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The dark-mode effect is a stubborn obstacle for ground-state cooling of multiple degenerate mechanical modes
optomechanically coupled to a common cavity-field mode. Here we propose an auxiliary-cavity-mode method
for simultaneous ground-state cooling of two degenerate or near-degenerate mechanical modes by breaking the
dark mode. We find that the introduction of the auxiliary cavity mode not only breaks the dark-mode effect,
but also provides a new cooling channel to extract the thermal excitations stored in the dark mode. Moreover,
we study the general physical-coupling configurations for breaking the dark mode in a generalized network-
coupled four-mode optomechanical system consisting of two cavity modes and two mechanical modes. We find
the analytical dark-mode-breaking condition in this system. This method is general and it can be generalized
to break the dark-mode effect and to realize the simultaneous ground-state cooling in a multiple-mechanical-
mode optomechanical system. We also demonstrate the physical mechanism behind the dark-mode breaking by
studying the breaking of dark-state effect in the N-type four-level atomic system. Our results not only provide a
general method to control various dark-mode and dark-state effects in physics, but also present an opportunity
to the study of macroscopic quantum phenomena and applications in multiple-mechanical-resonator systems.
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I. INTRODUCTION

Considerable recent interest in cavity optomechanics [1–3]
has been paid to multimode optomechanical systems involv-
ing two [4–14] or multiple [15–27] mechanical resonators;
in particular, the two-mechanical-mode optomechanical sys-
tems have been realized in several experimental platforms
[7–14]. The study of multiple-mechanical-mode optomechan-
ical systems has significance in both fundamental quantum
physics [28] and modern quantum technologies [3]. For exam-
ple, generation of macroscopic mechanical entanglement in
multimode optomechanical systems has been experimentally
demonstrated [10,11,13,14]. Multimode optomechanical sys-
tems have also been considered to study quantum many-body
effects [24–26], high performance sensors [29,30], precise
measurement [31], and nonreciprocal phonon or photon trans-
port [32–39].

The simultaneous ground-state cooling of multiple me-
chanical modes has become a desired task because it is a
prerequisite for the manipulation of macroscopic mechanical
coherence [28]. In particular, owing to the inherent struc-
tural features in multiple mechanical-mode optomechanical
systems, people prefer to implement the simultaneous cool-
ing of multiple mechanical resonators rather than to cool
these resonators one by one using the single-resonator cooling
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techniques. Though great success has been made in cool-
ing a single mechanical resonator in optomechanical systems
[40–51], it remains a great challenge to perform ground-
state cooling of multiple degenerate mechanical resonators
coupled to a common cavity field, due to the mechanical
dark-mode effect [7,52–55]. For the two-mechanical-mode
case, the dark-mode effect has been theoretically found [52]
and experimentally demonstrated [55]. Meanwhile, the dark
mode formed in optomechanical systems involving two cavity
modes and one mechanical mode has also been found [56–59].
So far, theoretical proposals for optomechanical cooling of
multiple mechanical resonators coupled in series have been
proposed [60,61] and cooling of multimodes in a resonator
have been analyzed with the cold-damping feedback method
[62,63]. In addition, ground-state cooling of multiple me-
chanical resonators has been proposed based on synthetic
magnetism [64] and reservoir engineering [65]. In particular
we mention that considerable attention [66–69] has been paid
to the suppression of optomechanical backaction and to the
improvement of restrictions for effective cooling in multi-
mode optomechanical systems.

In this paper we propose an auxiliary-cavity-mode method
for breaking the dark mode and further realizing ground-
state cooling of two degenerate mechanical modes. We also
explore the general coupling configurations for breaking
the dark mode in a generalized four-mode optomechanical
system, in which all the two-node couplings exist among
two cavity modes and two mechanical modes. We find the
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analytical general conditions for forming and breaking the
dark mode. Moreover, we extend this method to break the
dark modes and realize the ground-state cooling of the multi-
ple mechanical resonators. Correspondingly, our scheme can
also be used to cool multiple degenerate or near-degenerate
vibrational modes in a resonator. We also describe the phys-
ical mechanism for breaking the dark-state effect in the
N-type four-level atomic system. The physical mechanism of
our scheme is general and it can be generalized to control
other dark-mode and dark-state effects in various branches of
physics. In this sense, our results not only open up a different
route to the realization of simultaneous ground-state cooling
of two degenerate or near-degenerate mechanical resonators
and enrich the technique of few-body resonator cooling, but
also initiate advances in dark-state engineering [70].

The rest of this paper is organized as follows. In Sec. II
we introduce the physical model and present the quantum
Langevin equations. In Sec. III we study ground-state cool-
ing of the two mechanical modes by calculating the final
mean phonon numbers. In Sec. IV we obtain the universal
dark-mode-breaking conditions in a four-mode optomechani-
cal system consisting of two cavity modes and two mechanical
modes. We also analyze the quantum interference effect in
the energy-level transitions of the system. In Sec. V we study
the simultaneous ground-state cooling of multiple mechanical
modes and the dark-mode breaking in a multiple-mechanical-
mode optomechanical system. In Sec. VI we describe the
physical mechanism for breaking the dark-state effect in the
N-type four-level atomic system. We present a discussion of
the experimental implementation of our scheme in Sec. VII
and summarize this work in Sec. VIII.

II. PHYSICAL MODEL AND EQUATIONS OF MOTION

We consider an N-type four-mode optomechanical system
consisting of two cavity modes (an intermediate cavity mode
a and an auxiliary cavity mode as) and two mechanical modes
(b1 and b2), as shown in Fig. 1(a). Here the intermediate
cavity mode is coupled to the two mechanical modes via
radiation-pressure interactions. When the frequencies of the
two mechanical modes are degenerate, a dark mode is formed
in this linearized optomechanical system [42]. This dark mode
decouples from the intermediate cavity mode and hence the
ground-state cooling of the two mechanical modes is largely
suppressed. To break the dark-mode effect, we introduce the
auxiliary cavity mode as, which is optomechanically coupled
to the mechanical mode b1. Moreover, two driving fields are
applied to the cavity modes to control the optical and mechan-
ical degrees of freedom. In a rotating frame defined by the
operator exp[−i(ωLa†a + ωd a†

s as)t], the system Hamiltonian
is given by (h̄ = 1)

HI = �ca†a + �sa
†
s as +

∑
l=1,2

[ωl b
†
l bl + gla

†a(b†
l + bl )]

+ gs1a†
s as(b

†
1 + b1) + (�a† + �sa

†
s + H.c.), (1)

where �c = ωc − ωL (�s = ωs − ωd ) is the driving detuning
of the cavity frequency ωc (ωs) with respect to its driv-
ing frequency ωL (ωd ) and a (a†), as (a†

s ), and bl=1,2 (b†
l )

are the annihilation (creation) operators of the intermediate
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FIG. 1. (a) Schematic of the N-type four-mode optomechanical
system. An intermediate-coupling cavity mode a with the resonance
frequency ωc is optomechanically coupled to two mechanical modes
b1 and b2, with the corresponding resonance frequencies ω1 and ω2.
An auxiliary cavity mode as with the resonance frequency ωs is
optomechanically coupled to the mechanical mode b1. The coupling
strength between the cavity mode a (as ) and the mechanical mode
bl=1,2 (b1) is denoted by gl=1,2 (gs1). The cavity mode a (as ) is driven
with the driving frequency ωL (ωd ) and the driving amplitude �

(�s ). The decay rates of the intermediate cavity mode, the auxiliary
cavity mode, and the two mechanical modes are denoted by κ , κs,
and γl=1,2, respectively. (b) Coupling configuration associated with
the approximate linearized Hamiltonian (11). The auxiliary cavity
mode δas (with driving detuning �′

s ) is coupled to the two hybrid
mechanical modes B± (with resonance frequency ω±) via the ef-
fective coupling strengths Gs±. The cavity mode δa (with driving
detuning �′

c ) is coupled to the hybrid mechanical mode B+ via
the effective coupling strength G+. The phonon-hopping interaction
between the two hybrid mechanical modes is denoted by ζ . In the
degenerate-mechanical-mode case and in the absence of auxiliary
cavity, i.e., ζ = 0 and Gs± = 0, the hybrid mechanical mode B− is
decoupled from both the cavity mode δa and the hybrid mechanical
mode B+

cavity mode, the auxiliary cavity mode, and the lth mechan-
ical mode, with the corresponding resonance frequencies ωc,
ωs, and ωl , respectively. The gl=1,2 (gs1) term describes the
optomechanical coupling between the mechanical mode bl=1,2

(b1) and the cavity mode a (as). The parameters ωL (ωd ) and
� (�s) are the driving frequency and amplitude related to the
driving field of the cavity mode a (as), respectively.

To include the dissipations in this system, we assume that
the two cavity fields are coupled to individual vacuum baths
and that the two mechanical modes are coupled to individual
heat baths. Then the evolution of this system is governed by
the quantum Langevin equations

ȧ = −(i�c + κ )a − i� − i
∑
l=1,2

gla(b†
l + bl ) +

√
2κain,

(2a)

ȧs = −(i�s + κs)as − i[�s + gs1as(b
†
1 + b1)] +

√
2κsas,in,

(2b)

ḃ1 = −(γ1 + iω1)b1 − i(g1a†a + gs1a†
s as) +

√
2γ1b1,in,

(2c)

ḃ2 = −(γ2 + iω2)b2 − ig2a†a +
√

2γ2b2,in, (2d)
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where κ , κs, and γl=1,2 are the decay rates of the interme-
diate cavity mode a, the auxiliary cavity mode as, and the
lth mechanical mode, respectively. The operators ain (a†

in),
as,in (a†

s,in), and bl,in (b†
l,in) are the noise operators associated

with the intermediate cavity mode, the auxiliary cavity mode,
and the lth mechanical mode, respectively. These noise opera-
tors have zero mean values and obey the correlation functions
[71,72]

〈ain(t )a†
in(t ′)〉 = δ(t − t ′), (3a)

〈a†
in(t )ain(t ′)〉 = 0, (3b)

〈as,in(t )a†
s,in(t ′)〉 = δ(t − t ′), (3c)

〈a†
s,in(t )as,in(t ′)〉 = 0, (3d)

〈bl,in(t )b†
l,in(t ′)〉 = (n̄l + 1)δ(t − t ′), (3e)

〈b†
l,in(t )bl,in(t ′)〉 = n̄lδ(t − t ′) (3f)

for l = 1, 2, where n̄l=1,2 is the average thermal-phonon oc-
cupation number associated with the lth mechanical mode.

