K. Chou, J. Blumoff, K. M.
Sliwa, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi,
and M. H. Devoret, Coherent Oscillations inside a Quantum
Manifold Stabilized by Dissipation, Phys. Rev. X 8, 021005
(2018).

[32] M. G. Raymer, P. D. Drummond, and S. J. Carter, Limits
to wideband pulsed squeezing in a traveling-wave parametric
amplifier with group-velocity dispersion, Opt. Lett. 16, 1189
(1991).

[33] G. Patera, N. Treps, C. Fabre, and G. J. de Valcárcel, Quantum
theory of synchronously pumped type I optical parametric oscil-
lators: characterization of the squeezed supermodes, Eur. Phys.
J. D 56, 123 (2010).

[34] C. Y. Jiang, J. S. Liu, B Sun, K. J. Wang, S. X. Li, and J. Q. Yao,
Time-dependent theoretical model for terahertz wave detector
using a parametric process, Opt. Express 18, 18180 (2010).

[35] V. A. Averchenko, Yu. M. Golubev, C. Fabre, and N. Treps,
Quantum correlations and fluctuations in the pulsed light
produced by a synchronously pumped optical parametric os-
cillator below its oscillation threshold, Eur. Phys. J. D 61, 207
(2011).

[36] R. Hamerly, A. Marandi, M. Jankowski, M. M. Fejer, Y.
Yamamoto, and H. Mabuchi, Reduced models and design prin-
ciples for half-harmonic generation in synchronously pumped
optical parametric oscillators, Phys. Rev. A 94, 063809 (2016).

[37] M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A.
Ingold, R. L. Byer, and M. M. Fejer, Temporal Simultons in
Optical Parametric Oscillators, Phys. Rev. Lett. 120, 053904
(2018).

[38] A. Roy, S. Jahani, C. Langrock, M. Fejer, and A. Marandi,
Spectral phase transitions in optical parametric oscillators, Nat.
Commun. 12, 835 (2021).

[39] P. Kinsler and P. D. Drummond, Quantum dynamics of the
parametric oscillator, Phys. Rev. A 43, 6194 (1991).

[40] H. Deng, D. Erenso, R. Vyas, and S. Singh, Entanglement,
Interference, and Measurement in a Degenerate Parametric Os-
cillator, Phys. Rev. Lett. 86, 2770 (2001).

[41] S. Utsunomiya, K. Takata, and Y. Yamamoto, Mapping of Ising
models onto injection-locked laser systems, Opt. Express 19,
18091 (2011).

[42] Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto,
Coherent Ising machine based on degenerate optical parametric
oscillators, Phys. Rev. A 88, 063853 (2013).

[43] A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto,
Network of time-multiplexed optical parametric oscillators as a
coherent Ising machine, Nat. Photonics 8, 937 (2014).

[44] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C.
Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K.
Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto,
A fully programmable 100-spin coherent Ising machine with
all-to-all connections, Science 354, 614 (2016).

[45] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T.
Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O.
Tadanaga, H. Takenouchi, K. Aihara, K. ichi Kawarabayashi,

K. Inoue, S. Utsunomiya, and H. Takesue, A coherent Ising
machine for 2000-node optimization problems, Science 354,
603 (2016).

[46] T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto,
and H. Takesue, Large-scale Ising spin network based on de-
generate optical parametric oscillators, Nat. Photonics 10, 415
(2016).

[47] A. Yamamura, K. Aihara, and Y. Yamamoto, Quantum model
for coherent Ising machines: Discrete-time measurement feed-
back formulation, Phys. Rev. A 96, 053834 (2017).

[48] N. Mohseni, P. L. McMahon, and T. Byrnes, Ising machines
as hardware solvers of combinatorial optimization problems,
arXiv:2204.00276.

[49] Z.-Y. Zhou, C. Gneiting, J. Q. You, and F. Nori, Generating and
detecting entangled cat states in dissipatively coupled degen-
erate optical parametric oscillators, Phys. Rev. A 104, 013715
(2021).

[50] K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M.
Fejer, Observation of 99% pump depletion in single-pass
second-harmonic generation in a periodically poled lithium nio-
bate waveguide, Opt. Lett. 27, 43 (2002).

[51] K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev,
M. M. Fejer, and M. Fujimura, Highly efficient second-
harmonic generation in buried waveguides formed by annealed
and reverse proton exchange in periodically poled lithium nio-
bate, Opt. Lett. 27, 179 (2002).

[52] L. G. Carpenter, S. A. Berry, A. C. Gray, J. C. Gates, P. G. R.
Smith, and C. B. E. Gawith, CW demonstration of SHG spectral
narrowing in a PPLN waveguide generating 2.5 W at 780 nm,
Opt. Express 28, 21382 (2020).

