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Nonorthogonal quantum state discrimination (QSD) plays an important role in quantum information and
quantum communication. In addition, compared to Hermitian quantum systems, parity-time-(PT -)symmetric
non-Hermitian quantum systems exhibit novel phenomena and have attracted considerable attention. Here, we
experimentally demonstrate QSD in a PT -symmetric system (i.e., PT -symmetric QSD), by having quantum
states evolve under a PT -symmetric Hamiltonian in a lossy linear optical setup. We observe that two initially
nonorthogonal states can rapidly evolve into orthogonal states and the required evolution time can even be
vanishing provided the matrix elements of the Hamiltonian become sufficiently large. We also observe that
the cost of such a discrimination is a dissipation of quantum states into the environment. Furthermore, by
comparing PT -symmetric QSD with optimal strategies in Hermitian systems, we find that at the critical value,
PT -symmetric QSD is equivalent to the optimal unambiguous state discrimination in Hermitian systems. We
also extend the PT -symmetric QSD to the case of discriminating three nonorthogonal states. The QSD in a
PT -symmetric system opens a new door for quantum state discrimination, which has important applications in
quantum computing, quantum cryptography, and quantum communication.
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I. INTRODUCTION

Quantum state discrimination (QSD) [1] is a central issue
in quantum mechanics. Its applications cover quantum com-
puting, quantum cryptography, and quantum communication.
QSD is usually scenarized as follows. Two communicat-
ing parties Alice and Bob agree on a set of quantum
states {|ψ1〉, |ψ2〉, . . . , |ψn〉}, which correspond to alphabet
{x1, x2, . . . , xn} with prior probabilities of each state publicly
known. Then Alice encodes the message in the states which
are subsequently sent to Bob. Bob decodes the message by
discriminating the received states [2]. In Hermitian quantum
mechanics, for a set of orthogonal quantum states, Bob can
discriminate the states with a single copy by using a projective
measurement. However, for nonorthogonal quantum states,
Bob cannot discriminate them with a single copy because of
the collapse of the quantum states.

Much attention has been paid to the discrimination of
nonorthogonal quantum states. The minimum error discrimi-
nation (MED) [3–5] and the unambiguous state discrimination
(USD) [6–8] are the two most investigated strategies in Her-
mitian systems. In MED, nonorthogonal quantum states are
projected onto an orthogonal basis and the result is determined
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by the best guess according to the measurement result. The
strategy aims at minimizing the guessing error. In USD, one
expands the space of nonorthogonal quantum states to a higher
one by utilizing an auxiliary system, then projects the compos-
ite states onto an orthogonal basis in the expanded space. The
result is conclusive with some probability. So far solutions of
optimal MED and USD strategies in Hermitian systems are
confined to a specific set of nonorthogonal quantum states [9].
A universal optimal solution for the discrimination of arbi-
trary nonorthogonal quantum states is still in demand.

Problems, which are difficult to resolve in Hermitian
systems, may find solutions in non-Hermitian systems. PT -
symmetric non-Hermitian systems have been a hot topic since
they were proposed [10–13]. In a PT -symmetric system, the
condition of the Hermiticity of the Hamiltonian is replaced
by the condition that the Hamiltonian commutes with the
joint PT operator, i.e., [H,PT ] = 0. Here, P is the par-
ity reflection operator while T is the time-reversal operator.
The eigenvalues of the Hamiltonian remain real in the PT
symmetry-unbroken regime despite of the non-Hermiticity.
PT -symmetric systems were realized in both classical and
quantum systems [14–21]. Meanwhile, critical phenomena
were observed [22], such as the increase of entanglement [23],
information retrieval [24–26], coherence backflow [27,28],
chiral population transfer [29,30], and decoherence dynam-
ics [31].

It was shown in [32] that, given an initial state |ψI〉
and a final state |ψF 〉, the time required for the state |ψI〉
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evolving into the state |ψF 〉 was finite and nonzero in Her-
mitian systems, which was a quantum analog to the classical
brachistochrone problem [33,34]. However, the evolution time
can be vanishing in PT -symmetric systems [32]. The quan-
tum brachistochrone was experimentally investigated in a
nuclear magnetic resonance (NMR) system where the qubit
was prescribed to evolve from the initial state |0〉 to the final
state |1〉, and the phenomenon of the evolution time vanish-
ing was observed [35]. The paper [36] theoretically extended
the quantum brachistochrone to the PT symmetry-broken
regime and showed the same intriguing feature as predicted
in [32].

In [37], a PT -symmetric Hamiltonian was used to achieve
QSD for two nonorthogonal states. It was theoretically shown
that nonorthogonal states could evolve into orthogonal states
under a PT -symmetric Hamiltonian. The required evolution
time approached zero at the exceptional point [13], which was
subjected to the energy constraint that the energy difference
between the largest and the smallest eigenvalues of the Hamil-
tonian was held fixed. In some sense, the PT -symmetric
QSD was equivalent to the USD strategy since both gave
a conclusive result [37]. In [38], the PT -symmetric QSD
was extended to discriminating arbitrary three nonorthogo-
nal states. The procedure was akin to discriminating two
nonorthogonal states. The state with the highest prior prob-
ability evolved to the one that was orthogonal to the other two
states and then was unambiguously discriminated from the
other two states. Then the other two states were distinguished
in the same way as in [37].

Although the PT -symmetric QSD was previously stud-
ied in theory, an experimental investigation is still absent.
In this paper, we experimentally demonstrate the QSD in a
PT -symmetric system, which is realized by using a lossy
linear optical setup. In our experiment, we allow quantum
states to evolve under a PT -symmetric Hamiltonian, and the
time-evolution operator is constructed with optical elements.
The contribution of this work is trifold. First, we demonstrate
the QSD in a PT -symmetric system. We observe that the time
required for unambiguously discriminating the nonorthogonal
states decreases as the matrix elements of the PT -symmetric
Hamiltonian become large. The time can even be vanishingly
small when the matrix elements of the Hamiltonian grow and
diverge. Second, we find that depending on the overlap of
the initial nonorthogonal states, the time-evolved states will
not become orthogonal in some regions, which means that
they cannot be unambiguously discriminated. At the critical
value, the PT -symmetric QSD is equivalent to the optimal
USD strategy in Hermitian systems. Third, we observe that
the cost of the discrimination is a loss of photons, whereas
more information can be obtained through the measurement
as the system tends to the exceptional point. To the best of
our knowledge, our work is the first to observe the QSD in a
PT -symmetric system and also the first to explore the relation
between the PT -symmetric QSD and the QSD in Hermitian
systems.