To cool the mechanical modes, we assume that the two
cavity modes are driven strongly and then the mean pho-
ton numbers in the two cavities are large enough and
this four-mode optomechanical system can be processed
by the linearization procedure. In this way, the operators
o ∈ {a, a†, as, a†

s , bl , b†
l } can be expressed as a summation

of steady-state average values and quantum fluctuation op-
erators, i.e., o = 〈o〉ss + δo. By separating the steady-state
average values and the quantum fluctuation operators, we
can obtain the linearized Langevin equations for the quantum
fluctuation operators

δȧ = −(κ + i�′
c)δa − i

∑
l=1,2

[Gl (δbl + δb†
l )] +

√
2κain,

(4a)

δȧs = −(κs + i�′
s)δas − iGs1(δb1 + δb†

1) +
√

2κsas,in,

(4b)

δḃ1 = −(iω1 + γ1)δb1 − iG∗
1δa − iG1δa† − iG∗

s1δas

− iGs1δa†
s +

√
2γ1b1,in, (4c)

δḃ2 = −(iω2 + γ2)δb2 − iG∗
2δa − iG2δa† +

√
2γ2b2,in,

(4d)

where the parameters �′
c = �c + 2g1Re(β1) + 2g2Re(β2)

and �′
s = �s + 2gs1Re(β1) are the effective driving detunings

of the cavity mode a and the auxiliary cavity mode as, respec-
tively, with Re(βl=1,2) taking the real part of βl . The parameter
Gl = glα (Gs1 = gs1αs) is the linearized optomechanical-
coupling strength between the cavity mode a (as) and the lth
mechanical mode (the mechanical mode b1). In the steady-
state case, the average values of the system operators can be
obtained as

α ≡ 〈a〉ss = −i�

κ + i�′
c

, (5a)

αs ≡ 〈as〉ss = −i�s

κs + i�′
s

, (5b)

β1 ≡ 〈b1〉ss = −ig1|α|2 − igs1|αs|2
γ1 + iω1

, (5c)

β2 ≡ 〈b2〉ss = −ig2|α|2
γ2 + iω2

. (5d)

For convenience, in the following we assume that the steady-
state values of α and αs are real by choosing proper phases
of the driving amplitudes � and �s; then the linearized
optomechanical-coupling strengths Gl=1,2 and Gs1 are also
real.

Based on Eq. (4), we can derive an approximate linearized
Hamiltonian, which governs the dynamics of the system. To
implement the cooling scheme, the system should work in the
red-sideband-resonance regime, in which the rotating-wave
approximation can be safely made. By discarding the noise
terms, the linearized optomechanical Hamiltonian can be writ-
ten as

HRWA = �′
cδa†δa + �′

sδa†
s δas + Gs1(δasδb†

1 + δa†
s δb1)

+
∑
l=1,2

[ωlδb†
l δbl + Gl (δaδb†

l + δa†δbl )]. (6)

To clearly see the dark-mode effect in this N-type four-
mode optomechanical system, we first consider the case where
the auxiliary cavity is absent, i.e., �′

s = 0 and Gs1 = 0. Then
Hamiltonian (6) becomes

H ′
RWA = �′

cδa†δa +
∑
l=1,2

[ωlδb†
l δbl + Gl (δaδb†

l + δa†δbl )].

(7)

In this case, two hybrid mechanical modes B+ and B− can be
introduced as

B+ = 1√
G2

1 + G2
2

(G1δb1 + G2δb2), (8a)

B− = 1√
G2

1 + G2
2

(G2δb1 − G1δb2). (8b)

Here the new operators satisfy the bosonic commutation re-
lations [B+, B†

+] = 1 and [B−, B†
−] = 1. By substituting the

operators B+ (B†
+) and B− (B†

−) into Eq. (7), the Hamiltonian
H ′

RWA can be rewritten as

H ′
RWA = �′

cδa†δa + ω+B†
+B+ + ω−B†

−B−

+ G+(δaB†
+ + B+δa†) + ζ (B†

+B− + B†
−B+), (9)

where we introduce the resonance frequencies ω± of the two
hybrid modes and the coupling strengths ζ and G+, which are
defined by

ω+ = ω1G2
1 + ω2G2

2

G2
1 + G2

2

, (10a)

ω− = ω1G2
2 + ω2G2

1

G2
1 + G2

2

, (10b)

G+ =
√

G2
1 + G2

2, (10c)

ζ = (ω1 − ω2)G1G2

G2
1 + G2

2

. (10d)
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From Eqs. (10) we can see that the two hybrid modes B− and
B+ are decoupled from each other (ζ = 0) when ω1 = ω2.
Moreover, the hybrid mode B− also decouples from the cavity
mode a, which means that the hybrid mode B− becomes a
dark mode. At this time, the ground-state cooling of the two
mechanical modes is largely suppressed.

To break the dark-mode effect in this optomechanical sys-
tem, we introduce an auxiliary cavity mode, which is coupled
to the mechanical mode b1 via the radiation-pressure inter-
action. By substituting operators B+ (B†

+) and B− (B†
−) into

Eq. (6), the Hamiltonian HRWA becomes

HRWA = �′
cδa†δa + �′

sδa†
s δas + ω+B†

+B+ + ω−B†
−B−

+ ζ (B†
+B− + B†

−B+) + G+(δaB†
+ + B+δa†)

+ Gs+(δasB
†
+ + δa†

s B+) + Gs−(δasB
†
− + δa†

s B−),

(11)

where we introduce two new coupling strengths Gs+ and Gs−,

Gs+ = Gs1G1√
G2

1 + G2
2

, (12a)

Gs− = Gs1G2√
G2

1 + G2
2

. (12b)

The coupling configuration associated with the approximate
Hamiltonian (11) is described by Fig. 1(b). Here the couplings
are expressed in the representation of the mechanical hybrid
modes. We can see from Eqs. (12) that Gs± > 0, i.e., the
hybrid modes B± are always coupled with the auxiliary cavity
mode as. Therefore, even if the hybrid mode B− is decoupled
from both the intermediate cavity mode a and the hybrid mode
B+, the ground-state cooling of the two mechanical modes can
also be achieved via the cooling channel associated with the
auxiliary cavity mode as.

For studying quantum cooling of the mechanical modes,
we are interested in the steady-state properties of the sys-
tem. Therefore, we should analyze the stability condition of
this linearized system. To this end, we rewrite the linearized
Langevin equations (4) as the contact form

u̇(t ) = Au(t ) + N(t ), (13)

where u(t ) = [δa, δas, δb1, δb2, δa†, δa†
s , δb†

1, δb†
2]T and

N(t ) = √
2[

√
κain,

√
κsas,in,

√
γ1b1,in,

√
γ2b2,in,

√
κa†

in,√
κsa

†
s,in,

√
γ1b†

1,in,
√

γ2b†
2,in]T are the fluctuation operator

vector and noise operator vector, respectively, with the matrix
transpose notation T . The coefficient matrix is defined by
A = ( E F

F∗ E∗), where

E = −

⎛
⎜⎝

κ + i�′
c 0 iG1 iG2

0 κs + i�′
s iGs1 0

iG∗
1 iG∗

s1 γ1 + iω1 0
iG∗

2 0 0 γ2 + iω2

⎞
⎟⎠ (14)

and F is defined by the nonzero elements F13 = −iG1, F14 =
−iG2, F23 = −iGs1, F31 = −iG1, F32 = −iGs1, and F41 =
−iG2. The eigensystem of the coefficient matrix A determines
the stability of the system. By using the Routh-Hurwitz crite-
rion [73], we can find the stability condition. In the following

derivation, all the parameters used satisfy the stability condi-
tions.

III. GROUND-STATE COOLING OF THE TWO
MECHANICAL MODES

In this section we study the cooling performance of the
two mechanical modes by calculating the final mean phonon
numbers. The formal solution of the linearized Langevin
equations (13) can be obtained as

u(t ) = M(t )u(0) +
∫ t

0
M(t − s)N(s)ds, (15)

where we introduce the matrix M(t ) = exp(At ). The final
mean phonon numbers of the two mechanical modes can be
calculated by solving the steady state of the system.

Based on Eq. (15), we can obtain the final mean phonon
numbers by solving the Lyapunov equation [74]. To this end,
we introduce the covariance matrix V of the system by defin-
ing the matrix elements as

Vi j = 1
2 [〈ui(∞)u j (∞)〉
+ 〈u j (∞)ui(∞)〉], i, j = 1, . . . , 8. (16)

In the linearized optomechanical system, the covariance ma-
trix V satisfies the Lyapunov equation

AV + VAT = −Q. (17)

Here the matrix Q is defined by

Q = 1
2 (C + CT ), (18)

where C is the correlation matrix related to the noise opera-
tors. The matrix elements of C are defined by

〈Nk (s)Nl (s
′)〉 = Ck,lδ(s − s′). (19)

In this work we consider the Markovian dissipation case.
Then the constant matrix C can be obtained with the nonzero
elements C15 = 2κ , C26 = 2κs, C37 = 2γ1(n̄1 + 1), C48 =
2γ2(n̄2 + 1), C73 = 2γ1n̄1, and C84 = 2γ2n̄2. By solving the
Lyapunov equation, we obtain the covariance matrix V de-
fined in Eq. (16). Then the final mean phonon numbers of the
two mechanical modes can be obtained as

n f
1 = 〈δb†

1δb1〉 = V73 − 1
2 , (20a)

n f
2 = 〈δb†

2δb2〉 = V84 − 1
2 , (20b)

where V73 and V84 are the matrix elements of the covariance
matrix V.