[53] A. Palacios-Laloy, F. Nguyen, F. Mallet, P. Bertet, D. Vion,
and D. Esteve, Tunable resonators for quantum circuits, J. Low
Temp. Phys. 151, 1034 (2008).

[54] M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson,
V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a mi-
crowave resonator faster than the photon lifetime, Appl. Phys.
Lett. 92, 203501 (2008).

[55] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng,
A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup,
M. F. Barthe, P. Bergonzo, and D. Esteve, Strong Coupling of
a Spin Ensemble to a Superconducting Resonator, Phys. Rev.
Lett. 105, 140502 (2010).

[56] M. Pechal, J.-C. Besse, M. Mondal, M. Oppliger, S.
Gasparinetti, and A. Wallraff, Superconducting Switch for Fast
On-Chip Routing of Quantum Microwave Fields, Phys. Rev.
Applied 6, 024009 (2016).

[57] W. Qin, Y.-Hong Chen, X. Wang, A. Miranowicz, and F. Nori,
Strong spin squeezing induced by weak squeezing of light in-
side a cavity, Nanophotonics 9, 4853 (2020).

[58] S. Mahashabde, E. Otto, D. Montemurro, S. de Graaf, S.
Kubatkin, and A. Danilov, Fast Tunable High-Q-Factor Su-
perconducting Microwave Resonators, Phys. Rev. Applied 14,
044040 (2020).

[59] P. Bertet, C. J. P. M. Harmans, and J. E. Mooij, Parametric
coupling for superconducting qubits, Phys. Rev. B 73, 064512
(2006).

[60] M. Mariantoni, F. Deppe, A. Marx, R. Gross, F. K. Wilhelm,
and E. Solano, Two-resonator circuit quantum electrodynamics:
A superconducting quantum switch, Phys. Rev. B 78, 104508
(2008).

023714-9

https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1103/PhysRevX.8.021005
https://doi.org/10.1364/OL.16.001189
https://doi.org/10.1140/epjd/e2009-00299-9
https://doi.org/10.1364/OE.18.018180
https://doi.org/10.1140/epjd/e2010-00280-7
https://doi.org/10.1103/PhysRevA.94.063809
https://doi.org/10.1103/PhysRevLett.120.053904
https://doi.org/10.1038/s41467-021-21048-z
https://doi.org/10.1103/PhysRevA.43.6194
https://doi.org/10.1103/PhysRevLett.86.2770
https://doi.org/10.1364/OE.19.018091
https://doi.org/10.1103/PhysRevA.88.063853
https://doi.org/10.1038/nphoton.2014.249
https://doi.org/10.1126/science.aah5178
https://doi.org/10.1126/science.aah4243
https://doi.org/10.1038/nphoton.2016.68
https://doi.org/10.1103/PhysRevA.96.053834
http://arxiv.org/abs/arXiv:2204.00276
https://doi.org/10.1103/PhysRevA.104.013715
https://doi.org/10.1364/OL.27.000043
https://doi.org/10.1364/OL.27.000179
https://doi.org/10.1364/OE.395566
https://doi.org/10.1007/s10909-008-9774-x
https://doi.org/10.1063/1.2929367
https://doi.org/10.1103/PhysRevLett.105.140502
https://doi.org/10.1103/PhysRevApplied.6.024009
https://doi.org/10.1515/nanoph-2020-0513
https://doi.org/10.1103/PhysRevApplied.14.044040
https://doi.org/10.1103/PhysRevB.73.064512
https://doi.org/10.1103/PhysRevB.78.104508


ZHOU, GNEITING, QIN, YOU, AND NORI PHYSICAL REVIEW A 106, 023714 (2022)

[61] M. Mariantoni, H. Wang, R. C. Bialczak, M. Lenander, E.
Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J.
Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and
A. N. Cleland, Photon shell game in three-resonator circuit
quantum electrodynamics, Nat. Phys. 7, 287 (2011).

[62] A. Baust, E. Hoffmann, M. Haeberlein, M. J. Schwarz, P. Eder,
J. Goetz, F. Wulschner, E. Xie, L. Zhong, F. Quijandría, B.
Peropadre, D. Zueco, J.-J. García Ripoll, E. Solano, K. Fedorov,
E. P. Menzel, F. Deppe, A. Marx, and R. Gross, Tunable and
switchable coupling between two superconducting resonators,
Phys. Rev. B 91, 014515 (2015).

[63] Y. Lu, S. Chakram, N. Leung, N. Earnest, R. K. Naik, Z. Huang,
P. Groszkowski, E. Kapit, J. Koch, and D. I. Schuster, Universal
Stabilization of a Parametrically Coupled Qubit, Phys. Rev.
Lett. 119, 150502 (2017).

[64] Q.-M. Chen, Y.-xi Liu, L. Sun, and R.-B. Wu, Tuning the
coupling between superconducting resonators with collective
qubits, Phys. Rev. A 98, 042328 (2018).
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