This paper is organized as follows. In Sec. II, we provide
the theory and experiment of PT -symmetric QSD for two-
state discrimination. The case of three-state discrimination is
presented in Sec. III. In Sec. IV, we summarize and discuss
this work.

II. TWO-STATE DISCRIMINATION

A. Theory

Without loss of generality, we consider two nonorthogonal
quantum states |ψ1〉 and |ψ2〉 in a two-dimensional Hilbert
space with overlap 〈ψ1|ψ2〉 = cos ε, parameterized on the
Bloch sphere

|ψ1〉 =
(

cos π−2ε
4

−i sin π−2ε
4

)
, |ψ2〉 =

(
cos π+2ε

4

−i sin π+2ε
4

)
, (1)

where ε ∈ (0, π/2). Note that any two pure states with an
overlap of cos ε can be transformed into the two nonorthog-
onal states |ψ1〉 and |ψ2〉 through unitary operations. In
Hermitian systems, one can apply the optimal MED and USD
strategies to discriminate the states |ψ1〉 and |ψ2〉 readily. In
non-Hermitian systems, two approaches are feasible to dis-
criminate |ψ1〉 and |ψ2〉 unambiguously. One approach finds
a PT -symmetric Hamiltonian which defines a new Hilbert
space, whose inner product interprets the states |ψ1〉 and
|ψ2〉 as being orthogonal. Another approach is to find a PT -
symmetric Hamiltonian under which the states |ψ1〉 and |ψ2〉
evolve into orthogonal states [37,38]. In this work, we follow
the latter approach.

A general PT -symmetric Hamiltonian for a two-level sys-
tem has the following form:

HPT =
(

reiθ s
s re−iθ

)
= r cos θ1 + σ(s, 0, ir sin θ ), (2)

where the parameters r, s, and θ are real; 1 is the identity
matrix; and σ are the Pauli matrices. The eigenvalues of HPT
are given by

E± = r cos θ ±
√

s2 − r2 sin2 θ, (3)

which are real numbers provided sin α = (r sin θ )/s < 1 (the
PT symmetry-unbroken regime). The energy constraint indi-
cates that the difference between the eigenvalues

2ω = E+ − E− (4)

= 2
√

s2 − r2 sin2 θ (5)

is a constant. The time-evolution operator governed by HPT
is

UPT (t ) = e−irt cos θ

cos α

[
cos(ωt − α) −i sin(ωt )
−i sin(ωt ) cos(ωt + α)

]
, (6)

where we set h̄ = 1. For the two initial nonorthogonal states
|ψ1〉 and |ψ2〉, the inner product of their time-evolved states
under UPT is given by

〈ψ1|U†
PT UPT |ψ2〉

= 2 sin2(ωt )(sin2 α cos ε − sin α) + cos ε cos2(α)

cos2 α
, (7)

which vanishes when

sin2(ωt ) = cos2 α cos ε

2 sin α − 2 sin2 α cos ε
. (8)

The positivity of the right-hand side of Eq. (8) is guaranteed
by the conditions (i) sin α < 1 and (ii) 0 < ε < π/2. A solu-
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FIG. 1. Sketch of the experiment. The idler photon is detected
by D0 for coincidence counting. The signal photon enters the setup,
which consists of three parts: state preparation, time evolution, and
state measurement. The photon loss is collected by D1. BBO: β-
barium-borate; PBS: polarization beam splitter; BD: beam displacer;
HWP: half-wave plate; QWP: quarter-wave plate; IF: interference
filter; D0, D1, and D2 are single photon detectors.

tion of Eq. (8) gives

t = t0, π − t0, (9)

with

t0 = arcsin

⎛
⎝

√
cos2 α cos ε

2 sin α − 2 sin2 α cos ε

⎞
⎠. (10)

A nontrivial solution of t requires cos ε � 2 sin α/(1 +
sin2 α). Equation (9) indicates that the time-evolved states
UPT |ψ1〉 and UPT |ψ2〉 become orthogonal twice in one pe-
riod. At the critical value where

cos ε = 2 sin α/(1 + sin2 α), (11)

we have t0 = π/2. Thus, the two times t0 and π − t0 coincide.
Note that, in the limit when cos α → 0 (the exceptional point),
we have t0 → 0. In this case, we have s → ∞ and r → ∞
because ω = s cos α is fixed. For s → ∞ and r → ∞, one can
see from Eq. (2) that the matrix elements of the Hamiltonian
HPT tend to ∞. Thus we have a vanishing t0 when the matrix
elements of HPT become infinite.

B. Experimental results

The subject of simulating quantum state evolutions in a
two-dimensional Hilbert space is relevant to a qubit. In the
experiment, we utilize a polarized single-photon as the qubit,
with |H〉 = (1, 0)T and |V 〉 = (0, 1)T . The time evolution of
the qubit is simulated as the photon’s polarization state un-
dergoing some optical elements in an optical setup. Single
photons have been widely used in simulating a non-Hermitian
system to study various critical phenomena [25–27,39,40]. In
this work, the single-photon source is generated through a
spontaneous parametric down-conversion process by pump-
ing a type-I phase-matched nonlinear β-barium-borate crystal
with a 404-nm pump laser. The power of the pump laser is 130
mW. The single photon is filtered by an interference filter with
bandwidth 10 nm, which yields an average count of 30 000
per second. The idler photon is detected by a single-photon
detector for coincidence counting. The signal photon enters
the setup which consists of three parts: state preparation, time
evolution, and state measurement, as shown in Fig. 1.

In the state preparation, a combination of wave plates and
a polarization beam splitter prepares the initial polarization of

the photon to be horizontal with maximum probability. Sub-
sequently, a half-wave plate oriented at (π ± 2ε)/8, together
with a quarter-wave plate oriented at π/2, prepares the initial
states |ψ1〉 and |ψ2〉.

