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Jump-time unraveling of Markovian open quantum systems
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We introduce jump-time unraveling as a distinct description of open quantum systems. As our starting point,
we consider quantum jump trajectories, which emerge, physically, from continuous quantum measurements, or,
formally, from the unraveling of Markovian quantum master equations. If the stochastically evolving quantum
trajectories are ensemble-averaged at specific times, the resulting quantum states are solutions to the associated
quantum master equation. We demonstrate that quantum trajectories can also be ensemble-averaged at specific
jump counts. The resulting jump-time-averaged quantum states are then solutions to a discrete, deterministic
evolution equation, with time replaced by the jump count. This jump-time evolution represents a trace-preserving
quantum dynamical map if and only if the associated open system does not exhibit dark states. In the presence
of dark states, on the other hand, jump-time-averaged states may decay into the dark states and the jump-time
evolution may eventually terminate. Jump-time-averaged quantum states and the associated jump-time evolution
are operationally accessible in continuous measurement schemes, when quantum jumps are detected and used to
trigger the readout measurements. We illustrate the jump-time evolution with the examples of a two-level system
undergoing relaxation or dephasing, a damped harmonic oscillator, and a free particle exposed to collisional
decoherence.
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I. INTRODUCTION

An isolated, unobserved quantum system follows Schrö-
dinger dynamics and thus describes a smooth, deterministic
evolution in state space, much in the spirit of classical field
theories. In order to retrieve information about the system,
however, we must measure it. We can do so at chosen, isolated
times, forcing the quantum state into instantaneous, abrupt
changes to comply with specific measurement outcomes.
These probabilistic changes, formalized in Born’s rule, lie at
the core of quantum mechanics, recasting it as a statistically
predictive theory.

If a quantum system is continuously monitored, the mea-
surement apparatus delivers an ongoing measurement record,
now informing us about the stochastic evolution of the system,
its quantum trajectory. This record or trajectory describes
intervals of continuous, deterministic evolution, interrupted
by sudden changes at random times, quantum jumps, such as,
e.g., in continuous photon counting measurements. Depend-
ing on the specifics of the measurement process, part or even
all of the probabilistic nature of the continuous measurement
is then absorbed in the stochastically occurring jump times.

The theoretical foundation of quantum trajectories marks
a milestone in the refinement of quantum theory [1–8], with
numerous conceptual and practical implications (e.g., [9–26]).
For instance, continuous measurements are central for quan-
tum feedback control [27,28]. In experiment, quantum jumps
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and the associated individual quantum trajectories have been
successfully traced on various platforms [29–42].

A deep conceptual relationship exists between quantum
trajectories and Markovian open quantum systems, which can
be described by Markovian quantum master equations: Any
Markovian quantum master equation can be unraveled in
terms of quantum trajectories, associated with a continuous
measurement process, such that the ensemble average over all
trajectories recovers the solution of the master equation. Vice
versa, if measurement records are discarded in a continuous
measurement, we must ensemble-average over all quantum
trajectories, where the ensemble-averaged state then follows
a quantum master equation.

In standard wall-time averaging of quantum jump tra-
jectories, the latter are ensemble-averaged at fixed times,
where different trajectories have in general accumulated dif-
ferent numbers of quantum jump events, cf. Fig 1. Here, we
demonstrate that quantum trajectories can also be consistently
ensemble-averaged by bundling them at fixed counts of jump
events, i.e., at the jump times; see Fig. 1. As we show, the
such defined quantum states follow a discrete, deterministic
evolution equation, retaining the resolution into jump events
while stripping off the stochasticity of the jump occurrence.
In this sense, this jump-time unraveling represents a distinct
way of analyzing open quantum systems, or, for that matter,
continuous quantum measurements.

We would like to stress that we use the term “jump time” in
the interpretation of “time point of occurrence of a quantum
jump”, whereas the same term can also be used in the sense of
“duration of a quantum jump”, see, e.g., [43]. Note, however,
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FIG. 1. Quantum jump unraveling of Markovian open quantum
systems. Quantum trajectories undergo piecewise deterministic time
evolutions (blue solid and dashed lines, where the latter describe
alternative trajectories), interrupted by stochastically occurring quan-
tum jumps (blue dashed arrows). In wall-time averaging, quantum
trajectories are ensemble-averaged at fixed times ti (beige dotted
lines), where different trajectories have in general accumulated dif-
ferent numbers of quantum jump events. In jump-time averaging,
on the other hand, quantum trajectories are ensemble-averaged at
fixed jump counts n, where different quantum trajectories in general
arrive at n quantum jumps at different times. The red dashed squares
(triangles) refer to the fixed jump count n = 1 (n = 2), and these are
averaged separately.

that, in the context of quantum trajectories, quantum jumps
necessarily happen instantaneously, and hence there is no risk
of confusing these two interpretations.

This article is structured as follows: In Sec. II, we briefly
recapitulate quantum jump trajectories and how they are
related to quantum master equations through wall-time aver-
aging. In Sec. III, we then introduce the jump-time averaging
of quantum trajectories and elaborate the corresponding read-
out protocol in monitoring implementations. The discrete,
deterministic jump-time evolution equation, which connects
subsequent jump-time-averaged quantum states, is derived in
Sec. IV. Section V then elaborates a theorem that relates the
trace preservation of the jump-time evolution equation to the
presence or absence of dark states, while the waiting time
distribution between subsequent jump-time-averaged quan-
tum states is presented in Sec. VI. In Sec. VII, we discuss
several basic examples which serve to demonstrate some of
the characteristic consequences of the jump-time evolution,
followed by our conclusions in Sec. VIII.