Here we first consider the cooling performance in the
two-degenerate-resonator case (ω1 = ω2). In Fig. 2 we plot
the final mean phonon numbers n f

1 and n f
2 as functions of the

scaled driving detuning �′
c/ω1 (�′

s/ω1) and the scaled cavity-
field decay rate κ/ω1 (κs/ω1). To better analyze the influence
of the driving detuning and the sideband-resolution condition
on the cooling performance, here we choose the mechanical
frequency ω1 as the scale unit. In Figs. 2(a) and 2(b) we can
see that ground-state cooling of the two mechanical modes
can be realized in the resolved-sideband limit (κ/ω1 
 1) and
around �′

c/ω1 ∼ 1. Moreover, the cooling efficiency of the
first mechanical mode is much better than that of the second
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FIG. 2. Final mean phonon numbers (a) and (c) n f
1 and (b) and

(d) n f
2 of the two mechanical modes versus the scaled driving de-

tuning (a) and (b) �′
c/ω1 and (c) and (d) �′

s/ω1 and the scaled
cavity-field decay rate (a) and (b) κ/ω1 and (c) and (d) κs/ω1. The
parameters are (a) and (b) �′

s/ω1 = 1 and κs/ω1 = 0.1 and (c) and
(d) �′

c/ω1 = 1 and κ/ω1 = 0.1. The other parameters are ω2/ω1 =
1, γ1/ω1 = γ2/ω1 = 10−5, G1/ω1 = G2/ω1 = 0.05, Gs1/ω1 = 0.08,
and n̄1 = n̄2 = 1000.

one even in unresolved-sideband limit (κ/ω1 � 1). This is be-
cause the first mechanical mode is simultaneously connected
to two cooling channels and the coupling strength between
the auxiliary cavity mode and the first mechanical mode is
large enough (Gs1/ω1 = 0.08). For a given decay rate κ/ω1,
the optimal driving detuning is about �′

c/ω1 = 1, which
corresponds to the red-sideband resonance. In Figs. 2(c) and
2(d) we can see that the ground-state cooling of the two
mechanical modes can be realized in the resolved-sideband
limit (κs/ω1 
 1) and the cooling performance is the best
at the optimal driving detuning �′

s/ω1 ≈ 1. These results
are consistent with the sideband cooling results in typical
optomechanical systems [40,41,52]. In addition, we perform
numerical calculations with several sets of parameters
when �′

s/ω1 
 1 or κs/ω1 
 1. We find that though these
mechanical modes can be cooled significantly, but they cannot
be cooled to the ground state in the N-type optomechanical
system.

Next we analyze the influence of the frequency mis-
match between the two mechanical modes on the cooling
efficiency. In Figs. 3(a) and 3(b) we plot the phonon num-
bers n f

1 and n f
2 versus the frequency ratio ω2/ω1 and

the scaled cavity-field decay rate κ/ω1 in the absence of
the auxiliary cavity mode (Gs1/ω1 = 0). Here we see that
the final mean phonon numbers in the two mechanical modes
cannot be efficiently decreased around ω2 = ω1, which means
that the two mechanical modes cannot be cooled to their
ground states when their frequencies are degenerate or nearly
degenerate (in a finite-detuning window). This phenomenon
can be explained according to the dark-mode effect. In the
degenerate-resonator case (ω1 = ω2), a bright mode and a
dark mode are formed in this optomechanical system. Phys-
ically, the two mechanical modes have an obvious spectral

FIG. 3. Final mean phonon numbers n f
1 and n f

2 versus the fre-
quency ratio ω2/ω1 and the scaled cavity-field decay rate κ/ω1 in
the cases of (a) and (b) dark-mode unbreaking (Gs1/ω1 = 0) and
(c) and (d) dark-mode breaking (Gs1/ω1 �= 0). The other parameters
are �′

c = �′
s = ω1, κs/ω1 = 0.1, G1/ω1 = G2/ω1 = 0.05, Gs1/ω1 =

0.08, γ1/ω1 = γ2/ω1 = 10−5, and n̄1 = n̄2 = 1000.

overlap and become effectively degenerate in the presence
of dissipation; thus the dark-mode effect works in the near-
degenerate case. The dark mode decouples from both the
cavity mode and the bright mode, so the phonon excita-
tions stored in the dark mode cannot be extracted through
the optomechanical-cooling channel [64]. However, the dark-
mode effect disappears when the two mechanical modes
are far-off-resonance, thus achieving ground-state cooling. In
Figs. 3(c) and 3(d) we plot the phonon numbers n f

1 and n f
2

versus the frequency ratio ω2/ω1 and the scaled decay rate
κ/ω1, when the auxiliary cavity field is present (Gs1/ω1 =
0.08). Here the ground-state cooling of the two mechanical
modes can be achieved (n f

1,2 
 1) when the system works
in the resolved-sideband regime (κ 
 ω1). Here the first me-
chanical resonator has a better cooling efficiency (n f

1 < n f
2 )

because it is connected to two cooling channels at the same
time.

Since the auxiliary cavity mode not only provides the direct
channel to extract the thermal excitations from the mechani-
cal mode b1, but also provides a cooling channel to extract
the thermal excitations from the mechanical mode b2, the
coupling strength between the auxiliary cavity mode as and
the mechanical mode b1 is an important factor to the cooling
efficiency. To see this effect more clearly, in Figs. 4(a) and
4(b) we plot the phonon numbers n f

1 and n f
2 as functions of

the linearized optomechanical-coupling strength Gs1 between
the auxiliary cavity mode as and the mechanical mode b1

when the scaled cavity-field decay rate κs/ω1 takes various
values. Here we see that the phonon numbers decrease with
the increase of the coupling strength Gs1, which means that
the increase of the coupling strength Gs1 is beneficial to
the ground-state cooling of the two mechanical resonators.
Moreover, the final mean phonon numbers are smaller for
smaller values of the decay rate κs1/ω1 for a certain parameter
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FIG. 4. Final mean phonon numbers (a) n f
1 and (b) n f

2 as func-
tions of Gs1/ω1 when the scaled cavity-field decay rate takes various
values κs/ω1 = 0.4, 0.8, and 1.2. The insets show close-ups of the
final mean phonon numbers as functions of Gs1/ω1, with the hor-
izontal axis ranging from 0.05 to 0.3. The other parameters are
ω2/ω1 = 1, �′

c/ω1 = �′
s/ω1 = 1, κ/ω1 = 0.1, γ1/ω1 = γ2/ω1 =

10−5, G1/ω1 = G2/ω1 = 0.05, and n̄1 = n̄2 = 1000.

range, which is consistent with the analyses of the cooling
efficiency on the sideband-resolution condition [40,41,52].
In addition, we can see from Fig. 4 that the ground-state
cooling can be realized in the N-type optomechanical sys-
tem and the cooling limit cannot be broken compared with
the single-resonator optomechanical system under the same
parameters.

IV. GROUND-STATE COOLING AND UNIVERSAL
DARK-MODE-BREAKING CONDITIONS IN THE

FOUR-MODE OPTOMECHANICAL SYSTEM

In previous sections we have shown that, by introduc-
ing an optomechanical coupling between the auxiliary cavity
mode as and the mechanical mode b1, the dark mode in
this system can be broken and then ground-state cooling
of the two mechanical modes can be realized. However,
in practice, the diverse interactions among these degrees
of freedom in this system are more complicated [25], so
it is an interesting topic to study the universal condition
for breaking the dark-mode effect in a more general four-
mode optomechanical system. In this section we analyze
the parameter conditions under which the dark-mode ef-
fect works and study how to break the dark mode by
controlling the couplings in the four-mode optomechanical
system. We also analyze the interference effect by studying
the energy-level transition of this four-mode optomechanical
system.

A. Ground-state cooling in the general four-mode
optomechanical system

We now consider a network-coupled four-mode optome-
chanical system consisting of an intermediate-coupling cavity
mode and an auxiliary cavity mode, which are both coupled to
two mechanical modes via the radiation-pressure interaction.
Here the two cavity (mechanical) modes are coupled to each
other via a photon-hopping (phonon-hopping) interaction, as
shown in Fig. 5(a). In a rotating frame defined by the operator

ω 

Ω

ω 

ω ω 

γ
1

γ
2

κ κ 
ω c

J
s

ssgg gg

s

s

b2b 1

12

aa

12 12

(b)(a)

Ω s
ω dL

ω ω 

c

sG G

s

s

B-B +

+-

δa δa

+ +

ζ

J

sG -

' ' 'ΔΔ

η

˜ ˜ ˜

˜
˜˜

FIG. 5. (a) Schematic of the network-coupled four-mode op-
tomechanical system consisting of two cavity modes and two
mechanical modes. In addition to the couplings and notation intro-
duced in Fig. 1(a), here we introduce three new couplings marked
by dashed lines: the phonon- and photon-hopping interactions with
the coupling strengths η and J , respectively, and the optomechanical-
coupling strength gs2 between the auxiliary cavity mode as and the
second mechanical mode b2. (b) Coupling configuration associated
with the approximate linearized Hamiltonian (26). Here we add a
tilde to the couplings and notation introduced in Fig. 1(b). We also
introduce the photon-hopping strength J between the two cavity
modes.

exp[−i(ωLa†a + ωd a†
s as)t] under ωL = ωd , the transformed

Hamiltonian becomes

HI = �ca†a + �sa
†
s as + J (a†as + a†

s a) + η(b†
1b2 + b†

2b1)

+
∑
l=1,2

[ωl b
†
l bl + gla

†a(b†
l + bl ) + gsl a

†
s as(b

†
l + bl )]

+ (�a† + �sa
†
s + H.c.), (21)

where some operators and variables have been defined in
Eq. (1). We also introduce the gs2 coupling term, the J cou-
pling term, and the η coupling term, which correspond to
the optomechanical coupling between modes as and b2, the
photon-hopping coupling, and the phonon-hopping coupling,
respectively.