In the time evolution part, the time-evolution operator is
decomposed into the product of unitary operators and a loss-
dependent operator by the singular value decomposition [41].
The unitary operators are realized by the combination of
wave plates [42]. The loss-dependent operator represents the
dissipation of quantum states into the environment, which is
realized by a polarization interferometer (consisting of two
beam displacers) and a half-wave plate inside.

The interference at the beam displacers has a visibility
higher than 99%. We access the time-evolved states (UPT |ψ1〉
and UPT |ψ2〉) by enforcing the time-evolution operator UPT
on the initial states |ψ1〉 and |ψ2〉 at the specific time. Note that
the Hamiltonian in Eq. (2) is usually employed to describe a
system with balanced gain and loss, while our optical setup
to simulate the nonunitary time-evolution operator is lossy.
Using our setup to simulate a system with gain and loss is
achieved by excluding a scale factor of the corresponding
time-evolution operator to eliminate the gain of the system
(see Appendix A). In the measurement part, we perform quan-
tum state tomography to reconstruct the density matrices of
the time-evolved states.

To observe the QSD, we fix ω = 1 in our experiment,
which represents the constant energy difference of the eigen-
values of the non-Hermitian Hamiltonian HPT . We also set
θ = π/2, which turns the real parts of the diagonal entries
of the Hamiltonian to zero. We experimentally investigate the
time evolution of the states |ψ1〉 and |ψ2〉 in one period, i.e.,
the period from t = 0 to t = π . To quantify the distinguisha-
bility between the time-evolved states, we adopt the trace
distance defined by

D(ρ1, ρ2) = 1
2 tr|ρ1 − ρ2|, (12)

with |A| =
√

A†A. Here, ρ1 and ρ2 are the density matrices of
the time-evolved states UPT |ψ1〉 and UPT |ψ2〉, respectively.
In our work, the dissipation is defined by the loss in photon
number n1/(n1 + n2), where ni is the count of Di.

We experimentally investigate two sets of initial states |ψ1〉
and |ψ2〉, with ε = π/3 (Fig. 2) and ε = π/6 (Fig. 3), respec-
tively. For ε = π/3, a requirement for a nontrivial solution of
t0 is s � 1.038.

In Fig. 2, we set Figs. 2(a) s = 1.1, 2(b) s = 3, and 2(c) s =
1.038. The black lines are the distinguishability between the
time-evolved states. The red (blue) lines are the dissipation of
the state |ψ1〉 (|ψ2〉) into the environment. For s = 1.1 and s =
3, there are two points where the time-evolved states UPT |ψ1〉
and UPT |ψ2〉 become orthogonal, i.e., D = 1, corresponding
to the time t0 and the time π − t0. At the critical value s =
1.038, a solution for t is t = π/2, where the dissipations of
|ψ1〉 and |ψ2〉 are equal.

From Fig. 2, one can see that as s increases, the time t0
decreases and the dissipation of |ψ1〉 (|ψ2〉) increases. Also,
the dissipations are complementary. At time t0, the state |ψ1〉
suffers from a larger loss while at time π − t0, the state |ψ2〉
suffers from a larger loss. Since the dissipation is straight-
forwardly related to the photon counts, the variance of the
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FIG. 2. Time evolution of the states when ε = π/3 with (a) s = 1.1, (b) s = 3, and (c) s = 1.038. The black lines are the dynamics of the
trace distance D between the time-evolved states UPT |ψ1〉 and UPT |ψ2〉. The red (blue) lines indicate the dissipations of |ψ1〉 (|ψ2〉) into the
environment. Dots with error bars are the experimental data while lines are the theoretical simulations.

dissipation is smaller than that of the reconstructed density
matrix, thus the error bar of the dissipation is smaller than
that of the distinguishability.

In Fig. 3, we set ε = π/6, for which a requirement for
a nontrivial solution of t0 is s � 1.225. We set Figs. 3(a)
s = 1.1, 3(b) s = 3, and 3(c) s = 1.225. In Fig. 3(a), the
nonorthogonal states |ψ1〉 and |ψ2〉 never evolve into orthogo-
nal states. In Figs. 3(b) and 3(c), both distinguishability and
dissipations exhibit similar patterns as those in Figs. 2(b)
and 2(c). For ε = π/6 and the same s, it takes more time
for the two nonorthogonal states |ψ1〉 and |ψ2〉 to evolve into
two orthogonal states. In this case, since the overlap of the
initial states |ψ1〉 and |ψ2〉 is larger, their dissipations into the
environment are also larger.

To further study the phenomenon of QSD, we investigate
the dynamics of distinguishability under different values of
s for ε = π/3. Figure 4(a) shows our theoretical simulation.
For each s, there are two times, t0 and π − t0, where the
time-evolved states UPT |ψ1〉 and UPT |ψ2〉 become orthog-
onal. The black U-shaped curve indicates the positions where
D = 1 in one period from t = 0 to t = π . At the critical value
s = 1.038, the two times t0 and π − t0 coincide. The t0 tends
to zero as s tends to infinity. Figure 4(b) shows the U-shaped
experimental distinguishability at times t0 and π − t0 for each
s. The sizes of the dots and the length of the error bars are
proportional to the deviation from the theoretical value (unity)
and the standard deviation of D, respectively. For reference,
the inset shows a typical value of 0.97 ± 0.03.

Finally, we compare the PT -symmetric QSD with the
optimal MED and USD strategies in Hermitian systems. Let

the prior probabilities of |ψ1〉 and |ψ2〉 be equal. We mea-
sure the mutual information obtained through measurement
(see Appendix B). Figure 5 shows the mutual information
under different s for ε = π/3. The black line is the theo-
retical prediction of the mutual information obtained in the
PT -symmetric QSD. The blue dashed line (0.5) and the ma-
genta dashed line (0.6) are the mutual informations obtained
by using the optimal USD and MED strategies, respectively.
As s increases, the amount of information, obtained by the
PT -symmetric QSD, increases and tends to be constant. Also,
the black curve and the horizontal blue dashed line intersect
at the point s = 1.038, which means that at that point the
PT -symmetric QSD and the optimal USD strategy induce the
same amount of information. Therefore, at that critical value,
using a PT -symmetric Hamiltonian to perform the QSD is
equivalent to applying the optimal USD strategy.