II. QUANTUM TRAJECTORIES

Let us consider an open quantum system characterized by a
Hamiltonian Ĥ and a collection of jump operators {L̂ j | j ∈ I}.
Its continuous-time (or wall-time) evolution is then governed
by a Markovian (Gorini-Kossakowski-Sudarshan-Lindblad)
quantum master equation [44,45],

∂tρt = − i

h̄
[Ĥ , ρt ] + γ

∑
j∈I

(
L̂ jρt L̂

†
j − 1

2
{L̂†

j L̂ j, ρt }
)

, (1)

where {Â, B̂} = ÂB̂ + B̂Â. The Lindblad operators L̂ j account
for incoherent contributions to the dynamics, e.g., induced by
an environment. In the context of continuous measurements,

the jump operators are specified by the nature of the mea-
surement process, which can be characterized by the positive
operator-valued measure (POVM) F̂j = γ dtL̂†

j L̂ j, j ∈ I, and

F̂ = 1 − γ dt
∑

j∈I L̂†
j L̂ j , where F̂ + ∑

j∈I F̂j = 1. Accord-
ingly, we may say in the former case that “the environment
measures or monitors the system.” Due to the presence of the

“null outcome” F̂ , such measurements are sometimes called
weak continuous measurements. Note that γ > 0 has the di-
mension of a rate.

Quantum jump unraveling interprets the solution ρt of
Eq. (1) as emerging from the ensemble average over stochas-
tically evolving quantum trajectories. The unraveled solution
can then be written as [4]

ρt =
∞∑

n=0

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1

∑
j1,... jn∈I

ρt
jn... j1 ({ti}), (2)

where the (unnormalized) quantum trajectories

ρt
jn... j1 ({ti}) = Ut−tnJ jnUtn−tn−1J jn−1 . . .J j1Ut1ρ0 (3)

describe the nonunitary time evolution of an (in general
mixed) initial state ρ0, conditioned on n quantum jumps
of type j1, j2, . . . , jn occurring at times t1, t2, . . . , tn. Here,
we define the deterministic time evolution between jumps

Utρ ≡ e− i
h̄ Ĥeff tρe

i
h̄ Ĥ†

eff t (corresponding to the null outcome F̂ ),
the jump effects J jρ ≡ γ L̂ jρL̂†

j (corresponding to the mea-

surement outcomes F̂j), and the (non-Hermitian) effective
Hamiltonian

Ĥeff = Ĥ − ih̄
γ

2

∑
j∈I

L̂†
j L̂ j . (4)

Let us clarify that the n = 0 term in the sum (2) describes
the evolution conditioned on no quantum jumps occurring,
Utρ0. Moreover, we stress that the jump events J j in individ-
ual quantum trajectories (3) specify single jump types j ∈ I,
while the ensemble average (2) recovers the sum over all jump
types featured in (1). In continuous monitoring implementa-
tions, we can think of the quantum jumps as being recorded
as “clicks” in the detector.

The quantum master equation (1) is known (see, e.g., [27])
to be invariant under the transformation

L̂ j → L̂′
j = L̂ j + α j, (5a)

Ĥ → Ĥ ′ = Ĥ − ih̄
γ

2

∑
j∈I

(
α∗

j L̂ j − α j L̂
†
j

)
, (5b)

where α j ∈ C. Correspondingly, we obtain for each choice of
the displacements α j a different unraveling (2) of the quantum
master equation (1), each associated with a different continu-
ous measurement that opens the system in a different way.
This transformation underlies, e.g., homodyne measurements.
With increasing displacements α j , the frequency of quantum
jumps increases, while the effect of individual quantum jumps
decreases, so that it can be useful (or experimentally required)
to subsume them by a time-continuous diffusion process. Such
effective diffusive unravelings (which can always be reduced
with arbitrary accuracy to punctuated quantum jumps [14])
are excluded here. Ensemble averages over classical noise or
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disorder realizations [46,47], which are not related to contin-
uous quantum measurements, are excluded, too.

III. JUMP-TIME AVERAGING

In the unraveling (2) of the wall-time evolution equa-
tion (1), quantum trajectories are averaged over at specific
(wall) times t . In general, ρt then contains contributions from
any jump order n. Jump-time unraveling is based on the insight
that quantum trajectories can alternatively be bundled together
at a specified jump order n, i.e., by averaging over quantum
trajectories immediately after they have completed n jump
events (irrespective of their jump types). Importantly, different
trajectories in general arrive at the nth jump at different times.
Time t is then replaced by the jump order n, ρt → ρn, and

ρn =
∫ ∞

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1

∑
j1,... jn∈I

ρn
jn... j1 ({ti}), (6)

with the modified quantum trajectories

ρn
jn... j1 ({ti}) = J jnUtn−tn−1J jn−1 . . .J j1Ut1ρ0. (7)

Note that the upper limit of the integral over the final jump
time tn in (6) is shifted to infinity, as the occurrence of the
last jump is now unconstrained in time. Moreover, the quan-
tum trajectories (7) terminate immediately after the indicated
number of jumps is reached.

By construction, the jump-time-averaged state ρn describes
a well-defined, positive semidefinite quantum state, which
is normalized as long as every quantum trajectory reaches
n jumps. Moreover, it is operationally accessible in contin-
uous monitoring schemes, where quantum trajectories are
traced and quantum jumps detected. To see this, we relate the
jump-time-averaged state ρn to a readout protocol, which op-
erationally explains how ρn describes the statistics of readout
measurements. Note that all quantum states refer, implicitly
or explicitly, to a readout protocol. However, while commonly
the time t of the readout measurement is fixed, i.e., a quantum
state ρt describes the statistics of, actual or hypothetical, re-
peated measurements at the time t , ρn is based on a readout
protocol that connects different readout times.