Based on the Hamiltonian (21), we can obtain the Langevin
equations by adding the decay and noise terms to the Heisen-
berg equations. Following a linearization procedure similar
to the one performed in Sec. II, we obtain the linearized
Langevin equations

δȧ = −(κ + i�′
c)δa − iJδas

− i
∑
l=1,2

[Gl (δbl + δb†
l )] +

√
2κain, (22a)

δȧs = −(κs + i�′′
s )δas − iJδa

− i
∑
l=1,2

[Gsl (δbl + δb†
l )] +

√
2κsas,in, (22b)

δḃ1 = −(iω1 + γ1)δb1 − iG∗
1δa − iG1δa† − iG∗

s1δas

− iGs1δa†
s − iηδb2 +

√
2γ1b1,in, (22c)

δḃ2 = −(iω2 + γ2)δb2 − iG∗
2δa − iG2δa† − iG∗

s2δas

− iGs2δa†
s − iηδb1 +

√
2γ2b2,in, (22d)
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where �′′
s = �s + 2gs1Re(β1) + 2gs2Re(β2) is the renormal-

ized driving detuning of the auxiliary cavity mode as. It
should be pointed out that the parameter �′

c and the linearized
optomechanical-coupling strengths Gl and Gsl for l = 1, 2
have the same definition as those defined in Sec. II. However,
the coherent displacements of the steady state α, αs, β1, and
β2 in the network-coupled four-mode optomechanical system
should be replaced by the relations

α ≡ 〈a〉ss = −i(Jαs + �)

κ + i�′
c

, (23a)

αs ≡ 〈as〉ss = −i(Jα + �s)

κs + i�′′
s

, (23b)

β1 ≡ 〈b1〉ss = −i(ηβ2 + g1|α|2 + gs1|αs|2)

γ1 + iω1
, (23c)

β2 ≡ 〈b2〉ss = −i(ηβ1 + g2|α|2 + gs2|αs|2)

γ2 + iω2
. (23d)

In the study of quantum cooling of the mechanical modes,
the linearized Langevin equations (22) can be written as a
compact form u̇(t ) = A′u(t ) + N(t ), where the form of the
fluctuation operator vector u(t ) and the noise operator vector
N(t ) is the same as those defined in Sec. III, while the coeffi-
cient matrix is given by A′ = ( E′ F′

F′∗ E′∗), where

E′ =

⎛
⎜⎜⎜⎜⎝

−(κ + i�′
c) −iJ −iG1 −iG2

−iJ −(i�′′
s + κs) −iGs1 −iGs2

−iG∗
1 −iG∗

s1 −(iω1 + γ1) −iη

−iG∗
2 −iG∗

s2 −iη −(iω2 + γ2)

⎞
⎟⎟⎟⎟⎠ (24)

and F′ is defined by the nonzero elements F13 = −iG1,
F14 = −iG2, F23 = −iGs1, F24 = −iGs2, F31 = −iG1, F32 =
−iGs1, F41 = −iG2, and F42 = −iGs2.

Following the same procedure as that performed in Sec. III,
we can also obtain the steady-state expression of the co-
variance matrix V′, which is defined by A′V′ + V′A′T =
−Q, where Q is given by Eq. (18). Then the final mean
phonon numbers in the two mechanical resonators can be
obtained.

To clearly analyze the influence of these couplings in the
four-mode optomechanical system on the ground-state cool-
ing, below we consider various cases of different coupling
configurations, as shown in Fig. 6. To analyze the dark-mode
effect in this system when the frequencies of the two me-
chanical modes are degenerate, we consider the case where
the two coupling channels g1 and g2 always exist. Then we
study various cases of coupling configurations by controlling
the four coupling channels J , gs1, gs2, and η. In Figs. 6(a)–6(d)
and Figs. 6(e)–6(j) we show that one or two coupling channels
of J , gs1, gs2, and η are closed, respectively. In Figs. 6(k)–6(n),
three of the four coupling channels J , gs1, gs2, and η are
closed. Therefore, when the coupling channels g1 and g2 still
exist, there are 14 cases of coupling configurations, as shown
in Fig. 6.

Corresponding to the 14 cases depicted in Fig. 6, we plot
the final mean phonon numbers n f

1 and n f
2 as functions of the

scaled decay rate κ/ω1 in Fig. 7. We can see from Figs. 7(a)
and 7(b) that ground-state cooling of the two mechanical
modes can (cannot) be realized in the cases of Gs1 = 0 or
Gs2 = 0 (J = 0 or η = 0), which implies that the dark mode
can (cannot) be broken. In Figs. 7(c) and 7(d) we plot the
phonon numbers n f

1 and n f
2 as functions of κ/ω1 when two

of the four coupling channels (J , gs1, gs2, and η) are closed.
Based on the cooling performance, we know that the dark
mode cannot be broken when the coupling channels J = η =
0 or Gs1 = Gs2 = 0. In the four cases J = Gs1 = 0, J = Gs2 =
0, η = Gs1 = 0, and η = Gs2 = 0, the dark mode can be

broken. In Figs. 7(e) and 7(f) we also plot the phonon num-
bers n f

1 and n f
2 versus κ/ω1 when three of the four coupling

channels are closed, corresponding to the cases shown in
Figs. 6(k)–6(n). Here we can see that the dark mode cannot
be broken in the cases of J = Gs1 = Gs2 = 0 or η = Gs1 =
Gs2 = 0. However, in the two cases of J = η = Gs1 = 0 or
J = η = Gs2 = 0, the dark mode can be broken.

Based on the above discussion, we find that Gs1 and Gs2

play an important role in the breaking of the dark mode in
this system. Only when one of Gs1 and Gs2 is closed, the dark
mode can be broken. When neither or both Gs1 and Gs2 are
closed, the dark mode cannot be broken. In particular, the
breaking of the dark mode is independent of both the photon-
and phonon-coupling channels.

In order to better understand the influence of the linearized
optomechanical-coupling strengths Gs1 and Gs2 on the final
mean phonon numbers, in Fig. 8(a) we plot the final mean
phonon numbers n f

1 and n f
2 as functions of the scaled de-

cay rate κ/ω1 when the linearized optomechanical-coupling
strengths take the values of Gs2/ω1 = 4Gs1/ω1 = 0.08 and
Gs1/ω1 = 4Gs2/ω1 = 0.08. Here we can see that the ground-
state cooling of two mechanical modes can be realized in the
resolved-sideband regime. In addition, the values of n f

1 and
n f

2 are approximately exchanged in these two cases, because
the parameters of Gs1 and Gs2 in these two cases are just
antisymmetric. In Fig. 8(b) we plot the final mean phonon
numbers n f

1 and n f
2 as functions of the ratio Gs2/Gs1 in

the case of the linearized optomechanical-coupling strength
Gs1/ω1 = 0.08. When Gs2/Gs1 � 1 (Gs2/Gs1 � 1), the final
mean phonon numbers of the two mechanical modes increase
(decrease) with the increase of the ratio Gs2/Gs1, i.e., the
cooling performance of the two mechanical modes is ex-
changed at the point Gs2/Gs1 = 1. Due to the dark-mode
effect, the ground-state cooling of the two mechanical modes
is unfeasible for finite values of the ratio Gs2/Gs1. In this
case, the ground-state cooling can be realized by choosing
Gs2/Gs1 < 0.4.
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FIG. 6. Fourteen coupling configurations of the network-coupled four-mode optomechanical system, where J , gl (gsl ) (for l = 1, 2), and
η are the photon-hopping coupling strength, the optomechanical-coupling strength between the intermediate (auxiliary) cavity mode and the
lth mechanical mode, and the phonon-hopping coupling strength, respectively. Here the two optomechanical couplings between the cavity
mode a and the two mechanical modes b1 and b2 are kept and the other couplings can be closed on demand. Then there are 14 different
coupling configurations. Concretely, the one-coupling-closed cases include the following: (a) The coupling channel J is closed (J = 0), (b) the
coupling channel gs1 is closed (gs1 = 0), (c) the coupling channel gs2 is closed (gs2 = 0), and (d) the coupling channel η is closed (η = 0).
The two-coupling-closed cases include the following: (e) The coupling channels J and gs1 are closed (J = gs1 = 0), (f) the coupling channels
J and gs2 are closed (J = gs2 = 0), (g) the coupling channels J and η are closed (J = η = 0), (h) the coupling channels gs1 and gs2 are
closed (gs1 = gs2 = 0), (i) the coupling channels gs1 and η are closed (gs1 = η = 0), and (j) the coupling channels gs2 and η are closed
(gs2 = η = 0). In addition, the cases in which three couplings are closed include the following: (k) The coupling channels J , gs1, and gs2 are
closed (J = gs1 = gs2 = 0), (l) the coupling channels J , gs1, and η are closed (J = gs1 = η = 0), (m) the coupling channels J , gs2, and η are
closed (J = gs2 = η = 0), and (n) the coupling channels gs1, gs2, and η are closed (gs1 = gs2 = η = 0). We point out that the single-photon
optomechanical-coupling strengths g1, g2, gs1, and gs2 are related to the linearized optomechanical-coupling strengths G1, G2, Gs1, and Gs2 in
the four-mode optomechanical system.

B. Universal conditions for breaking the dark mode

In this section we analyze the parameter conditions
under which the dark mode is formed in the network-
coupled optomechanical system. We also study the method
for breaking the dark-mode effect. Based on Eqs. (22),
we can derive the approximate linearized Hamiltonian. By
discarding the noise terms, the linearized optomechanical
Hamiltonian under the rotating-wave approximation can be

written as

H̃RWA = �′
cδa†δa + �′′

s δa†
s δas + J (δa†δas + δa†

s δa)

+
∑
l=1,2

[ωlδb†
l δbl + Gl (δaδb†

l + δa†δbl )

+ Gsl (δasδb†
l + δa†

s δbl )] + η(δb†
1δb2 + δb†

2δb1).

(25)
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FIG. 7. Final mean phonon numbers n f
1 and n f

2 versus the scaled decay rate κ/ω1 in various coupling configurations: (a) and (b) cases
where one coupling is closed, i.e., J = 0 (blue solid curves), η = 0 (red circles), Gs1 = 0 (cyan dash-dotted curves), and Gs2 = 0 (green
dashed curves); (c) and (d) two-coupling-closed cases, i.e., J = η = 0 (blue solid curves), Gs1 = Gs2 = 0 (red circles), η = Gs1 = 0 (green
dashed curves), J = Gs1 = 0 (cyan dash-dotted curves), J = Gs2 = 0 (brown squares), and η = Gs2 = 0 (purple triangles); and (e) and (f)
three-coupling-closed cases, i.e., J = Gs1 = Gs2 = 0 (blue solid curves), η = Gs1 = Gs2 = 0 (red circles), J = η = Gs1 = 0 (brown dash-dot
curves), and J = η = Gs2 = 0 (purple dashed curves). The other parameters are ω2/ω1 = 1, γ1/ω1 = γ2/ω1 = 10−5, κ/ω1 = κs/ω1 = 0.1,
J/ω1 = η/ω1 = 0.03, �′

c/ω1 = �′′
s /ω1 = 1, G1/ω1 = G2/ω1 = 0.05, Gs1/ω1 = Gs2/ω1 = 0.08, and n̄1 = n̄2 = 1000. Note that the values of

J , η, Gs1, and Gs2 presented here work when the corresponding coupling channels are open.