III. THREE-STATE DISCRIMINATION

A. Theory

The PT -symmetric Hamiltonian can also be applied to dis-
criminate three nonorthogonal arbitrary states [38]. Without
loss of generality, we consider three nonorthogonal arbitrary
quantum states

|ψ j〉 =
(

cos β j

2

eiγ j sin β j

2

)
, j = 1, 2, 3, (13)

where β j are the parallels and γ j are the meridians of the
positions for the state vector of |ψ j〉 on the Bloch sphere. The
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FIG. 3. Time evolution of the states when ε = π/6 with (a) s = 1.1, (b) s = 3, and (c) s = 1.225. The black lines are the dynamics of the
trace distance D between the time-evolved states UPT |ψ1〉 and UPT |ψ2〉. The red (blue) lines indicate the dissipations of |ψ1〉 (|ψ2〉) into the
environment. Dots with error bars are the experimental data while lines are the theoretical simulations.
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FIG. 4. (a) Theoretical simulation of the dynamics of D for dif-
ferent values of s. The black line indicates the points where the two
nonorthogonal states |ψ1〉 and |ψ2〉 evolve into the orthogonal states.
(b) Experimentally measured D at the points where |ψ1〉 and |ψ2〉
evolve into orthogonal states. The sizes of the dots and the length of
the error bars are proportional to the deviation from the theoretical
value (unity) and the standard deviation of D, respectively. The inset
shows a typical value of 0.97 ± 0.03.

procedure is to first discriminate one state from the other two
in the first measurement, and then discriminate the other two
states in the second measurement. Therefore, one needs, at
most, two measurements for the three-state discrimination.

To begin with, note that an arbitrary set of three nonorthog-
onal states can be transformed into the following forms
through unitary operations (see Appendix C):

|ψ1〉 =
(

cos π−2ε12
4

−i sin π−2ε12
4

)
, (14)

|ψ2〉 =
(

cos π+2ε12
4

−i sin π+2ε12
4

)
, (15)

|ψ3〉 =
(

cos μ

2

eiν sin μ

2

)
, (16)
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FIG. 5. Mutual information obtained for the case of ε = π/3.
The horizontal blue (magenta) dashed line is the mutual information
obtained through the optimal USD (MED) strategy. The black curve
is the mutual information obtained in the PT -symmetric QSD. Dots
with error bars are experimental values. Note that the black curve
intersects the horizontal dashed blue line at s ≈ 1.038.

with additional overall phases dropped off. Such forms are
convenient to transform the states |ψ1〉 and |ψ2〉 into orthogo-
nal states through a PT -symmetric time evolution according
to the previous section. Here, cos ε12 = |〈ψ2|ψ1〉| is the over-
lap between the states |ψ1〉 and |ψ2〉, ν and μ are the meridian
and parallel angles of the state |ψ3〉, respectively.

Therefore, if one chooses a PT -symmetric Hamiltonian
given by Eq. (2) with the corresponding evolution time t
satisfying Eq. (8), the time-evolved states of |ψ1〉 and |ψ2〉 be-
come orthogonal, while the overlap between the time-evolved
states of |ψ2〉 and |ψ3〉 also decreases as α tends to π

2 (see
Appendix C). One could discriminate |ψ2〉 from |ψ1〉 and |ψ3〉
when α → π

2 in the first measurement.
In the second measurement, one can transform the states

|ψ1〉 and |ψ3〉 into the similar forms given by Eqs. (14)
and (15)

|ψ1〉 =
(

cos π−2ε13
4

−i sin π−2ε13
4

)
, (17)

|ψ3〉 =
(

cos π+2ε13
4

−i sin π+2ε13
4

)
, (18)

where cos ε13 = |〈ψ3|ψ1〉| is the overlap between |ψ1〉 and
|ψ3〉. Note that since the state |ψ2〉 is already excluded in the
first measurement, it is ignored in the second measurement.
Then the states |ψ1〉 and |ψ3〉 can be unambiguously discrim-
inated through a PT -symmetric time evolution.

B. Experimental results

In the experiments, we set β j = β, γ j = 2π
3 ( j − 1), i.e., the

three states given by Eq. (13) are uniformly located on the cir-
cle of the Bloch sphere with parallel angle β. Figure 6 shows
our experimental setup. The initial states are first prepared
through a combination of wave plates and then transformed
into the forms given by Eqs. (14) to (16) in the first measure-
ment or Eqs. (17) and (18) in the second measurement. After
that, a time-evolution operator is imposed on the states. In the
measurement part, the time-evolved states are projected onto
the states |H〉 and |V 〉 and detected by single-photon detectors.

In this setup, if one detects the state |V 〉 in the first mea-
surement, one asserts that the input state is |ψ2〉, otherwise, it
is |ψ1〉 or |ψ3〉. Then in the second measurement, the states
|ψ1〉 and |ψ3〉 are discriminated unambiguously. Note that in
the first measurement since the time-evolved states of |ψ2〉
and |ψ3〉 are not strictly orthogonal, there is a probability that
one obtains a wrong result (i.e., |ψ2〉) if the input state is
|ψ3〉. Provided the initial state is |ψ j〉, the probability Pj of
the correct result is given by

P1 = N1H

N1H + N1V
× N2H

N2V + N2H
, (19)

P2 = N1V

N1H + N1V
, (20)

P3 = N1H

N1H + N1V
× N2V

N2V + N2H
, (21)

where NjH (NjV ) is the photon count for the state |H〉(|V 〉) in
the jth measurement.
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FIG. 6. Experimental setup for the three-state discrimination. The initial state preparation and the state transformation are realized by
combinations of wave plates. The time-evolved states are projected onto the |H〉 and |V 〉 bases. A detection of the state |V 〉 in the first
measurement indicates that the initial state is |ψ2〉, otherwise it is |ψ1〉 or |ψ3〉. In the second measurement, a detection of the state |V 〉
indicates that the initial state is |ψ3〉, otherwise it is |ψ1〉. The time-evolved states are defined as |ψ ′

1〉, |ψ ′
2〉, and |ψ ′

3〉, which correspond to the
three initial states |ψ1〉, |ψ2〉, and |ψ3〉, respectively.