The readout protocol for ρn, which involves knowledge
of the jump occurrences, is as follows: After preparing the
initial state ρ0, continuously measure the system and count the
quantum jumps (“clicks” in the monitoring instrument) until
the desired jump index n is reached (the readout condition),
then perform a concluding (strong) readout measurement.
After repeating this many times, the statistics of the readout
measurement is described by ρn; cf. (6). In contrast, if the final
readout measurement is, regardless of the jump count, per-
formed at a fixed time t for each run (i.e., the jump detections
are effectively discarded under this readout condition), then
the statistics of the readout measurement is described by ρt ,
cf. (2). The readout protocols underlying the jump-time and
the wall-time averaging, respectively, are illustrated in Fig. 2.

Let us note that quantum jump detections have previously
been proposed as a trigger in quantum feedback protocols
(see, e.g., [48], and [27,28] and reference therein); however,
always in combination with the readout triggered by wall
times, i.e., wall-time averaging. As we show in the remain-

FIG. 2. Readout protocols corresponding to the jump-time and
the wall-time averaging under monitoring, respectively. If the readout
measurement is triggered by a preset jump count n (upper panel),
then the quantum state ρn that captures the statistics of the readout
measurement is a solution to the jump-time evolution equation (9).
On the other hand, if the readout measurement is triggered by a preset
wall time t (lower panel), then the quantum state ρt that captures the
statistics of the readout measurement is a solution to the Lindblad
equation (1). The readout measurement can refer to an arbitrary
observable Ô = Ô†, whose statistics is then described by 〈Ô〉n =
Tr[ρnÔ] in the case of jump-time averaging, and 〈Ô〉t = Tr[ρt Ô]
in the case of wall-time averaging, respectively. More generally,
the readout measurement can stand for any positive operator-valued
measure. If one conducts an informationally complete set of mea-
surements, then the full quantum state can be reconstructed, i.e., ρn

in the case of jump-time and ρt in the case of wall-time averaging,
respectively.

der, jump-time averaging, i.e., the readout triggered by jump
counts, gives rise to significantly distinct dynamical charac-
teristics.

IV. JUMP-TIME EVOLUTION

The jump-time-averaged state ρn can be determined with-
out resorting to individual quantum trajectories. To see this,
we rewrite (6) by switching to waiting times τn = tn − tn−1

between jumps, which yields

ρn =
∫ ∞

0
dτn

∫ ∞

0
dτn−1 . . .

∫ ∞

0
dτ1

∑
j1,... jn∈I

ρn
jn... j1 ({τi}), (8)

where all waiting times decouple and extend to infinity, as the
time ordering required in the wall-time unraveling (2) is here
ineffective. It is now straightforward to extract the recursive
relation

ρn+1 =
∫ ∞

0
γ dτ

∑
j∈I

L̂ je
− i

h̄ Ĥeff τ ρne
i
h̄ Ĥ†

eff τ L̂†
j , (9)

where we have returned to standard operator notation. Repet-
itive application of (9) allows us now to determine the
jump-time-evolved state ρn for any n � 1, starting from an ar-
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bitrary initial state ρ0. We emphasize that (9), which describes
a completely positive quantum map in Kraus form, is derived
without approximations (i.e., it is exact), and is applicable to
general open quantum systems.

The jump-time evolution equation (9) is our main result.
Based on a distinct, operationally meaningful protocol to
bundle the stochastically evolving quantum trajectories, we
obtain a discrete, deterministic evolution, preserving the quan-
tum jumps while absorbing their stochasticity in the jump
order. The jump-time evolution (9) replaces the wall-time evo-
lution (1) for jump-time-averaged quantum states (6), and the
latter unravel the jump-time evolution equation (9) in the same
way as the wall-time-averaged states (2) unravel the Lindblad
evolution equation (1). As such, this jump-time unraveling
provides a distinct window into open quantum systems.

We emphasize that experimental tests of the jump-time
evolution (9) through monitoring, following the above readout
protocol, do not involve conditioning (apart from the read-
out condition, which is always required) or postselection, as
all quantum trajectories contribute to the jump-time-averaged
state (6). In contrast, the repeated readout of specific quantum
trajectories, which are conditioned on both the sequence of
jump types and their times of occurrence, requires postselec-
tion, which rapidly becomes prohibitive with an increasing
number of quantum jumps. The same holds for the condition-
ing on subensembles of quantum trajectories, or, generally,
whenever the readout condition is complemented by addi-
tional conditioning, where we cannot control all conditions
simultaneously.

Moreover, we clarify that the time integral to infinity in
(9), which reflects the stochastic occurrence of the quantum
jumps, does not describe the need for infinite observation
times. While it can, in principle, take arbitrarily long for the
subsequent quantum jump to occur, this will always happen
at finite times (unless quantum jumps have entirely ceased,
as discussed in the following section). Correspondingly, an
arbitrary jump count n is always reached in finite time. In
experimental realizations, one may prefer, or be required, to
introduce a maximum waiting time T in between jumps (e.g.,
to limit the overall maximum duration of individual runs),
where a run is discarded if the waiting time after an inter-
mediate jump exceeds this threshold. If the cutoff time T can
be chosen sufficiently large to lie in the exponential tails of all
involved waiting time distributions [cf. (15)], the discarded
fraction of quantum trajectories is negligible. Otherwise, a
modified (not norm-preserving) jump-time evolution equation
with the upper integration limit replaced by T would apply.