By substituting the operators B+ (B†
+) and B− (B†

−) into
Eq. (25), the Hamiltonian H̃RWA becomes [see Fig. 5(b)]

H̃RWA = �′
cδa†δa + �′′

s δa†
s δas + J (δa†δas + δa†

s δa)

+ ω̃+B†
+B+ + ω̃−B†

−B− + ζ̃ (B†
+B− + B†

−B+)

+ G+(δaB†
+ + B+δa†) + G̃s+(δasB

†
+ + δa†

s B+)

+ G̃s−(δasB
†
− + δa†

s B−), (26)
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FIG. 8. (a) Final mean phonon numbers n f
1 and n f

2 versus the
scaled decay rate κ/ω1 in the cases of Gs2/ω1 = 4Gs1/ω1 = 0.08
(blue dashed curve and red solid curve, respectively) and Gs1/ω1 =
4Gs2/ω1 = 0.08 (red circles and blue squares, respectively). (b) Final
mean phonon numbers n f

1 (blue solid curves) and n f
2 (red dashed

curves) versus the ratio Gs2/Gs1 when the linearized optomechanical-
coupling strength Gs1/ω1 = 0.08. The other parameters used in this
system are ω2/ω1 = 1, γ1/ω1 = γ2/ω1 = 10−5, κ/ω1 = κs/ω1 =
0.1, J/ω1 = η/ω1 = 0.03, �′

c/ω1 = �′′
s /ω1 = 1, G1/ω1 = G2/ω1 =

0.05, and n̄1 = n̄2 = 1000.

where the resonance frequencies of the two hybrid modes
should be replaced by

ω̃+ = ω1G2
1 + ω2G2

2 + 2ηG1G2

G2+
, (27a)

ω̃− = ω1G2
2 + ω2G2

1 − 2ηG1G2

G2+
, (27b)

and the three new coupling strengths ζ̃ , G̃s+, and G̃s− are
defined by

ζ̃ = (ω1 − ω2)G1G2 + η
(
G2

2 − G2
1

)
G2

1 + G2
2

, (28a)

G̃s+ = Gs1G1 + Gs2G2√
G2

1 + G2
2

, (28b)

G̃s− = Gs1G2 − Gs2G1√
G2

1 + G2
2

. (28c)

From Eqs. (26) and (28) we can see that the two hybrid
modes B− and B+ are decoupled from each other when ω1 =
ω2 and η = 0 (G1 = G2). Moreover, the hybrid mode B− also
decouples from the auxiliary cavity mode as when G̃s− = 0.
In this case, the hybrid mode B− becomes a dark mode and
the ground-state cooling of the two mechanical modes cannot
be realized. All in all, the parameter conditions for the appear-
ance of the dark mode are ζ̃ = 0 and G̃s− = 0, which lead to
the conditions

(ω1 − ω2)G1G2 + η
(
G2

2 − G2
1

) = 0, (29a)

Gs1G2 − Gs2G1 = 0. (29b)
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Therefore, the universal dark-mode-breaking condition is that
both ζ̃ and G̃s− cannot be zero at the same time [see Fig. 5(b)].
In the following we analyze various cases in which the dark
mode appears or disappears in the degenerate-resonator case
(ω1 = ω2).

(i) In the case of η = 0, i.e., ζ̃ = 0, it can be seen from
Eq. (28) that when Gs1G2 − Gs2G1 = 0 (Gs1/Gs2 = G1/G2),
the hybrid mechanical mode B− (the dark mode) decouples
from both the cavity mode a and the auxiliary cavity mode
as. In this situation, the excitation energy is stored in the dark
mode and cannot be extracted through the cooling channel. In
this case, the parameter J has no effect on the breaking of the
dark-mode effect. This analysis is consistent with the results
obtained by numerical calculations in Sec. IV A.

(ii) In the case of η �= 0 and G1 �= G2, i.e., ζ̃ �= 0, we can
find that the dark mode can be broken regardless of whether
the auxiliary cavity mode appears or not (namely, there is no
dark mode).

(iii) In the case of η �= 0 and G1 = G2, i.e., ζ̃ = 0, there
are two different situations. First, in the case of symmetric
coupling (Gs1 = Gs2), we can see from Eq. (28) that G̃s− = 0.
At this time, the hybrid mechanical mode B− decouples from
both the cavity mode a and the auxiliary cavity mode as, i.e.,
B− becomes a dark mode. However, in the case of asymmetric
coupling (Gs1 �= Gs2), i.e., G̃s− �= 0, we can see that the two
hybrid mechanical modes B− and B+ are coupled with the
auxiliary cavity mode as. Even if the hybrid mode B− is
decoupled from both the cavity mode a and the hybrid mode
B+ at the same time, the ground-state cooling of the two me-
chanical resonators becomes accessible through the cooling
channel associated with auxiliary cavity mode as. Obviously,
when one of the two coupling strengths Gs1 and Gs2 is 0,
the dark-mode effect can naturally be broken. This analysis is
consistent with the results we obtained in Sec. IV A. Generally
speaking, to break the dark mode formed in a three-mode
optomechanical system consisting of a cavity mode and two
mechanical modes, the easiest way is to introduce an auxiliary
cavity mode to couple with one of the two mechanical modes.

C. Analyzing the quantum interference effect in the
energy-level transitions of the optomechanical system

To clarify the physical mechanism behind the dark-mode
breaking, in this section we analyze the quantum interference
effect in the energy-level transitions of the system. For the
optomechanical system, the cavity modes provide the cooling
channels to extract the thermal excitations from the mechani-
cal resonators. However, when a single cavity mode is used to
cool multiple degenerate mechanical resonators, the phonon
modes decaying through the same cooling channel will inter-
fere with each other, similar to the quantum interference effect
in electromagnetic induced transparency [75,76]. In this case,
some of the mechanical normal modes are decoupled from the
cavity mode and then the cooling channel of these decoupled
modes (dark modes) is closed and the excitations stored in
these mechanical dark modes cannot be extracted. As a result,
these dark modes cannot be cooled to their ground states.
When multiple cooling channels exist, the phonon dissipation
prohibited by one cooling channel can take place via another
cooling channel; then the dark-mode effect is broken and the

m,j,k
m,j+1,k

m+1,j,k

m,j,k+1

m,n,j+1,k

m+1,n,j,k

m,n,j,k+1

m,n+1,j,k

κ G1
G2ωL

ωm ωm

m,n,j,k

ωL ωd

ωmωm

κ 

G 2G 1
ss

κ 

(a)

(b)

s

G1 G2

FIG. 9. Part of the energy levels and transitions of the system in
either the (a) absence or (b) presence of the auxiliary cavity mode
as. Here the states |m, j, k〉 and |m, n, j, k〉 correspond to the states
|m, j, k〉a,b1,b2 and |m, n, j, k〉a,as,b1,b2 , respectively. The states |m〉a,
|n〉as , | j〉b1 , and |k〉b2 denote the number states of the cavity mode a,
auxiliary cavity mode as, mechanical mode b1, and mechanical mode
b2, respectively.

ground-state cooling of multiple mechanical resonators can be
realized.

To further understand the quantum interference effect in
the energy-level transitions of the optomechanical system,
in Figs. 9(a) and 9(b) we plot the energy levels and tran-
sitions of the system including two mechanical modes in
either the absence or presence of the auxiliary cavity mode as.
For simplicity, we ignore the subscripts of the basis vectors,
i.e., we denote |m, j, k〉a,b1,b2 (|m, n, j, k〉a,as,b1,b2 ) by |m, j, k〉
(|m, n, j, k〉). As shown in Fig. 9(a), under the red-sideband-
resonance condition �c = ωm, the transitions |m, j + 1, k〉 ↔
|m + 1, j, k〉 and |m, j, k + 1〉 ↔ |m + 1, j, k〉 are resonant
and the transition |m + 1, j, k〉 → |m, j, k〉 can further oc-
cur through the cavity-field decay κ . When the mechanical
modes b1 and b2 are degenerate, the phonon modes decay-
ing through the same cooling channel (cavity mode a) will
interfere destructively with each other; then the ground-state
cooling of the two mechanical modes cannot be realized.
To break the dark-mode effect in this system, a natural
and simple method is to introduce another cooling chan-
nel to the mechanical resonators. As shown in Fig. 9(b),
under the red-sideband-resonance condition �c = ωm, ex-
cept for the transitions |m, n, j + 1, k〉 ↔ |m + 1, n, j, k〉 and
|m, n, j, k + 1〉 ↔ |m + 1, n, j, k〉 associated with the cavity
mode a, the transitions |m, n, j + 1, k〉 ↔ |m, n + 1, j, k〉 and
|m, n, j, k + 1〉 ↔ |m, n + 1, j, k〉 associated with the auxil-
iary cavity mode as can also occur. In this way, phonon
dissipation prohibited by the cooling channel a can be de-
cayed via a new cooling channel as. Therefore, by introducing
the auxiliary cavity mode as, the dark-mode effect can be
broken and the ground-state cooling of two mechanical res-
onators can be realized.

We point out that the main innovation in this work is
the breaking of the dark-mode effect via the auxiliary cavity
and that the underlying physical mechanism of this scheme
is the sideband cooling. Therefore, the system should work
in the resolved-sideband regime and a resonant red-sideband
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FIG. 10. (a) N-mechanical-mode optomechanical system con-
sisting of an intermediate cavity mode optomechanically coupled
to N mechanical modes. (b) Both the phonon-hopping interactions
between two neighboring mechanical modes and the optomechanical
interaction between the auxiliary cavity mode and the mechanical
mode b1 are introduced into the N-mechanical-mode optomechanical
system.

driving is needed. In addition, though the dark mode appears
theoretically in the degenerate mechanical-resonator case, our
scheme works well even for near-degenerate resonators within
a detuning window with the width of the cavity-field decay
rate. Physically, the resonators with these detuned frequencies
cannot be distinguished via the cavity emission spectrum.

V. GROUND-STATE COOLING AND DARK-MODE
BREAKING IN A MULTIPLE-MECHANICAL-MODE

OPTOMECHANICAL SYSTEM

In this section we generalize the auxiliary-cavity-mode
method to realize the simultaneous ground-state cooling of
N mechanical modes in a multiple-mechanical-mode optome-
chanical system, in which an intermediate cavity mode is
coupled to N (N � 3) mechanical modes [see Fig. 10(a)].
Concretely, we introduce an auxiliary cavity mode optome-
chanically coupled to the first mechanical mode. We also
introduce the phonon-hopping coupling between all the neigh-
boring two mechanical modes [see Fig. 10(b)]. Moreover, we
analyze the parameter conditions for forming and breaking the
dark modes.