Figure 7 shows our experimental results. We set α =
αc, 0.8, 1.2, and 1.5, where αc is the critical value of α given
by Eq. (11). We also set β = π/3 [Fig. 7(a)] and β = π/2
[Fig. 7(b)]. One can see from Fig. 7 that P1 and P2 are theo-
retically equal to unity. This implies that if the initial state is
|ψ1〉 or |ψ2〉, one can always get a right result. However, when
the initial state is |ψ3〉, the probability of the correct result is
less than 1 and it increases as α tends to π/2. This is because
the time-evolved states of |ψ2〉 and |ψ3〉 are not orthogonal
and there is a probability that it yields an incorrect result.
But the overlap between the time-evolved states of |ψ3〉 and
|ψ2〉 becomes smaller as α tends to π/2. The experimental
results show that one needs one measurement to find the
state |ψ2〉, whereas one needs two measurements to find the
states |ψ1〉 and |ψ3〉. Note that, due to the nonunitarity of the
time evolution, there exists photon loss in the process of the
time evolution. Therefore, though in principle one is able to
discriminate the three states with at most two measurements,
more than two samples may be required for the state discrim-
ination.
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FIG. 7. Probabilities of correctly finding the states for (a) β =
π/3 and (b) β = π/2. The black, blue, and red circles are experimen-
tal results when the input states are |ψ1〉, |ψ2〉, and |ψ3〉, respectively.
The bars are theoretical values. (a) αc = 0.39 and (b) αc = 0.27 are
the critical values of α given by Eq. (11). The error bars are not
shown because they are too small.

IV. CONCLUSION AND DISCUSSION

PT -symmetric theory has been well developed since it was
put forward [43–46], and whether a PT -symmetric system
can outperform a Hermitian system was also argued [22,47].
In this work, we observe the phenomenon of quantum state
discrimination by allowing quantum states to evolve under a
PT -symmetric Hamiltonian. A non-Hermitian Hamiltonian
generates a unitary time-evolution in a new Hilbert space,
provided the inner product is suitably defined. In the new
space, two initial nonorthogonal states may be interpreted as
orthogonal states, which means the geodesic distance between
the states is different in the new space [47]. At the exceptional
point, the eigenstates of HPT coalesce, which is the cause of
many critical phenomena in PT -symmetric systems; thus the
time required for nonorthogonal states to evolve into orthogo-
nal states can be close to zero.

In summary, we experimentally demonstrated the quantum
state discrimination for two nonorthogonal states and three
nonorthogonal states in a PT -symmetric system, which is
implemented by using a linear optical setup. For two-state
discrimination, we observed that, as the matrix elements of
the Hamiltonian become large, the time required to discrimi-
nate two nonorthogonal states decreases. The time can even
vanish when the matrix elements of the Hamiltonian ap-
proach infinity. We also observed that the cost of such a state
discrimination is the dissipation of quantum states into the
environment. In addition, we showed that, at a critical value,
PT -symmetric quantum state discrimination is equivalent to
the optimal USD strategy in Hermitian systems, both inducing
the same amount of mutual information and dissipation. For
three-state discrimination, we showed that, at most, two mea-
surements are required to find the correct states. Compared
to the previous works, our results reveal more features of the
PT -symmetric quantum state discrimination. Moreover, we
experimentally demonstrate that the PT -symmetric quantum
state discrimination is equivalent to the unambiguous discrim-
ination strategy in Hermitian systems. This work provides
physical insight into PT -symmetric quantum state discrim-
ination and may promote the application of PT -symmetric
theory in quantum information processing and quantum com-
munications [48].
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APPENDIX A: REALIZATION OF THE NONUNITARY
TIME-EVOLUTION OPERATOR

The nonunitary time-evolution operator of a PT -
symmetric Hamiltonian has the following form:

UPT (t ) = e−iĤPT t

= e−irt cos θ

cos α

[
cos(ωt − α) −i sin(ωt )
−i sin(ωt ) cos(ωt + α)

]
, (A1)

which can be decomposed (via the singular-value decom-
position [41]) into a product of unitary operators and a
diagonalized loss-dependent operator

UPT (t ) = cT MW, (A2)

where T and W are unitary matrices, M is a diagonal matrix,
and c is a scale factor which sets the maximum of the diagonal
entries of M to be unity. Note that in our experiment the scale
factor c is neglected to eliminate the gain of the system and
we experimentally realized the joint operation T MW . This
is reasonable since the effects of UPT (t ) and T MW on the
quantum states, after renormalizing the time-evolved states,
are the same [25].

Note that an arbitrary unitary matrix can be parametrized
as

u =
(

a0 − ia1 −ia2 − a3

−ia2 + a3 a0 + ia1

)
(A3)

by multiplying a global phase, where a j ( j = 0, 1, 2, 3) are
real numbers, a0 � 0, and

∑ j=3
j=0 a2

j = 1. Equation (A3) can be
decomposed into SU(2) gates on the basis of the Euler angle
parametrization [42]

u ≡ exp
(−i 1

2ξσ2
)

exp
(−i 1

2ησ3
)

exp
(−i 1

2ζσ2
)
, (A4)

where

ξ = arctan
(a3

a0

)
+ arctan

(a2

a1

)
+ π

2
(1 − signa1), (A5)

η = 2 arccos
√

a2
0 + a2

3, (A6)

ζ = arctan
(a3

a0

)
− arctan

(a2

a1

)
− π

2
(1 − signa1). (A7)

W

HWP QWP BD

θ

M T

FIG. 8. Optical simulation of the nonunitary time-evolution
operator.

The unitary matrix u can thus be realized by a combination of
wave plates

u = Qπ/4+ξ/2H−π/4+(ξ+η−ζ )/4Qπ/4−ζ/2, (A8)

where Qφ (Hφ ) is the Jones matrix of a quarter-(half-)wave
plate with fast-axis orientation φ. Note that the u consid-
ered here is an arbitrary unitary matrix. Thus, according to
Eqs. (A4) to (A8), the unitary matrices T and W can be
implemented with a combination of wave plates, given that
the matrix elements of T and W are known.