It is also worth mentioning that, similar to the Lindblad
evolution (1), finite samples of quantum trajectories can be
used to approximate the jump-time-averaged states (6), and
thus to efficiently simulate the jump-time evolution (9) by
propagating pure states.

Finally, let us point out that, in the generic case, the jump-
time evolution (9) lifts the degeneracy (5) of the Lindblad
equation (1). This ability to discriminate can be attributed
to the fact that the jump-time averaging keeps track of the
quantum jumps, while the latter are discarded (and hence
“washed out”) in the wall-time averaging. A family of exam-
ples, where the lifting of the degeneracy (5) by the jump-time
evolution becomes apparent, will be given at the end of Sec. V.

Note, however, that the jump-time evolution equation (9) may
be subject to other degeneracies. In the (diffusive) limit of
α j → ∞ (for at least one j), where quantum jumps occur in
arbitrarily close succession, jump-time and wall-time averag-
ing become effectively indistinguishable, and the jump-time
evolution reduces to the wall-time evolution.

V. ROLE OF DARK STATES

In general, the jump-time evolution (9) is non-trace-
increasing, i.e., Tr[ρn+1] � Tr[ρn] � Tr[ρ0] = 1 for any ρ0,
where the norm of ρn+1 is reduced by the fraction of quan-
tum trajectories whose chain of quantum jumps terminates
after n jumps. We now prove that, for systems with finite-
dimensional state space, the jump-time evolution (9) describes
a trace-preserving quantum channel, i.e., any quantum trajec-
tory exhibits infinitely many quantum jumps regardless of the
initial state ρ0, if and only if the master equation (1) does not
exhibit dark states.

A pure state |ψD〉 constitutes a dark state, if it lies in the
kernel of all jump operators,

L̂ j |ψD〉 = 0 ∀ j ∈ I, (10a)

and, simultaneously, the projector |ψD〉〈ψD| commutes with
the Hamiltonian:

[Ĥ, |ψD〉〈ψD|] = 0. (10b)

Dark states thus describe pure steady states of the master
equation (1) that, once reached, are characterized by quantum
trajectories that do not exhibit quantum jumps. It follows
immediately that the jump-time evolution ends at a dark state:
ρn+1 = 0 if ρn = |ψD〉〈ψD|; i.e., dark states define the kernel
of the jump-time evolution (9).

A quantum or Kraus map [49] ρ → ρ ′ = ε(ρ) =∑
μ EμρE†

μ is completely positive and trace-preserving, if the
operators Eμ satisfy the completeness relation

∑
μ E†

μEμ = 1.
This leaves us to show that

S ≡
∫ ∞

0
γ dτ e

i
h̄ Ĥ†

eff τV̂ e− i
h̄ Ĥeff τ = 1 (11)

in the absence of dark states, where we have introduced the
effective potential V̂ = V̂ † = ∑

j∈I L̂†
j L̂ j . Note that V̂ is non-

negative definite.
It is instructive to first consider the case Ĥ = 0. If we spec-

trally decompose V̂ = ∑
m vm|m〉〈m|, where vm � 0, we can

write S = ∑
m vm{∫ ∞

0 γ dτ e−γ vmτ }|m〉〈m|. If vm > 0 ∀m (no
dark states), the integrals yield v−1

m and we recover the identity
operator. However, if there exists an m such that vm = 0 (dark
state), the associated term must be excluded from the sum and
the identity operator cannot be recovered, implying that the
quantum map is not trace-preserving.

In the general case, Ĥ �= 0, we start by noting that
γ V̂ = − i

h̄ (Ĥ†
eff − Ĥeff ), which allows us to rewrite the inte-

grand in (11) as a total derivative,

−S =
∫ ∞

0
dτ

d

dτ

[
e

i
h̄ Ĥ†

eff τ e− i
h̄ Ĥeff τ

] = e
i
h̄ Ĥ†

eff τ e− i
h̄ Ĥeff τ

∣∣∞
0 ,
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where we formally performed the integral. The integral exists
and Eq. (11) is validated, if and only if

lim
τ→∞ e

i
h̄ Ĥ†

eff τ e− i
h̄ Ĥeff τ = 0. (12)

We proceed with proving that Eq. (12) holds if and only
if there are no dark states. First, we realize that there always
exists a (finite-dimensional) canonical basis |λ〉, in which Ĥ†

eff
takes Jordan-normal form. Recall that every eigenvalue comes
with at least one ordinary eigenstate. Moreover, all eigenval-
ues of Ĥ†

eff have non-negative imaginary parts. Indeed, if |λ〉
is an ordinary eigenstate of Ĥ†

eff , Ĥ†
eff |λ〉 = zλ|λ〉, we obtain

〈λ|Ĥ†
eff |λ〉 = zλ = 〈λ|Ĥ |λ〉 + ih̄ γ

2 〈λ|V̂ |λ〉. Since both Ĥ and
V̂ are Hermitian and thus real on the diagonal, and since V̂ is
in addition positive semidefinite, then Im zλ = h̄ γ

2 〈λ|V̂ |λ〉 �
0 follows immediately.

We now show that an ordinary eigenstate |λ〉 of Ĥ†
eff is

a dark state if and only if Im zλ = 0. One direction is triv-
ial: If |λ〉 is a dark state, then by definition 〈λ|V̂ |λ〉 = 0,
and hence Im zλ = 0. On the other hand, if 〈λ|V̂ |λ〉 =∑

j∈I〈λ|L̂†
j L̂ j |λ〉 = 0, we infer L̂ j |λ〉 = 0 ∀ j. Since |λ〉 is an

ordinary eigenstate of Ĥ†
eff , we also infer Ĥ†

eff |λ〉 = Ĥ |λ〉 =
zλ|λ〉, that is, |λ〉 is also an eigenstate of Ĥ and hence a dark
state.