A. Simultaneous ground-state cooling of N mechanical modes

We consider a multiple-mechanical-mode optomechanical
system, which is composed of an intermediate cavity mode, an
auxiliary cavity mode, and N (N � 3) mechanical modes [see
Fig. 10(b)]. In a rotating frame defined by the transformation
operator exp[−i(ωLa†a + ωd a†

s as)t], the Hamiltonian of this
system is written as

HI = �ca†a +
N∑

l=1

[ωl b
†
l bl + gla

†a(b†
l + bl )]

+
N−1∑
l=1

ηl (b
†
l bl+1 + b†

l+1bl ) + (�a† + H.c.)

+�sa
†
s as + gsa

†
s as(b

†
1 + b1) + (�sa

†
s + H.c.), (30)

where the operators and variables for the cavity modes have
been defined before and bl (b†

l ) are the annihilation (creation)
operators of the lth mechanical mode. The parameter gl (gs)
denotes the single-photon optomechanical-coupling strength
between the intermediate (auxiliary) cavity mode and the lth
mechanical mode (mechanical mode b1). The cavity mode
a (as) is strongly driven by the laser field with the driving
frequency ωL (ωd ) and the driving amplitude � (�s).

Similar to the two-mechanical-mode case, the two cavity
fields are strongly driven by two laser fields; then the dynam-
ics of this system can be treated by the linearization method.
Based on the Hamiltonian (30), the linearized Langevin equa-
tions for the quantum fluctuations are given by

δȧ = −(κ + i�̃c)δa − i[g1α(δb1 + δb†
1)

+ g2α(δb2 + δb†
2) + · · · + igNα(δbN + δb†

N )]

+
√

2κain,

δȧs = −(κs + i�′
s)δas − igsαs(δb1 + δb†

1) +
√

2κsas,in,

δḃ1 = −(γ1 + iω1)δb1 − ig1α
∗δa − ig1αδa† − igsα

∗
s δas

−igsαsδa†
s − iη1δb2 +

√
2γ1b1,in,

δḃ2 = −(γ2 + iω2)δb2 − ig2α
∗δa − ig2αδa† − iη1δb1

− iη2δb3 +
√

2γ2b2,in,

δḃ3 = −(γ3 + iω3)δb3 − ig3α
∗δa − ig3αδa† − iη2δb2

− iη3δb4 +
√

2γ3b3,in,

...

δḃN−1 = −(γN−1 + iωN−1)δbN−1 − igN−1α
∗δa − igN−1αδa†

− iηN−2δbN−2 − iηN−1δbN +
√

2γN−1bN−1,in,

δḃN = −(γN + iωN )δbN − igNα∗δa − igNαδa†

− iηN−1δbN−1 +
√

2γN bN,in, (31)

where �̃c = �c + ∑N
l=1 gl (βl + β∗

l ) [�′
s = �s + gs(β1 +

β∗
1 )] is the effective driving detuning of the cavity mode

a (as) and Gl = gl |α| (Gs = gs|αs|) is the linearized
optomechanical-coupling strength between the cavity mode a
(as) and the lth mechanical mode (mechanical mode b1).

Below we study the ground-state cooling of N mechanical
modes. The cooling performance of mechanical modes can
be verified by calculating the final mean phonon numbers.
Therefore, we rewrite the linearized Langevin equations (31)
as

˙̃u(t ) = Ãũ(t ) + Ñ(t ), (32)

where we introduce the vector of the quantum fluctuations
ũ(t ) = [δa, δas, δb1, . . . , δbN−1, δbN , δa†, δa†

s , δb†
1, . . . ,

δb†
N−1, δb†

N ]T and the vector of the quantum noise Ñ(t ) =√
2[

√
κain,

√
κsas,in,

√
γ1b1,in, . . . ,

√
γN−1bN−1,in,

√
γN bN,in,√

κa†
in,

√
κsa

†
s,in,

√
γ1b†

1,in, . . . ,
√

γN−1b†
N−1,in,

√
γN b†

N,in]T .

The corresponding coefficient matrix Ã = (−Ẽ F̃
F̃∗ −Ẽ∗),
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where

Ẽ =

⎛
⎜⎜⎜⎜⎜⎜⎝

κ + i�̃c 0 iG1 · · · iGN−1 iGN

0 κs + i�′
s iGs · · · 0 0

iG∗
1 iG∗

s γ1 + iω1 · · · 0 0
...

...
...

. . .
...

...

iG∗
N−1 0 0 · · · γN−1 + iωN−1 iηN−1

iG∗
N 0 0 · · · iηN−1 γN + iωN

⎞
⎟⎟⎟⎟⎟⎟⎠

(33)

and

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −iG1 · · · −iGN−1 −iGN

0 0 −iGs · · · 0 0
−iG1 −iGs 0 · · · 0 0

...
...

...
. . .

...
...

−iGN−1 0 0 · · · 0 0
−iGN 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (34)

The formal solution of Eq. (32) is given by

ũ(t ) = M̃(t )ũ(0) +
∫ t

0
M̃(t − s)Ñ(s)ds, (35)

where the matrix M̃(t ) = exp(Ãt ). Note that our simulations should satisfy the stability conditions, which can be obtain by
analyzing the Routh-Hurwitz criterion [73].

Based on Eq. (35), we can obtain the final mean phonon numbers by solving the Lyapunov equation. For this reason, we
introduce the covariance matrix Ṽ of the system by defining the matrix elements as

Ṽi j = 1
2 [〈ũi(∞)ũ j (∞)〉 + 〈ũ j (∞)ũi(∞)〉]. (36)

Under the stability conditions, the covariance matrix Ṽ is determined by the Lyapunov equation

ÃṼ + ṼÃT = −Q̃, (37)

where

Q̃ = 1
2 (C̃ + C̃T ), (38)

with the correlation matrix C̃ related to the noise operators. In the Markovian-dissipation case, the correlation matrix C̃ can be
obtained as C̃ = 2(0 P

R 0), where

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ 0 0 · · · 0 0

0 κs 0 · · · 0 0

0 0 γ1(n̄1 + 1) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · γN−1(n̄N−1 + 1) 0

0 0 0 · · · 0 γN (n̄N + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

and

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 γ1n̄1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · γN−1n̄N−1 0
0 0 0 · · · 0 γN n̄N

⎞
⎟⎟⎟⎟⎟⎟⎠

. (40)

According to the covariance matrix Ṽ defined in Eq. (36),
we can derive the final mean phonon numbers of the lth
mechanical mode as

〈δb†
l δbl〉 = ṼN+l+4,l+2 − 1

2 , (41)

where ṼN+l+4,l+2 is the matrix element of the covariance
matrix Ṽ.

Below we study the cooling performance of the mechan-
ical modes when there are three or four mechanical modes
in the optomechanical system. For simplicity, we consider
that the resonance frequencies of all mechanical modes are
equal (ωl = ωm for l = 1, . . . , N ). Similarly, the phonon-
hopping coupling strengths [ηl = η for l = 1, . . . , (N − 1)]
and optomechanical-coupling strengths (Gl = G for l =
1, . . . , N ) are also the same.

As shown in Figs. 11(a) and 11(b), the final mean phonon
numbers n f

j are plotted as functions of the scaled driv-
ing detuning �̃c/ωm in both the dark-mode-breaking case
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FIG. 11. (a) and (b) Final mean phonon numbers n f
l as functions

of the scaled driving detuning �̃c/ω1 in the dark-mode-unbreaking
(Gs/ω1 = 0 and ηl/ω1 = 0) or -breaking (Gs/ω1 = 0.1 and ηl/ω1 =
0.06) cases for (a) N = 3 and (b) N = 4. (c) and (d) Final mean
phonon numbers n f

l as functions of the scaled cavity-field decay
rate κ/ω1 for (c) N = 3 and (d) N = 4. The other parameters are
ωl/ω1 = 1, �′

s/ω1 = 1, κs/ω1 = 0.1, ηl/ω1 = 0.06, γl/ω1 = 10−5,
Gl/ω1 = 0.05, Gs/ω1 = 0.1, n̄l = 1000, and (a) and (b) κ/ω1 = 0.1
and (c) and (d) �̃c/ω1 = 1.

(Gs/ω1 = 0.1 and ηl/ωm = 0.06) and the dark-mode-
unbreaking case (Gs = ηl = 0). We can see that the ground-
state cooling cannot be realized for these mechanical modes
when the auxiliary cavity mode and phonon-hopping inter-
actions are absent (Gs = ηl = 0) [see the upper curves in
Figs. 11(a) and 11(b)]. This is because the thermal excitations
stored in the dark modes cannot be extracted through the
cooling channel related to cavity mode a.

When the auxiliary cavity mode and the phonon-hopping
interactions are introduced, a new cooling channel is formed
and the dark modes are broken. Then the ground-state cooling
of multiple mechanical modes can be realized, as shown in
Figs. 11(a) and 11(b). Moreover, in Figs. 11(c) and 11(d) we
plot the final mean phonon numbers n f

l as functions of the
cavity-field decay rate κ/ω1. We find that the cooling perfor-
mance of the first mechanical mode is the best, because it is
directly connected to the auxiliary cavity mode. The cooling
performance of other mechanical modes is almost the same,
because all the other mechanical modes have similar coupling
connections with the cooling baths.

B. Parameter conditions for breaking dark modes

To study the parameter conditions for breaking the dark
modes, we can derive the approximate linearized Hamil-
tonian, which governs the dynamics of the system. To
implement the cooling scheme, the system should work in the
red-sideband resonance regime, in which the rotating-wave
approximation can be safely performed. By discarding the
noise terms, the linearized optomechanical Hamiltonian is

given by

HI = �̃cδa†δa +
N∑

l=1

ωlδb†
l δbl +

N∑
l=1

Gl (δa†δbl + δb†
l δa)

+�′
sδa†

s δas +
N−1∑
l=1

[ηl (δblδb†
l+1 + δbl+1δb†

l )]

+ Gs(δa†
s δb1 + δb†

1δas). (42)

To clearly see the dark-mode effect in the multiple-
mechanical-mode optomechanical system, we first consider
the situation where the auxiliary cavity and the phonon-
hopping interactions between two neighboring mechanical
modes are absent, i.e., �′

s = 0, ηl = 0, and Gs = 0 [see
Fig. 10(a)]. Then the Hamiltonian (42) becomes

H ′
I = �̃cδa†δa +

N∑
l=1

ωlδb†
l δbl +

N∑
l=1

Gl (δa†δbl + δb†
l δa).