Moreover, the loss-dependent operator M can be written
as [25,27]

M =
[

1 0
0 sin(2θ )

]
, (A9)

which leaves an H-polarized photon undissipated and atten-
uates a V-polarized photon by sin(2θ ). Note that here the
maximum of the diagonal entries of M is unity, which is
assured by the scale factor c in Eq. (A2). The operator M is
realized by a polarization interferometer (composed of two
beam displacers) and a half-wave plate inside (oriented at
θ ). The beam displacers transmit the V-polarized photon and
displace the H-polarized photon. A half-wave plate oriented
at θ is inserted in the V path to induce the dissipation. The
optical simulation of UPT is shown in Fig. 8 where a photon
enters W , M, and T parts in sequence.

APPENDIX B: MUTUAL INFORMATION

The mutual information between Alice (A) and Bob (B)
is [1,2]

H (A : B) =
∑

i j

piTr(ρ̂iπ̂ j ) log

[
Tr(ρ̂iπ̂ j )

Tr(ρ̂π̂ j )

]
, (B1)

where the quantum state ρ̂i is prepared by Alice with a priori
probability pi and Bob performs a positive operator-valued
measure {π̂ j, j = 1, 2, 3}, with

∑
j π̂ j = I, ρ̂ = ∑

i piρ̂i.
Here, we assume the prior probabilities of |ψ1〉 and |ψ2〉 to be
equal, i.e., p1 = p2 = 0.5. The mutual information quantifies
how much information Bob obtains through the measurement
with outcomes corresponding to the expectation values of
{π̂ j}.

Note that the measurement in our experiment is not exactly
a projective measurement, but rather a time-evolution process
accompanied by energy loss. Therefore, the mutual informa-
tion defined in Eq. (B1) is better viewed in a classical way, i.e.,
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it is the information obtained on the basis of three different
outcomes. With this in mind, one could regard the expectation
value of π̂1 as the photon loss into the environment. That is,
Tr(ρ̂1π̂1) and Tr(ρ̂2π̂1) are the dissipations of the states |ψ1〉
and |ψ2〉, respectively.

On the other hand, the expectation values of π̂2 and π̂3

could be regarded as the unambiguous results while discrim-
inating the time-evolved states UPT |ψ1〉 and UPT |ψ2〉. To
be specific, Tr(ρ̂1π̂2) and Tr(ρ̂2π̂3) could be regarded as the
unambiguous results for correctly deciding that the states
are |ψ1〉 and |ψ2〉, respectively. Since the time-evolved states
UPT |ψ1〉 and UPT |ψ2〉 are orthogonal, an incorrect decision
does not exist, i.e., Tr(ρ̂1π̂3) = Tr(ρ̂2π̂2) = 0.

APPENDIX C: THEORY OF THREE-STATE
DISCRIMINATION

First, we show that an arbitrary set of three states with the
forms given by Eq. (13) can be transformed into the forms in
Eqs. (14) to (16) through unitary operations.

The first step is to transform the state |ψ1〉 into the state
|0〉 ≡ (1 0)T with the rotation operation

R1 =
(

cos β1

2 sin β1

2 e−iγ1

− sin β1

2 eiγ1 cos β1

2

)
. (C1)

Then, the meridian angle of the state |ψ2〉 is changed to 3π/2
by a second rotation around the Z axis

R2 =
(

1 0
0 −i exp[−i(λ + γ2)]

)
, (C2)

where

λ = arctan

[
sin β1

2 cos β2

2 sin(γ2 − γ1)

cos β1

2 sin β2

2 − sin β1

2 cos β2

2 cos(γ2 − γ1)

]

− arctan

[
sin β1

2 sin β2

2 sin(γ2 − γ1)

cos β1

2 cos β2

2 − sin β1

2 sin β2

2 cos(γ2 − γ1)

]
.

(C3)

Finally, the parallel angles of the states |ψ1〉 and |ψ2〉 are
changed to π∓2ε12

2 by a rotation around the X axis

R3 =
(

cos π−2ε12
4 −i sin π−2ε12

4

−i sin π−2ε12
4 cos π−2ε12

4

)
, (C4)

where

cos ε12 =
√

1 + cos β1 cos β2 + sin β1 sin β2 cos(γ1 − γ2)

2
(C5)

is the overlap between the states |ψ1〉 and |ψ2〉. The joint
operation R3R2R1 transforms the three states into the forms
given by Eqs. (14) to (16) with

cos
μ

2
= |κ1|, (C6)

ν = arctan

[
Im(κ2)

Re(κ2)

]
− arctan

[
Im(κ1)

Re(κ1)

]
, (C7)

κ1 = cos
β1

2
cos

β3

2
cos

π − 2ε12

4

[
1 + tan

β1

2
tan

π − 2ε12

4
ei(γ1−γ2−λ)

]
(C8)

+ sin
β1

2
sin

β3

2
cos

π − 2ε12

4
ei(γ3−γ1 )

[
1 − cot

β1

2
tan

π − 2ε12

4
ei(γ1−γ2−λ)

]
, (C9)

κ2 = i cos
β1

2
cos

β3

2
sin

π − 2ε12

4

[
tan

β1

2
cot

π − 2ε12

4
ei(γ1−γ2−λ) − 1

]
(C10)

− i sin
β1

2
sin

β3

2
sin

π − 2ε12

4
ei(γ3−γ1 )

[
1 + cot

β1

2
cot

π − 2ε12

4
ei(γ1−γ2−λ)

]
. (C11)

Thus, the time-evolved states of the three initial states |ψ1〉, |ψ2〉, and |ψ3〉 given by Eq. (13), become

UPT |ψ1〉 = e−irt cos θ

cos α

(
cos(ωt − α) cos π−2ε12

4 − sin ωt sin π−2ε12
4

−i sin ωt cos π−2ε12
4 − i cos(ωt + α) sin π−2ε12

4

)
, (C12)