Now let us assume that a state |μ〉 is a dark state. Then
V̂ |μ〉 = 0 and Ĥ†

eff |μ〉 = Ĥeff |μ〉 = Ĥ |μ〉 = ε|μ〉 with ε ∈ R,
i.e., |μ〉 is an eigenstate of both Ĥ†

eff and Ĥeff . Consequently,

lim
τ→∞ 〈μ|e i

h̄ Ĥ†
eff τ e− i

h̄ Ĥeff τ |μ〉 = 〈μ|μ〉 = 1, (13)

which contradicts (12).
On the other hand, if there are no dark states, we can infer

that all eigenvalues of Ĥ†
eff have strictly positive imaginary

parts. If ĵλ denotes the Jordan block associated with the eigen-
value zλ, we can write

ei ĵλτ = eizλτ F̂λ(τ ) = e−Imzλτ
(
eiRezλτ F̂λ(τ )

)
, (14)

where the matrix function F̂λ(τ ) scales at most polynomially
in τ for large τ . Thus, at large τ , all exponents of Jordan
blocks ei ĵλτ decay to zero. Consequently, e

i
h̄ Ĥ†

eff τ vanishes in
the limit τ → ∞. The same holds for e− i

h̄ Ĥeff τ , which can be
proven similarly. Therefore, Eq. (12) is fulfilled in the absence
of dark states. This completes our proof. �

The relation between dark states and trace preservation
does not necessarily hold in infinite-dimensional state spaces.
Counterexamples, where quantum jumps are excluded even
in the absence of dark states, can be constructed, e.g., if the
dissipation acts in a locally confined region of space while
the wave packet escapes in opposite direction to infinity.
Infinite-dimensional systems with block-diagonal effective
Hamiltonians Ĥeff = ∑

k |k〉〈k| ⊗ Ĥeff (k), where all blocks
Ĥeff (k) are finite dimensional, are trace-preserving exactly if
all blocks are free of dark states. This corollary of the above
theorem covers, e.g., translation-invariant models and both
infinite-dimensional instances discussed below.

In the presence of dark states, decaying jump-time states ρn

indicate convergence towards the dark states, i.e., the steady
states of the corresponding wall-time master equations. In
particular, if there is a single dark state and ρn = 0, then the

system state is the dark state. If there are multiple dark states,
then ρn = 0 indicates that the system state is confined to a
(decoherence-free) subspace spanned by the dark states. Note,
however, that the existence of dark states does not necessarily
imply a decaying jump-time evolution, which, in general,
depends on the initial state.

Finally, we remark that open quantum systems which
exhibit dark states provide simple examples where the jump-
time evolution in general lifts the degeneracy (5) of the
Lindblad evolution: Any nonvanishing choice of α j in (5) will
remove the dark states, and hence will necessarily result in
a perpetual jump-time evolution, independent of the initial
state. In contrast, in the presence of dark states, there always
exist initial conditions which result in a terminating jump-time
evolution.

VI. WAITING TIME DISTRIBUTION

If the jump-time evolution (9) is trace-preserving, the trace
of the integrand in (9) delivers the waiting time distribution
wn→n+1(τ ) between jump n and jump n + 1,

wn→n+1(τ ) = γ Tr

⎡
⎣e

i
h̄ Ĥ†

eff τ
∑
j∈I

L̂†
j L̂ je

− i
h̄ Ĥeff τ ρn

⎤
⎦. (15)

Indeed, Tr[L̂ je− i
h̄ Ĥeff τ ρne

i
h̄ Ĥ†

eff τ L̂†
j ] � 0 ∀ j, τ , and∫ ∞

0 dτ wn→n+1(τ ) = Trρn+1 = 1. The non-negativity follows
from the general consideration Tr[ÂρÂ†] = ∑

n pn〈n|Â†Â|n〉,
where ρ = ∑

n pn|n〉〈n| with pn � 0, and Â†Â is non-
negative. Note that the waiting time distribution, which
is exact and general, is not restricted to stationary states
and may vary substantially between different jump orders,
depending on whether ρn resides in a long- or a short-lived
state. For n = 0, expression (15) describes the waiting time
distribution between the preparation of the initial state and
the first quantum jump.

A state-independent waiting time distribution,
wn→n+1(τ ) = w(τ ), is obtained when V̂ = ∑

j∈I L̂†
j L̂ j = 1,

i.e., when the effective potential acts state-independently. The
waiting time distribution then simplifies to

w(τ ) = γ e−γ τ , (16)

which can be related to other methods to analyze the counting
statistics of quantum jumps [50,51]. Below we discuss two ex-
amples of this kind, a two-level system undergoing dephasing,
and a free particle exposed to collisional decoherence.

VII. EXAMPLES

We now demonstrate with a few basic examples some of
the characteristics of the jump-time evolution.