(43)
For simplicity, we consider that all the mechanical modes
have the same resonance frequencies (ωl = ωm), and the
optomechanical-coupling strengths between the intermedi-
ate cavity mode and all mechanical modes are also the
same (Gl = G). In this case, there are a bright mode B+ =∑N

l=1 δbl/
√

N and (N − 1) dark modes decoupled from the
intermediate cavity mode. Therefore, the thermal excitations
stored in the dark modes cannot be extracted though the
cooling channel of the cavity mode and then the ground-state
cooling of these mechanical modes cannot be realized.

To break the dark mode and achieve the ground-state cool-
ing of N mechanical modes, we introduce an auxiliary cavity
mode optomechanically coupled to the mechanical mode b1

and phonon-hopping interactions between the neighboring
mechanical modes, as shown in Fig. 10(b). For convenience,
we consider the case where all the phonon-hopping cou-
pling strengths are the same (ηl = η). Thus, the Hamiltonian
associated with these coupled mechanical modes can be diag-
onalized as

Hmph = ωm

N∑
l=1

δb†
l δbl + η

N−1∑
l=1

(δblδb†
l+1 + δbl+1δb†

l )

=
N∑

k=1

�kB†
kBk, (44)

where �k is the resonance frequency of the kth hybrid me-
chanical mode Bk and is defined by

�k = ωm + 2η cos

(
kπ

N + 1

)
, k = 1, 2, 3, . . . , N. (45)

Meanwhile, the relationship between the hybrid mode Bk and
the mechanical mode δbl can be expressed as

δbl = 1

D

N∑
k=1

sin

(
lkπ

N + 1

)
Bk, (46)

with D = √
(N + 1)/2. When the auxiliary cavity mode is ab-

sent, by substituting the hybrid mode Bk into the Hamiltonian
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(42), we can obtain

HI = �̃cδa†δa +
N∑

k=1

�kB†
kBk + HOI, (47)

where the optomechanical-interaction Hamiltonian HOI is
given by

HOI =
N∑

k=1

[
G

D

N∑
l=1

sin

(
lkπ

N + 1

)
δaB†

k + H.c.

]
. (48)

From Eq. (48) we can see that the coupling strength between
the cavity mode a and the hybrid mode Bk is determined by
the coefficient G

D {∑N
l=2 sin[lkπ/(N + 1)]}. Hence, we next

analyze the dependence of this coefficient on the variables k
and N .

First, we consider the situation of N = 2. In this case, the
system is reduced to the two-mechanical-mode optomechan-
ical system, which has been analyzed in detail in previous
sections. When N = 2, the optomechanical interaction be-
comes

HOI =
√

2GδaB†
1 +

√
2G∗B1δa†. (49)

It is obvious that the hybrid mechanical mode B2 be-
comes a dark mode, which decouples from both the cavity
mode a and the hybrid mechanical mode B1, so the
ground-state cooling of the two mechanical modes becomes
inaccessible.

In the case of N � 3, the coupling coefficient between the
cavity mode a and the kth hybrid mechanical mode Bk defined
in Eq. (48) is given by G

D

∑N
l=1 sin( lkπ

N+1 ). Since the forms of
the coupling coefficients are different when N is either an odd
number or an even number, below we will analyze two cases
corresponding to odd and even N , respectively. (i) When N is
an odd number, the form of the coupling coefficient depends
on k. If k is also an odd number, we get G

D

∑N
l=1 sin( lkπ

N+1 ) �= 0.

If k is even, we obtain G
D

∑N
l=1 sin( lkπ

N+1 ) = 0. (ii) For an even

N , when k is an odd number, we obtain G
D

∑N
l=1 sin( lkπ

N+1 ) �= 0.

When k is also an even number, we get G
D

∑N
l=1 sin( lkπ

N+1 ) = 0.
Based on the above discussion, we can find that for an

odd k, the coupling strength between the intermediate cavity
mode a and the kth hybrid mechanical mode Bk is nonzero.
However, when k is an even number, the intermediate cavity
mode a is decoupled from the kth hybrid mechanical mode
Bk . In this situation, all the even hybrid mechanical modes
are decoupled from the intermediate cavity mode. Thus, the
ground-state cooling of multiple mechanical modes cannot be
realized under the influence of the dark-mode effect. Nev-
ertheless, we can introduce an auxiliary cavity mode as to
break the dark-mode effect, which is coupled to the me-
chanical mode b1 via the radiation-pressure interaction. By
substituting the hybrid mechanical modes Bk into the optome-
chanical Hamiltonian Hsom = Gs(δa†

s δb1 + δb†
1δas), we can

get

Hsom = Gs

N∑
k=1

[
sin

(
kπ

N + 1

)
δa†

s Bk + H.c.

]
. (50)

It can be seen from Eq. (50) that all the hybrid mechanical
modes Bk are coupled with the auxiliary cavity mode as. Even
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FIG. 12. (a) Schematic of the three-level system, which consists
of three states |e〉, | f 〉, and |g〉, with the corresponding energies Ee,
Ef , and Eg. The coupling strengthes of the transition processes |g〉 ↔
|e〉 and | f 〉 ↔ |e〉 are denoted by �1 and �2 with the corresponding
detunings �1 and �2, respectively. (b) Schematic of the N-type four-
level system. In addition to the couplings and states introduced in (a),
we introduce an auxiliary state |d〉 coupled to the lower state | f 〉 with
the coupling strength �3 and the detuning �3.

when the even hybrid mechanical modes are decoupled from
the intermediate cavity mode a, the ground-state cooling of
the N mechanical modes can still be achieved through the
cooling channel associated with the auxiliary cavity mode as.

VI. PHYSICAL MECHANISM FOR BREAKING THE
DARK-STATE EFFECT IN THE N-TYPE FOUR-LEVEL

ATOMIC SYSTEM

To further investigate the generality of the physical mech-
anism for breaking the dark-mode effect, in this section we
consider the dark-state effect in an atomic-level system. Con-
cretely, we demonstrate the dark-state effect in a 
-type
three-level system and show how to break this dark-state
effect by introducing an auxiliary state coupled to one of
the two lower states, namely, forming an N-type four-level
system (Fig. 12). For the three-level system, the Hamiltonian
reads

HTLS(t ) = Ee|e〉〈e| + E f | f 〉〈 f | + Eg|g〉〈g|
+ (�1|e〉〈g|e−iω1t + �2|e〉〈 f |e−iω2t + H.c.),

(51)

where Ee, E f , and Eg denote the energies of energy levels
|e〉, | f 〉, and |g〉, respectively. For convenience, hereafter we
assume that the energy of the ground state is 0 (Eg = 0). The
two atomic transitions |g〉 ↔ |e〉 and | f 〉 ↔ |e〉 are coupled
to the two monochromatic fields with the frequencies ω1 and
ω2 and the transition amplitudes �1 and �2, respectively. In a
rotating frame with respect to ω1|e〉〈e| + E f | f 〉〈 f | + Eg|g〉〈g|,
the Hamiltonian in Eq. (51) becomes

VI = �1|e〉〈e| + �1(|e〉〈g| + |g〉〈e|) + �2(|e〉〈 f | + | f 〉〈e|),
(52)

where �1 = Ee − ω1 and �2 = Ee − E f − ω2 are the transi-
tion detunings.

To better study the eigenvalues and eigenstates of the
Hamiltonian (52), we introduce three basis states defined by
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the vectors

|e〉 = (1 0 0)T , | f 〉 = (0 1 0)T ,

|g〉 = (0 0 1)T . (53)

To demonstrate the dark-state effect in this three-level system,
we consider the single- and two-photon resonance cases, i.e.,
�1 = �2 = 0. Then the Hamiltonian VI can be written as

VI = �2

⎛
⎝0 1 ξ

1 0 0
ξ 0 0

⎞
⎠, (54)

where ξ = �1/�2 is the amplitude ratio.
The dark-state effect of this three-level system can be ana-

lyzed by calculating the eigensystem of the matrix VI given in
Eq. (54). The eigenequation of VI reads

VI |λs〉 = λs|λs〉, s = 1, 2, 3. (55)

The eigenvalues are given by λ1 = 0, λ2 = −�2

√
1 + ξ 2,

and λ3 = �2

√
1 + ξ 2. The corresponding eigenstates can be

obtained as

|λ1〉 = 1√
1 + ξ 2

(0|e〉 − ξ | f 〉 + |g〉),

|λ2〉 = 1√
2(1 + ξ 2)

(−
√

1 + ξ 2|e〉 + | f 〉 + ξ |g〉), (56)

|λ3〉 = 1√
2(1 + ξ 2)

(
√

1 + ξ 2|e〉 + | f 〉 + ξ |g〉).

To study the dark-state effect in this system, we can calculate
the probability of the excited state |e〉 in these eigenstates,

P[s]
e = |〈e|λs〉|2. (57)

By combining Eqs. (56) and (57), we find that the probability
of the eigenstate |λ1〉 is always zero, which means that the
eigenstate |λ1〉 is the dark state.