UPT |ψ2〉 = e−irt cos θ

cos α

(
cos(ωt − α) cos π+2ε12

4 − sin ωt sin π+2ε12
4

−i sin ωt cos π+2ε12
4 − i cos(ωt + α) sin π+2ε12

4

)
, (C13)

UPT |ψ3〉 = e−irt cos θ

cos α

(
cos(ωt − α) cos μ

2 − i sin ωteiν sin μ

2

−i sin ωt cos μ

2 + cos(ωt + α)eiν sin μ

2

)
, (C14)
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FIG. 9. Theoretical overlaps between the normalized time-evolved states, |〈|ψ ′
3|ψ ′

1〉|2 and |〈|ψ ′
3|ψ ′

2〉|2, with different α for (a) β = π/3 and
(b) β = π/2 in our experiment.

which could be normalized to the following forms:

|ψ ′
1〉 =

(
cos δ

2

−i sin δ
2

)
, (C15)

|ψ ′
2〉 =

(
sin δ

2

i cos δ
2

)
, (C16)

|ψ ′
3〉 =

(
cos χ

2

i sin χ

2

)
, (C17)

with additional overall phases omitted. Here, r, θ , and α are the parameters involved in the PT -symmetric Hamiltonian given in
Eq. (2) above, and

cos
δ

2
= cos(ωt − α) cos π−2ε12

4 − sin ωt sin π−2ε12
4√

1 − cos(2ωt ) sin2 α + 2 sin(ωt ) sin α(cos(ωt ) cos α sin ε12 − sin(ωt ) cos ε12)
, (C18)

cos
χ

2
= |τ1|

|τ1|2 + |τ2|2 , (C19)

τ1 = cos(ωt − α) cos
μ

2
− i sin ωteiν sin

μ

2
, (C20)

τ2 = −i sin ωt cos
μ

2
+ cos(ωt + α)eiν sin

μ

2
. (C21)

The overlaps between the normalized time-evolved states are given by

|〈|ψ ′
2|ψ ′

1〉| = 0, (C22)

|〈|ψ ′
3|ψ ′

1〉| =
∣∣∣∣cos

χ + δ

2

∣∣∣∣, (C23)

|〈|ψ ′
3|ψ ′

2〉| =
∣∣∣∣sin

χ + δ

2

∣∣∣∣. (C24)

The orthogonality between the states |ψ ′
1〉 and |ψ ′

2〉 is assured by the relation between the chosen α in the PT -symmetric
Hamiltonian and the evolution time t given by Eq. (8).

Figure 9 numerically shows the overlaps between the normalized time-evolved states, i.e., |〈|ψ ′
3|ψ ′

1〉|2 and |〈|ψ ′
3|ψ ′

2〉|2, for
Figs. 9(a) β = π/3 and 9(b) β = π/2 in our experiment. One can see that as α tends to π/2, the overlap between the states |ψ ′

2〉
and |ψ ′

3〉 decreases and converges to a nonzero value.
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[13] Ş. K. Özdemir et al., Parity–time symmetry and exceptional
points in photonics, Nat. Mater. 18, 783 (2019).

[14] Y. D. Chong, L. Ge, and A. D. Stone, PT -Symmetry Break-
ing and Laser-Absorber Modes in Optical Scattering Systems,
Phys. Rev. Lett. 106, 093902 (2011).

[15] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,
D. N. Christodoulides, and U. Peschel, Parity-time synthetic
photonic lattices, Nature (London) 488, 167 (2012).

[16] H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori,
PT -Symmetric Phonon Laser, Phys. Rev. Lett. 113, 053604
(2014).

[17] B. Peng et al., Parity–time-symmetric whispering-gallery mi-
crocavities, Nat. Phys. 10, 394 (2014).

[18] T. Gao et al., Observation of non-Hermitian degeneracies in
a chaotic exciton-polariton billiard, Nature (London) 526, 554
(2015).

[19] Z.-P. Liu et al., Metrology with PT -Symmetric Cavities: En-
hanced Sensitivity near the PT -Phase Transition, Phys. Rev.
Lett. 117, 110802 (2016).

[20] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa,
and M. Ueda, Topological Phases of Non-Hermitian Systems,
Phys. Rev. X 8, 031079 (2018).

[21] H. Zhang et al., Breaking Anti-PT Symmetry by Spinning a
Resonator, Nano Lett. 20, 7594 (2020).

[22] S. Croke, PT -symmetric Hamiltonians and their application in
quantum information, Phys. Rev. A 91, 052113 (2015).

[23] S.-L. Chen, G.-Y. Chen, and Y.-N. Chen, Increase of entan-
glement by local PT -symmetric operations, Phys. Rev. A 90,
054301 (2014).

[24] K. Kawabata, Y. Ashida, and M. Ueda, Information Retrieval
and Criticality in Parity-Time-Symmetric Systems, Phys. Rev.
Lett. 119, 190401 (2017).

[25] L. Xiao, K. Wang, X. Zhan, Z. Bian, K. Kawabata, M. Ueda, W.
Yi, and P. Xue, Observation of Critical Phenomena in Parity-

Time-Symmetric Quantum Dynamics, Phys. Rev. Lett. 123,
230401 (2019).

[26] Y.-T. Wang, Z.-P. Li, S. Yu, Z.-J. Ke, W. Liu, Y. Meng, Y.-Z.
Yang, J.-S. Tang, C.-F. Li, and G.-C. Guo, Experimental Inves-
tigation of State Distinguishability in Parity-Time Symmetric
Quantum Dynamics, Phys. Rev. Lett. 124, 230402 (2020).

[27] Y.-L. Fang et al., Experimental demonstration of coherence
flow in PT-and anti-PT-symmetric systems, Commun. Phys. 4,
1 (2021).

[28] W.-C. Wang, Y.-L. Zhou, H.-L. Zhang, J. Zhang, M.-C. Zhang,
Y. Xie, C.-W. Wu, T. Chen, B.-Q. Ou, W. Wu, H. Jing, and P.-X.
Chen, Observation of PT -symmetric quantum coherence in a
single-ion system, Phys. Rev. A 103, L020201 (2021).

[29] H. Xu, D. Mason, L. Jiang, and J. Harris, Topological energy
transfer in an optomechanical system with exceptional points,
Nature (London) 537, 80 (2016).