A. Two-level system undergoing relaxation

Our first example is a two-level system exposed to relax-
ation, characterized by a single jump operator

L̂ = σ̂− = |0〉〈1|, (17)

where |0〉 and |1〉 denote the ground and the excited state,
respectively. A general Hamiltonian can be written as Ĥ =
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h · 
σ , with the Pauli operators {σ̂x, σ̂y, σ̂z} and the convention
σ̂z = |1〉〈1| − |0〉〈0|. The effective Hamiltonian (4) then reads

Ĥeff = −ih̄
γ

4
12 + 
heff · 
σ , (18)

with 
heff = (hx, hy, hz − ih̄ γ

4 )T . Clearly, the state |0〉 is a dark
state of the system if and only if Ĥ = hzσ̂z. Indeed, if Ĥ = 0,
the evolution operator representing the deterministic dynam-
ics between consecutive jumps is equal to

e− i
h̄ Ĥeff τ = |0〉〈0| + e− γ

2 τ |1〉〈1|, (19)

and we obtain for the jump-time evolution (9)

ρn+1 = 〈1|ρn|1〉|0〉〈0|. (20)

It follows immediately that ρ1 = 〈1|ρ0|1〉|0〉〈0| and ρ2 = 0,
i.e., the jump-time evolution ends after the first jump latest.
The vanishing jump-time state indicates that the system has
reached the dark state |0〉, which is also the steady state
of the corresponding wall-time evolution equation ∂tρt =
γ (σ̂−ρt σ̂+ − 1

2 {σ̂+σ̂−, ρt }); the latter is solved by 〈0|ρt |1〉 =
〈0|ρ0|1〉 exp(−γ t/2) and 〈0|ρt |0〉 = 1 − 〈1|ρ0|1〉 exp(−γ t ).

On the other hand, if Ĥ = hxσ̂x (hx �= 0), then
[Ĥ, |0〉〈0|] �= 0 and the dark state is removed. Let us examine
the special case hx = h̄ γ

4 , i.e., the “exceptional point” where

|
heff | =
√

(hx )2 + (−ih̄ γ

4 )2 = 0, and hence

e− i
h̄ Ĥeff τ = e− γ

4 τ

{
12 − i

γ τ

4
(σ̂x − iσ̂z )

}
. (21)

The jump-time evolution (9) now persists,

ρn+1 = |0〉〈0|, (22)

where the ground state becomes the steady state right after the
first jump, with the waiting time distribution [cf. (15)]

wn→n+1(τ ) = γ 3τ 2

16
e− γ

2 τ , n � 1. (23)

Similar jump-time evolutions hold for general hx �= 0 (or any
Hamiltonian that does not commute with |0〉〈0|). In contrast,
the stationary states of the corresponding wall-time master
equation lie, for different Hamiltonians, on the surface of
an ellipsoid in the Bloch sphere [52]. Hence, the wall-time
evolution here lifts a degeneracy of the jump-time evolution
in the Hamiltonian sector.

Alternatively, we can remove the dark state by adding the
excitation process

L̂′ = √
xσ̂+ = √

x |1〉〈0| (24)

as a second jump operator, where x > 0 denotes the ratio
between the rates of the two processes. For Ĥ = 0, we then
obtain the effective Hamiltonian

Ĥeff = −ih̄
γ

4
(1 + x)12 − ih̄

γ

4
(1 − x)σ̂z, (25)

the conditioned time evolution operator

e− i
h̄ Ĥeff τ = e− γ

2 xτ |0〉〈0| + e− γ

2 τ |1〉〈1|, (26)

and the jump-time evolution

ρn+1 = σ̂−ρnσ̂+ + σ̂+ρnσ̂−. (27)

The latter describes an ongoing population inversion for any
initial state outside of the x-y plane (which functions as a
mirror plane) of the Bloch sphere. Note that the jump-time
evolution here exhibits a degeneracy in the sector of the jump
operators: it is independent of the rate ratio x. Moreover, in
contrast to the stationary states in wall time, the evolution can
here assume cyclic asymptotic behavior (which here takes the
period 2). At the same time, the waiting time distribution

wn→n+1(τ ) = γ e−γ τ 〈1|ρn|1〉 + γ xe−γ xτ 〈0|ρn|0〉 (28)

is x dependent and state dependent, as well as the correspond-
ing average waiting time τ n→n+1 = ∫ ∞

0 dτ τ wn→n+1(τ ),

τ n→n+1 = 1

γ
〈1|ρn|1〉 + 1

γ x
〈0|ρn|0〉. (29)

The resulting average duration of a cycle,

T = τ n→n+1 + τ n+1→n+2 = 1

γ
+ 1

γ x
, (30)

is state independent, and can be tuned arbitrarily large by
diminishing the rate ratio x.

B. Two-level system with dephasing

Another paradigmatic process is the dephasing of a qubit,
described by the single Lindblad operator

L̂ = σ̂z. (31)

Clearly, there are no dark states, irrespective of the Hamil-
tonian. For a general Hamiltonian Ĥ = 
h · 
σ , the effective
Hamiltonian (4) reads

Ĥeff = −ih̄
γ

2
12 + 
h · 
σ , (32)

and the conditioned time evolution operator is given by

e− i
h̄ Ĥeff τ = e− γ

2 τ

{
cos

[
τh

h̄

]
12 − i

τ

h̄
sinc

[
τh

h̄

]

h · 
σ

}
, (33)

with h = |
h| and sinc x ≡ x−1 sin x. The jump-time evolu-
tion (9) can be determined analytically for arbitrary 
h, and
the waiting time distribution takes, for any 
h, the state-
independent form (16). For simplicity we focus on Ĥ = hzσ̂z,
in which case we obtain

ρn+1 = σ̂zρnσ̂z + 2h2
z

4h2
z + h̄2γ 2

(ρn − σ̂zρnσ̂z )

+ h̄γ hz

4h2
z + h̄2γ 2

i[σ̂z, ρn], (34)

i.e., the jump-time evolution depends both on hz and γ . Equa-
tion (34) can be brought into manifest Kraus form, but for the
sake of compactness we choose this representation.