To break the dark-state effect in the 
-type three-level sys-
tem, we introduce an auxiliary state coupled to the lower states
| f 〉, forming an N-type four-level system. The Hamiltonian of
this system can be expressed as

HFLS(t ) = HTLS(t ) + Ed |d〉〈d| + �3(|d〉〈 f |e−iω3t + H.c.),

(58)

where ω3 is the frequency of the monochromatic field and
|d〉 is the auxiliary state coupled to the lower state | f 〉
with the coupling strength �3. In a rotating frame with
respect to ω1|e〉〈e| + E f | f 〉〈 f | + Eg|g〉〈g| + (E f + ω3)|d〉〈d|,
the Hamiltonian HFLS becomes

V ′
I = �1|e〉〈e| + �3|d〉〈d| + �1(|e〉〈g| + |g〉〈e|)

+�2(|e〉〈 f | + | f 〉〈e|) + �3(|d〉〈 f | + | f 〉〈d|), (59)

where �3 = Ed − E f − ω3 is the transition detuning.
By defining the four basis states with the vectors

|e〉 = (1 0 0 0)T , | f 〉 = (0 1 0 0)T ,

|g〉 = (0 0 1 0)T , |d〉 = (0 0 0 1)T , (60)
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FIG. 13. (a) Probability P[s]
e of the excited state |e〉 in three eigen-

states versus the amplitude ratio �1/�2 in the three-level system.
(b) Probability p[s]

e of four eigenstates versus the amplitude ratio
�3/�2 in the four-level system.

the Hamiltonian V ′
I can be expressed as

V ′
I = �′

⎛
⎜⎝

0 1 1 0
1 0 0 ξ ′
1 0 0 0
0 ξ ′ 0 0

⎞
⎟⎠. (61)

Here we introduce the parameter �1 = �2 = �′ and
�3/�

′ = ξ ′ and consider the case �1 = �3 = 0. Following
the standard procedure as performed in the three-level system,
we can obtain the eigenvalues of the matrix V ′

I as

λ′
s=1,2,3,4 = ±�′

√
2 + ξ ′2 ±

√
(2 + ξ ′2)2 − 4ξ ′2

2
. (62)

The corresponding eigenstates are given by

|λ′
s〉 = |δ|[λ′

s

(
λ′2

s − ξ ′2)|e〉
+ λ′

s
2| f 〉 + (

λ′
s
2 − ξ ′2)|g〉 + λ′

sξ
′|d〉], (63)

where |δ|2 = 1/[(λ′2
s + 1)(λ′2

s − ξ ′2)2 + λ′2
s(λ′2

s + ξ ′2)] is
the normalization constant. To check the dark-state effect in
this system, we also calculate the probability of these eigen-
states,

p[s]
e = |〈e|λ′

s〉|2, (64)

where pe is the probability of the excited state |e〉 in the
N-type four-level system.

In Fig. 13(a) we plot the probability P[s]
e of these three

eigenstates |λs〉 (s = 1, 2, 3, and 4) as a function of the
amplitude ratio �1/�2 in the three-level system. We can find
that the probability P[1]

e is always zero no matter how the
ratio changes, which means that the eigenstate |λ1〉 is the dark
state. In Fig. 13(b) we plot the probability p[s]

e of these four
eigenstates |λ′

s〉 as a function of the amplitude ratio �3/�2

in the N-type four-level system. Here we can see that the
probabilities p[1]

e and p[2]
e are zero when the amplitude ratio

�3/�2 = 0, which means that the two eigenstates |λ′
1〉 and

|λ′
2〉 are dark states when the transition channel between the

auxiliary state |d〉 and the lower state | f 〉 is closed. How-
ever, with the increase of the ratio �3/�2, the excited-state
probability of the four eigenstates is nonzero, which means
that the dark-state effect is broken when the auxiliary state is
introduced to the system.
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TABLE I. Reported experimental parameters in the electromechanical system [11] and the scaled parameters used in our simulations.
Columns 1, 2, 3, and 4 present the notation, the definitions, the reported experimental parameters, and the scaled parameters used, respectively.

Notation Definition Parameters in Ref. [11] Parameters used

ω1 frequency of the first mechanical oscillator 2π × 10 MHz frequency scale
ω2 frequency of the second mechanical oscillator 2π × 11.3 MHz ω2/ω1 = 1
κ decay rate of the intermediate cavity field 2π × 1.38 MHz κ/ω1 = 0.1
κs decay rate of the auxiliary cavity field κs/ω1 = 0.1
G1 (2) effective optomechanical-coupling strength 2π × (0.1–0.5)MHz G1 (2)/ω1 = 0.05
Gs1 (s2) effective optomechanical-coupling strength Gs1 (s2)/ω1 = 0.08
nth

1 phonon number in the first mechanical oscillator 41 1000
nth

2 phonon number in the second mechanical oscillator 30 1000
γ1 damping rate of the first mechanical oscillator 2π × 106 Hz γ1/ω1 = 10−5

γ2 damping rate of the second mechanical oscillator 2π × 144 Hz γ2/ω1 = 10−5

η phonon-hopping coupling strength η/ω1 = 0.03–0.06
J photon-hopping coupling strength J/ω1 = 0.03

VII. DISCUSSION Of EXPERIMENT IMPLEMENTATION

In this section we present a discussion of the experimental
implementation of this scheme. This system only involves
the linearized optomechanical couplings and photon- or
phonon-hopping coupling, which are experimentally accessi-
ble in current optomechanical systems [2]. In the simulations,
we consider the model in the resolved-sideband regime
ωl=1,2 
 κ(s) and take the linearized coupling strengths as
Gl/ω1 < 0.1 and Gsl/ω1 < 0.1 for l = 1, 2, which have been
realized in many optomechanical systems [2]. The photon-
hopping and phonon-hopping interactions have been exper-
imentally realized in optomechanical crystal circuits [35]
and double-microdisk whispering-gallery resonators [77]. All
these advances confirm the experimental feasibility of this
scheme.

Next we present a parameter analysis based on the cir-
cuit electromechanical systems [11,13,14,44,55], where the
two effective microwave cavities are two superconducting
circuits on a quartz substrate. They have the same resonance
frequency ωc = ωs ≈ 2π × 4.2 GHz. The two mechanical
modes are two drum resonators that function as compliant
capacitances in the circuit. The mechanical position can affect
the resonance frequency of microwave cavity; then the op-
tomechanical interaction can be realized. Note that one of the
two microwave cavities acts as the intermediate-coupling cav-
ity mode coupled to two mechanical modes, while the other
microwave cavity is only coupled to one of the two mechani-
cal modes. Here the mechanical modes of two drums have the
resonance frequency ω1 = ω2 ≈ 2π × 10 MHz. The intrinsic
energy decay rates of two microwave cavities and two drum
resonators are κ = κs ≈ 2π × 1 MHz and γ1 = γ2 ≈ 2π ×
100 Hz, respectively. The effective coupling rates between
the intermediate-coupling microwave cavity and the two drum
resonators are G1 = G2 ≈ 2π × 0.5 MHz and the effective
coupling rates between the auxiliary microwave cavity and
the two drum resonators are Gs1 = Gs2 ≈ 2π × 0.8 MHz.
In Table I we present the reported experimental parameters
in the circuit electromechanical systems [11] and the scaled
parameters used in our simulations. By comparing these
scaled parameters and the experimental parameters, we find

that the experimental implementation of this scheme should
be within the reach of current or near-future experimental
conditions.

VIII. CONCLUSION

We have proposed an auxiliary-cavity-mode method to re-
alize simultaneous ground-state cooling of two degenerate or
nearly degenerate mechanical modes. We have also studied
the general physical coupling configuration for breaking the
dark mode in the network-coupled four-mode optomechanical
system. The analytical parameter conditions for breaking the
dark-mode effect have been found. Moreover, we have gener-
alized this method to realize ground-state cooling of multiple
mechanical modes, which was achieved by introducing the
auxiliary cavity mode and phonon-hopping couplings be-
tween nearest-neighbor mechanical modes. We also described
the physical mechanism for breaking the dark-state effect in
the N-type four-level atomic system. Our results pave a way
toward the demonstration of macroscopic quantum coherence
and quantum manipulation in multiple-mechanical-mode op-
tomechanical systems.
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Aspelmeyer, S. Hong, and S. Gröblacher, Remote quantum
entanglement between two micromechanical oscillators, Nature
(London) 556, 473 (2018).

[11] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M.
Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A.
Sillanpää, Stabilized entanglement of massive mechanical os-
cillators, Nature (London) 556, 478 (2018).

[12] C. Yang, X. Wei, J. Sheng, and H. Wu, Phonon heat trans-
port in cavity-mediated optomechanical nanoresonators, Nat.
Commun. 11, 4656 (2020).

[13] S. Kotler, G. A. Peterson, E. Shojaee, F. Lecocq, K. Cicak, A.
Kwiatkowski, S. Geller, S. Glancy, E. Knill, R. W. Simmonds,
J. Aumentado, and J. D. Teufel, Direct observation of determin-
istic macroscopic entanglement, Science 372, 622 (2021).

[14] L. Mercier de Lépinay, C. F. Ockeloen-Korppi, M. J. Woolley,
and M. A. Sillanpää, Quantum mechanics-free subsystem with
mechanical oscillators, Science 372, 625 (2021).

[15] M. Bhattacharya and P. Meystre, Multiple membrane cavity
optomechanics, Phys. Rev. A 78, 041801(R) (2008).

[16] A. Xuereb, C. Genes, and A. Dantan, Strong Coupling and
Long-Range Collective Interactions in Optomechanical Arrays,
Phys. Rev. Lett. 109, 223601 (2012).

[17] X.-W. Xu, Y.-J. Zhao, and Y.-X. Liu, Entangled-state engineer-
ing of vibrational modes in a multimembrane optomechanical
system, Phys. Rev. A 88, 022325 (2013).

[18] A. Mari, A. Farace, N. Didier, V. Giovannetti, and R. Fazio,
Measures of Quantum Synchronization in Continuous Variable
Systems, Phys. Rev. Lett. 111, 103605 (2013).

[19] M. Zhang, S. Shah, J. Cardenas, and M. Lipson, Synchroniza-
tion and Phase Noise Reduction in Micromechanical Oscillator
Arrays Coupled through Light, Phys. Rev. Lett. 115, 163902
(2015).

[20] W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik,
and A. Schliesser, Multimode optomechanical system in the
quantum regime, Proc. Natl. Acad. Sci. USA 114, 62 (2017).

[21] L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez,
and E. Verhagen, Floquet Phonon Lasing in Multimode
Optomechanical Systems, Phys. Rev. Lett. 127, 073601
(2021).

[22] D.-G. Lai, X. Wang, W. Qin, B.-P. Hou, F. Nori, and J.-Q.
Liao, Tunable optomechanically induced transparency by con-
trolling the dark-mode effect, Phys. Rev. A 102, 023707
(2020).

[23] D.-G. Lai, W. Qin, B.-P. Hou, A. Miranowicz, and F. Nori,
Significant enhancement in refrigeration and entanglement in
auxiliary-cavity-assisted optomechanical systems, Phys. Rev. A
104, 043521 (2021).

[24] G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt,
Collective Dynamics in Optomechanical Arrays, Phys. Rev.
Lett. 107, 043603 (2011).

[25] M. Ludwig and F. Marquardt, Quantum Many-Body Dynam-
ics in Optomechanical Arrays, Phys. Rev. Lett. 111, 073603
(2013).

[26] A. Xuereb, C. Genes, G. Pupillo, M. Paternostro, and A.
Dantan, Reconfigurable Long-Range Phonon Dynamics in Op-
tomechanical Arrays, Phys. Rev. Lett. 112, 133604 (2014).
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