[30] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik,
F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Dynamically encircling an exceptional point for asymmetric
mode switching, Nature (London) 537, 76 (2016).

[31] B. Gardas, S. Deffner, and A. Saxena, PT -symmetric slowing
down of decoherence, Phys. Rev. A 94, 040101(R) (2016).

[32] C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister,
Faster than Hermitian Quantum Mechanics, Phys. Rev. Lett. 98,
040403 (2007).

[33] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Time-
Optimal Quantum Evolution, Phys. Rev. Lett. 96, 060503
(2006).

[34] M. R. Lam, N. Peter, T. Groh, W. Alt, C. Robens, D. Meschede,
A. Negretti, S. Montangero, T. Calarco, and A. Alberti, Demon-
stration of Quantum Brachistochrones between Distant States of
an Atom, Phys. Rev. X 11, 011035 (2021).

[35] C. Zheng, L. Hao, and G. L. Long, Observation of a fast evolu-
tion in a parity-time-symmetric system, Phil. Trans. R. Soc. A.
371, 20120053 (2013).

[36] P. E. G. Assis and A. Fring, The quantum brachistochrone
problem for non-Hermitian Hamiltonians, J. Phys. A: Math.
Theor. 41, 244002 (2008).

[37] C. M. Bender, D. C. Brody, J. Caldeira, U. Günther, B. K.
Meister, and B. F. Samsonov, PT-symmetric quantum state dis-
crimination, Phil. Trans. R. Soc. A. 371, 20120160 (2013).

[38] Y. Balytskyi, M. Raavi, A. Pinchuk, and S.-Y. Chang,
PT -symmetric Quantum Discrimination of Three States,
arXiv:2012.14897v2.

[39] J.-S. Tang, Y.-T. Wang, S. Yu, D.-Y. He, J.-S. Xu, B.-H. Liu,
G. Chen, Y.-N. Sun, K. Sun, Y.-J. Han, C.-F. Li, and G.-C.
Guo, Experimental investigation of the no-signalling principle
in parity–time symmetric theory using an open quantum system,
Nat. Photonics 10, 642 (2016).

[40] Q. Li, C.-J. Zhang, Z.-D. Cheng, W.-Z. Liu, J.-F. Wang, F.-F.
Yan, Z.-H. Lin, Y. Xiao, K. Sun, Y.-T. Wang, J.-S. Tang, J.-S.
Xu, C.-F. Li, and G.-C. Guo, Experimental simulation of anti-
parity-time symmetric Lorentz dynamics, Optica 6, 67 (2019).

[41] N. Tischler, C. Rockstuhl, and K. Słowik, Quantum Optical
Realization of Arbitrary Linear Transformations Allowing for
Loss and Gain, Phys. Rev. X 8, 021017 (2018).

[42] B. N. Simon, C. M. Chandrashekar, and S. Simon, Hamilton’s
turns as a visual tool kit for designing single-qubit unitary gates,
Phys. Rev. A 85, 022323 (2012).

022438-10

https://doi.org/10.1103/PhysRevLett.118.100501
https://doi.org/10.1103/PhysRevA.63.040305
https://doi.org/10.1103/PhysRevLett.93.200403
https://doi.org/10.1103/PhysRevLett.113.020501
https://doi.org/10.1103/PhysRevA.64.012303
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1038/nature11298
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nature15522
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1021/acs.nanolett.0c03119
https://doi.org/10.1103/PhysRevA.91.052113
https://doi.org/10.1103/PhysRevA.90.054301
https://doi.org/10.1103/PhysRevLett.119.190401
https://doi.org/10.1103/PhysRevLett.123.230401
https://doi.org/10.1103/PhysRevLett.124.230402
https://doi.org/10.1038/s42005-020-00504-0
https://doi.org/10.1103/PhysRevA.103.L020201
https://doi.org/10.1038/nature18604
https://doi.org/10.1038/nature18605
https://doi.org/10.1103/PhysRevA.94.040101
https://doi.org/10.1103/PhysRevLett.98.040403
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1103/PhysRevX.11.011035
https://doi.org/10.1098/rsta.2012.0053
https://doi.org/10.1088/1751-8113/41/24/244002
https://doi.org/10.1098/rsta.2012.0160
http://arxiv.org/abs/arXiv:2012.14897v2
https://doi.org/10.1038/nphoton.2016.144
https://doi.org/10.1364/OPTICA.6.000067
https://doi.org/10.1103/PhysRevX.8.021017
https://doi.org/10.1103/PhysRevA.85.022323


QUANTUM STATE DISCRIMINATION IN A … PHYSICAL REVIEW A 106, 022438 (2022)

[43] Y.-C. Lee, M.-H. Hsieh, S. T. Flammia, and R.-K. Lee, Local
PT Symmetry Violates the No-Signaling Principle, Phys. Rev.
Lett. 112, 130404 (2014).

[44] U. Günther and B. F. Samsonov, PT -symmetric brachis-
tochrone problem, Lorentz boosts, and nonunitary operator
equivalence classes, Phys. Rev. A 78, 042115 (2008).

[45] A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: the
necessary condition for the reality of the spectrum of a non-
Hermitian Hamiltonian, J. Math. Phys. 43, 205 (2002).

[46] A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry. II.
A complete characterization of non-Hermitian Hamiltonians
with a real spectrum, J. Math. Phys. 43, 2814 (2002).

[47] A. Mostafazadeh, Quantum Brachistochrone Problem and the
Geometry of the State Space in Pseudo-Hermitian Quantum
Mechanics, Phys. Rev. Lett. 99, 130502 (2007).

[48] C.Y. Ju, A. Miranowicz, G.Y. Chen, and F. Nori, Non-Hermitian
Hamiltonians and no-go theorems in quantum information,
Phys. Rev. A 100, 062118 (2019).

022438-11

https://doi.org/10.1103/PhysRevLett.112.130404
https://doi.org/10.1103/PhysRevA.78.042115
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1461427
https://doi.org/10.1103/PhysRevLett.99.130502
https://doi.org/10.1103/PhysRevA.100.062118