The wall-time evolution equation which parallels
(34), ∂tρt = − i

h̄ [hzσ̂z, ρt ] + γ (σ̂zρt σ̂z − ρt ), is solved
by 〈1|ρt |1〉 = 1 − 〈0|ρt |0〉 = 〈1|ρ0|1〉 and 〈1|ρt |0〉 =
〈1|ρ0|0〉 exp(− i

h̄ 2hzt − 2γ t ), describing states that spiral
into the z axis of the Bloch sphere; in particular,
the state purity rt = Tr[ρ2

t ] = 〈0|ρ0|0〉2 + 〈1|ρ0|1〉2 +
2|〈0|ρ0|1〉|2 exp(−4γ t ) monotonically decreases for any

062212-6



JUMP-TIME UNRAVELING OF MARKOVIAN OPEN … PHYSICAL REVIEW A 104, 062212 (2021)

initial state outside of the z axis of the Bloch sphere, and
irrespective of hz.

To see how the jump-time evolution can deviate from this
behavior, we evaluate (34) for Ĥ = 0, which yields

ρn+1 = σ̂zρnσ̂z. (35)

This is solved by ρn = σ̂ n
z ρ0σ̂

n
z , which again describes a cyclic

evolution with period 2 for any initial state outside of the z axis
of the Bloch sphere. Remarkably, we find that the evolution
is unitary and hence the respective state purity conserved,
rn = Tr[ρ2

n ] = Tr[ρ2
0 ], in stark contrast to the monotonous

purity decay in wall time. This difference can be understood in
terms of the parity of the number of quantum jumps, which is
controlled under the jump-time evolution, while it is increas-
ingly washed out under the wall-time dynamics.

On the other hand, in the limit hz � h̄γ , the jump-time
evolution (34) can be approximated as

ρn+1 ≈ 1

2
ρn + 1

2
σ̂zρnσ̂z, (36)

which implies that the (initial state-dependent) minimum
value of the purity rmin = 〈0|ρ0|0〉2 + 〈1|ρ0|1〉2 is reached af-
ter a single jump-time step. Here, the rapid purity decay under
the jump-time evolution can be traced back to the mixing
of the completely randomized phases that are accumulated
between initial state preparation and the first quantum jump
(or any consecutive quantum jumps).

C. Damped harmonic oscillator

In this (infinite-dimensional state-space) example, the
Hamiltonian is given by Ĥ = h̄ω(â†â + 1/2), where the an-
nihilation operator â also represents the single jump operator,

L̂ = â. (37)

This describes, e.g., an oscillator in a zero temperature bath,
or a lossy cavity mode. The effective Hamiltonian (4),

Ĥeff = h̄ω

(
â†â + 1

2

)
− ih̄

γ

2
â†â, (38)

is then diagonal in the Fock basis |m〉, since â†â|m〉 =
â†√m|m − 1〉 = m|m〉. Moreover, the ground state |0〉 de-
scribes a dark state, as â|0〉 = 0 and [Ĥ , |0〉〈0|] = 0.

If we evaluate the jump-time evolution (9) in the Fock
basis, we obtain

〈m|ρn+1|m′〉 = K (m, m′)〈m + 1|ρn|m′ + 1〉, (39a)

with the propagator

K (m, m′) = 2γ
√

(m + 1)(m′ + 1)

(2 + m + m′)γ − 2iω(m′ − m)
. (39b)

The explicit solution then reads

〈m|ρn|m′〉 = K (m, m′)n〈m + n|ρ0|m′ + n〉, (40)

where K (m, m) = 1.
Due to the presence of the dark state, the trace of the

jump-time-evolved state is in general not preserved: Tr[ρn] =∑∞
m=0 〈m|ρn|m〉 = ∑∞

m=n 〈m|ρ0|m〉 � 1. Instead, Tr[ρn] here
describes the probability that n jumps can be observed, i.e., the
fraction of quantum trajectories that arrive at the nth jump.

Note that, similar to the two-level system under relaxation
discussed above, the dark state is removed when adding the
excitation process L̂′ = â†.

If we evaluate (40) for an initial Fock state ρ0 = |N〉〈N |,
we find that the jump-time evolution cascades down,

ρn = |N − n〉〈N − n| for n � N, (41a)

until it reaches the ground state (which is also the dark state
of the system), where the jump-time evolution ends,

ρn = 0 for n > N. (41b)

Let us stress again that the vanishing jump-time state im-
plies that the system resides in the dark state. Moreover, we
point out that the jump-time evolution preserves Fock states,
which is not the case for the respective wall-time evolution.
As long as the evolution (41) is norm-preserving, n � N , we
can evaluate the waiting time distribution (15), yielding

wn→n+1(τ ) = γ (N − n)e−γ (N−n)τ for n < N. (42)

The corresponding average waiting times,

τ n→n+1 =
∫ ∞

0
dτ τ wn→n+1(τ ) = [γ (N − n)]−1, (43)

grow as the ground state is approached.
The jump-time evolution for an initial coherent state, ρ0 =

|α〉〈α|, where â|α〉 = α|α〉, is depicted in Fig. 3 in terms
of the Wigner quasiprobability distribution [53]. The Wigner
functions of Gaussian states, which comprise coherent states,
are known to be Gaussian-shaped phase space distributions.
In our case, one easily sees that the jump-time-evolved states
deviate from Gaussian distributions, implying that Gaus-
sian states are not preserved under the jump-time evolution.
In contrast, the corresponding wall-time evolution, ∂tρt =
− i

h̄ [h̄ωâ†â, ρt ] + γ (âρt â† − 1
2 {â†â, ρt }), preserves Gaussian

states, and coherent states evolve as αt = α0 exp(−iωt − γ

2 t ).

D. Collisional decoherence

As our final example, we consider a free particle, Ĥ =
p̂2/2m (with mass m), exposed to an environment exerting
momentum kicks, e.g., a heavy test particle immersed in a
background gas of light particles. It is assumed that the col-
lisions merely decohere the particle state, without affecting
its average momentum. We now have an infinite collection of
jump operators, labeled by the momentum transfer q,

L̂q =
√

G(q) exp

(
i
qx̂

h̄

)
, (44)

where the momentum transfer distribution G(q) = G(−q) >

0 determines the relative weight of the momentum kicks.
We assume that

∫
dq G(q) = 1, which results in the effective

Hamiltonian [cf. (4)]

Ĥeff = p̂2

2m
− ih̄

γ

2
1∞. (45)

There are no dark states present in this open continuous-
variable system, implying an ongoing jump progression for
any initial state. The state-independent waiting time distribu-
tion between jumps is given by (16).
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FIG. 3. Jump-time evolution of a damped harmonic oscillator for
an initial coherent state ρ0 = |α〉〈α|, â|α〉 = α|α〉, with α = 2 eiπ/4.
Shown are the Wigner functions of ρn, Wn(x, p), for the jump counts
n = 0 (a), n = 2 (b), n = 5 (c), and n = 10 (d). In contrast to the
corresponding wall-time evolution, the jump-time-evolved state de-
viates from a coherent state, until it arrives at the ground state.
The latter is a dark state of the damped harmonic oscillator and
hence acts as a sink on the trace of the state. The state norm is
monotonously decreasing from (a) to (d), while the color code is
gauged with respect to the maximum in each plot. The annihilation
operator â and the phase space variables are connected through
â = (x̂/x0 + i p̂x0/h̄)/

√
2, where x0 = √

h̄/ωm with mass m, and
ω/γ = 1.

Evaluating the jump-time evolution (9) in momentum rep-
resentation yields

〈p|ρn+1|p′〉 =
∫

dq G(q)K (p − q, p′ − q)〈p − q|ρn|p′ − q〉,
(46a)

with the propagator

K (p, p′) =
[

1 + i
(p − p′)(p + p′)

2mh̄γ

]−1

. (46b)

We can use (46) to characterize the evolution behavior in jump
time. In line with the wall-time evolution, the momentum
expectation value is invariant,

〈p̂〉n+1 = 〈p̂〉n, (47)

while the momentum variance stroboscopically grows,

〈(
p̂)2〉n+1 = 〈(
p̂)2〉n + 
2
G, (48)

with 
2
G = ∫

dq q2 G(q). Notice that this broadening reflects
the collision-induced decoherence.

The resulting transport behavior is indicated by the position
expectation value, which evolves in steps,

〈x̂〉n+1 = 〈x̂〉n + 〈p̂〉n

mγ
, (49)

controlled by the average velocity and the overall jump rate.
Note that the step size 〈p̂〉0

mγ
decreases with increasing rate

γ . With the average waiting time τ = ∫ ∞
0 dτ τ w(τ ) = 1/γ ,

we can rewrite (49) as 〈x̂〉n+1 = 〈x̂〉n + 〈p̂〉0

m τ , which parallels
the transport according to the wall-time evolution, 〈x̂〉t =
〈x̂〉0 + 〈p̂〉0

m t . However, while the latter cannot be distinguished
from a free, isolated particle, the jump-time transport (49) still
reflects the presence of the collisions-inducing environment,
by the resolution of the quantum jumps.

VIII. CONCLUSIONS

Based on the concept of quantum jump trajectories, we
introduced jump-time-averaged quantum states, and demon-
strated that these are governed by the discrete, deterministic
jump-time evolution equation. The latter keeps track of the
signature quantum jumps, in contrast to the deterministic,
but jump-oblivious wall-time master equation. While we put
forward quantum trajectories as the connecting element be-
tween these two distinct ways of unfolding open quantum
systems, both evolutions can be stated without reference to
quantum trajectories, and each provides specific access to
intrinsic properties of the open quantum system. In continuous
measurement schemes, the two evolutions refer to different
readout protocols, where the jump-time protocol is distin-
guished in that it actively involves the jump detection events.

Our examples show that the jump-time evolution can sig-
nificantly deviate from its wall-time counterpart. Notably, the
jump-time evolution lifts generic degeneracies of the wall-
time evolution; on the other hand, the former can display
robustness against perturbations in the Hamiltonian sector
and/or the sector of the jump operators. Moreover, the jump-
time evolution can exhibit cyclic asymptotic behavior, a
characteristic trait that is not reflected by the correspond-
ing Lindblad dynamics. Generally, jump-time unraveling may
give new perspectives on, and insights into, for example, dissi-
pative phase transitions, dissipative transport, non-Hermitian
physics, quantum thermodynamics, and topological features
in open systems (see, e.g., [54]).

When realized with monitoring, the jump-time evolution
promises to provide a versatile paradigm for engineering a
broad class of quantum channels that can incorporate coherent
and dissipative traits, with potential applications ranging from
quantum sensing to quantum information processing (where
“gate switching” may be triggered by jump detections, i.e.,
Hamiltonian and jump operators become conditioned on the
jump count n, Ĥ (n) and L̂(n)

j ). Conceptually, jump-time aver-
aging offers a distinct way to interpret and analyze continuous
quantum measurements, be it in theory or experiment.
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